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Abstract-Forecasting stock market volatility is an important 
and challenging task for both academic researchers and business 
practitioners. The recent trend to improve the prediction 
accuracy is to combine individual forecasts using a simple 
average or weighted average where the weight reflects the 
inverse of the prediction error. In the existing combining 
methods, however, the errors between actual and predicted 
values are equally reflected in the weights regardless of the time 
order in a forecasting horizon. In this paper, we present a new 
approach where the forecasting results of the Generalized 
Autoregressive Conditional Heteroscedastic (GARCH), the 
Exponential  Generali zed Autoregressive Conditional 
Heteroscedastic(EGARCH), and random walk models 
arecombined based on a weight that reflects the inverse of the 
Exponentially Weighted Moving Average (EWMA) of the  
Mean Absolute Percentage Error (MAPE) of each individual 
prediction model. The results of an empirical study indicate that 
the proposed method has a better accuracy than the Generalized 
A u t o r e g r e s s i v e  C o n d i t i o n a l  H e t e r o s c e d a s t i c 
(GARCH),Exponential Generalized Autoregressive Conditional 
Heteroscedastic (EGARCH) and random walk models, and also 
combining methods based on using the MAPE for the weight. 

. INTRODUCTION 

While traditional financial economics research has 
tended to focus upon the mean of stock market returns, in 
recent times the emphasis has shifted to focus upon the 
volatility of these returns. Moreover, the international stock 
market crash of 1987 has increased the focus of regulators, 
practitioners and researchers upon volatility. These concerns 
have led researchers to examine the level and stationarity of 
volatility over time. Specifically, research has been directed 
toward examining the accuracy of volatility forecasts obtained 
from various econometric models. 

There is a large literature on forecasting volatility. Many 
econometric models have been used. However, no single 
model is superior. Using US stock data, for example, Brooks 
(1998) finds the Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) models outperform most 
competitors[1]. Brailsford and Faff (1996) (hereafter BF) find 
that the models are slightly superior to most simple  
models for forecasting Australian monthly stock index 
volatility[2]. Using data sets from Japanese and Sigaporean 

markets respectively, however, Tse (1991) and Tse and Tung 
(1992) find that the exponentially weighted moving average 
models provide more accurate forecasts than the GARCH 
model[3,4]. Dimson and Marsh (1990) find in the UK equity 
market more parsimonious models such as the smoothing and 
simple regression models perform better than less 
parsimonious models, although the GARCH models are not 
among the set of competing models considered[5].

The weakness of most previous studies is their 
dependence on a single model that is expected to capture all 
aspects of the volatility formation process. An alternative 
solution to overcome the limitation is to combine individual 
forecasts based on models of different specifications and/or 
information sets[6]. Armstrong (2001) reported that an equally 
weighted combination of forecasts reduced the average 
forecasting error by 12.5%[7]. Bates and Granger (1969) 
advocated the use of a weighted average when combining 
forecasts with the weight being calculated from the variance 
and covariance of the different forecasting errors[8]. Similarly 
Russell and Adam (1987), Schwaerzel and Rosen 
(1997)combined individual forecasts using weights that were 
obtained from the mean squared error, mean absolute error, or 
Mean Absolute Percentage Error (MAPE) of the individual 
models[9,10]. Menezes et al. (2000)presented a detailed review 
on combining models and covered the simple average method, 
regression-based methods, and the switching method[11]. Chan 
et al. (2004) used quality control techniques to decide when 
one needs to recalculate the combining weights[12]. Their 
approach is relatively new. However, they still obtained the 
weight in terms of the average error from the entire training 
data set. In the existing combining methods, the errors 
between the actual and predicted values are equally reflected 
in the weights regardless of their time order in a forecasting 
and thus this kind of weight is slow to react to dynamic 
changes. 

In this paper, we propose an approach in which the 
results obtained using the GARCH, Exponential Generalized 
Autoregressive Conditional Heteroscedastic (EGARCH), and 
random walk approaches are combined using a weight that 
reflects the inverse of the Exponentially Weighted Moving 
Average (EWMA) of the Absolute Percentage Error (APE) of 
each of the prediction models. The results of an empirical 
study based on Shenzhen stock market data indicate that the 
proposed method has a better accuracy than the GARCH, 
EGARCH, and random walk models, and also combining 
methods based on using the MAPE for the weight. 

The remainder of this paper is organized as follows. 
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Section 2 presents the individual prediction models along with 
combining algorithms. In Section 3, a comparison study based 
on Shenzhen stock market data is performed and the results 
are summarized. Conclusions are drawn in Section 4. 

. FORECASTING MODEL 

In this section we describe four different models 
applicable to stock market volatility prediction: (i) GARCH; 
(ii) EGARCH; (iii) random walk; and (iv) combination 
methods including EWMA and MAPE approaches. 

A. GARCH model 
 The generalized autoregressive conditional heterosc- 

edastic (GARCH) model was developed by Bollerslev and is 
an extension of the autoregressive conditional heteroscedastic 
(ARCH) model introduced by Engle (1982) to allow for a 
more flexible lag structure[13,14]. The GARCH model involves 
the joint estimation of a conditional mean and a conditional 
variance equation. Usually, a GARCH (1,1) is found to be 
sufficient to adequately model volatility. The GARCH (1,1) 
model employed in this study can be described as follows: 
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Where rt is the return on the stock index measured as the 
logarithm of relative price change and ht is the conditional 
volatility.

1−Ω t
is the information set available at time t. 

B. EGARCH model 
A limitation of the GARCH model described above is 

that the conditional variance responds to positive and negative 
innovations in the same manner. However, there is a body of 
evidence that suggest that the restriction is not empirically 
valid, in other words, it has been noted that often negative 
shocks to the conditional mean equation have a larger effect 
upon volatility than positive shock. One model which remove 
the assumption of symmetric responses of volatility to shocks 
of different sign are the exponential GARCH (EGARCH) 
model proposed by Nelson(1991)[15].The EGARCH(1,1) 
model used in this study can be described as follows: 
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    In the EGARCH model, the asymmetry arises from the 
direct inclusion of the term in 1tε − , normalized by the 
standard deviation of the data. There are no nonnegativity 
restrictions on these parameters in the EGARCH model. This 
is a particularly useful property which significantly simplifies 
the estimation of parameters and avoids a number of possible 
difficulties in a negative estimation of GARCH model. 

C. Random walk model 
When time series data have an irregualr pattern, naive 

models such as the random walk model are difficult to beat. 

The simple random walk model implies that the trend remains 
roughly constant throughout the whole series without any 
persistent upward or downward drift. The random walk model 
can be described as  

1ˆ ( ) ,t tRWσ σ −=        (3) 

where tσ is the daily volatility measure. Hence it assumes that 
the best forecast of today’s volatility is yesterday’s observed 
volatility. 

D. EWMA combination 
We introduce the EWMA approach in an effort to 

combine the individual results obtained from the GARCH, 
EGARCH and random walk approaches. In the EWMA 
combining method, the weight associated with each individual 
forecasts is determined in such a manner so as to more reflect 
recent performances rather than historic performances. In 
other words, our proposed weights reflect changes in the 
model performance as a function of the time t.

In general, the EWMA of time series data ts can be 
defined as follows (Montgomery, 1996)[16].

1)1( −−+= ttt ssZ λλ ,     (4) 
where 10 ≤< λ is a constant and .0 sZ =

It is well known that using the EWMA approach Zt is 
reduced to the form of a weighted average of all the previous 
samples: 
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with ts being defined as the APE of the individual prediction 

models at time t. That is 
t
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actual volatility at time t and i
tσ̂ is the predicted volatility of 

time t obtained using model i. Subsequently, 0Z can be 
obtained as the MAPE so that the EWMA of the APE of 
prediction model i at time t can be expressed as 
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where MAPEi is the mean of the APE of model i.
Next, we propose an EWMA combining method that 

uses the inverse of the EWMA as the weight for the individual 
forecasting model. In this case the weight iw can be written as  
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where N is the total number of forecasts to be combined. 
Based on Equation (7), we can combine individually 

predicted results i
jt−σ̂ directly using weight tiw , as follows: 
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In this way, a predicted value at time t from an individual 
model associated with a smaller EWMA gets a larger weight 
and thus recent performances are favored over historical 
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performances. 
In the existing MAPE combining method the weight 

tiw , is written as 
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. EMPIRICAL STUDY 

A. Data description and research method 
The data analysed in this paper are the daily Shenzhen 

Stock Exchange closing component stock price index for the 
period 2 January 2001 to 30 July 2006. The Shenzhen Stock 
Exchange publishes a daily composite index that is based on 
the weighted market capitalization of all listed companies. 
The data was obtained from Datastream. Daily returns are 
identified as the difference in the natural logarithm of the 
closing index value for two consecutive trading days. 

Table 1 contains the number of return observations for 
the stock index and statistics testing the null hypothesis of 
independence and identically distributed normal variates. The 
descriptive statistics for the return series are mean, standard 
deviation, skewness, kurtosis and Ljung-Box statistics LB(12) 
and LB2 (12) for the return series and the squared return series. 
Under the assumption of normality, skewness and kurtosis 
have asymptotic distributions N(0,6/T) and N(3,24/T), 
respectively, where T is the number of return observations. The 
return distribution is positively skewed,indicating that the 
distribution is non-symmetric. Furthermore, the relatively 
large value of kurtosis statistics suggests that the underlying 
data are leptokurtic, or fattailed and sharply peaked about the 
mean when compared with the normal distribution. 

The Ljung-Box LB(12) statistics for the cumulative 
effect of up to the twelfth order autocorrelation in the return 
exceeds 21.026 (5% critical value from a chisquared 
distribution with 12 degrees of freedom). It indicates that 
there is some evidence for serial correlation in the stock return 
series that should be accounted for in the mean equation. 

Even if there was a lack of serial correlation, evidence 
would imply only that the series was uncorrelated, and no 
conclusion could be drawn on independence. The Ljung-Box 
LB2(12) statistics for the squared return provides us with a 
test of intertemporal dependence in the variance. TheLB2(12) 
statistical value 119.34, which exceeds 26.217 (1% critical 
value from a chi-squared distribution with 12 degrees of 
freedom), rejects significantly the zero correlation null 
hypothesis. In other words, the distribution of the next 
squared return depends not only on the current squared return 
but also on several previous squared returns, which will result 
in volatility clustering. These results clearly reject the  

TABLE I 
SAMPLE STATISTICS FOR DAILY RETURNS  

(JANUARY, 2, 2001-JULY, 30, 2006) 
NO.of 

obs 
Mean 
(%) 

Standard 
deviation 

(%) 
Skewness 
coefficient Kurtosis LB(12) 

return 
LB2(12) 
squared 
return 

1449 -0.0785 2.175 0.8993 11.4332 22.8945 119.34 

independence assumption for the time series of daily stock 
returns. In sum, there are dependence, non-normality, 
thicktails and volatility clustering in the time series data of 
Shenzhen daily stock returns. 

The approach taken in this paper is one-step-ahead 
forecasts. One-step-ahead prediction is useful in evaluating 
the adaptability of a forecasting model. Since our main goal is 
to evaluate the volatility forecasting performance of four 
models, we wish to consider a reasonably large hold-out 
sample. Therefore, the sample data set of daily Shenzhen 
component index prices is divided into two parts. The first 
part is from 2 January 2001 to 31 December 2005. The second 
part is from 2 January 2006 to 30 July 2006. The second part 
of the data set serves as the test or comparison period in 
which the out of sample forecasts from the models are 
compared. The first part of the data set is reserved for 
estimating the initial parameters of the models. Furthermore, 
since it is not a priori assumed that one model necessarily 
dominates other models over the whole sample, we repeat our 
modelling and forecasting exercise for different subsamples. 
We thus fit the models to a sample of five years, generate a 
one-step-ahead forecast, delete the first observation from the 
sample and add the next one, and generate again a 
one-step-ahead-forecast. This process continues until we get a 
volatility forecasts for each day from 2 January 2006 to 30 
July 2006. 

B. Out-of-sample model forecast results 
Two commonly used loss functions or error statistics: 

the root mean squared error (RMSE) and the mean absolute 
percentage error (MAPE) are employed to measure the 
performance of out-of-sample model forecast results. They 
are defined as follows: 
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where tσ and tσ̂ denote the actual volatility and the forecasted 
volatility forecast in time t, respectively. 

Table 2 reports the root mean squared forecast 
error(RMSE) and the mean absolute percentage error (MAPE) 
for each of the individual models and each of the combining 
methods for the out-of-sample period 2 January 2006 to 30 
July 2006. In terms of RMSE and MAPE, the 
EWMA( 9.0,5.0 == λλ ) and MAPE Combining methods are 
better than the individual forecasting methods. Within the 
Combining methods, the EWMA combining method 
outperforms the MAPE combining method based on RMSE 
and MAPE. Within the individual forecasting models, the 
EGARCH model has almost the same accuracy as the 
GARCH model with both these models being more accurate 
than the random walk model using either measure of 
performance. 

It is interesting to note that the EWMA ( 1.0=λ )
combining method have a worse performance than the 
GARCH and EGARCH models and also the MAPE  
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TABLE II  
OUT-OF-SAMPLE FORECASTING PERFORMANCE OF 

COMPETING MODELS FOR THE VOLATILITY OF STOCK INDEX 
(JANUARY 2, 2006-JULY 30, 2006) 

           Error statistics 
Model RMSE MAPE 

GARCH(1,1) 
EGARCH(1,1) 
Random Walk 
MAPE Combining 
EWMA Combining( 1.0=λ )
EWMA Combining ( 5.0=λ )
EWMA Combining( 9.0=λ )

0.00875 
0.00864 
0.00972 
0.00823 
0.00934 
0.00812 
0.00777 

2.8543 
2.84765 
2.9643 
2.9213 
2.9612 
2.9111 
2.8893 

combining method. This is probably due to the fact that the 
random walk model performed poorly in predicting Shenzhen 
Stock market Volatility. Thus, it would appear that the effect 
of combining the individual forecasts is smaller, when the 
difference in the accuracies among individual models is 
higher. On the other hand, EWMA ( 9.0=λ ) combining 
method has a better accuracy than any other method. The 
performance of the EWMA method is dependent on 
the λ value. When λ is large, the effect of combining the 
individual forecasts is clear. This is because as the value 
of λ increase, a larger weight is assigned to the EGARCH and 
GARCH forecasts than to the random walk forecast. 

. CONCLUSION 

Stock market volatility forecasting is a widely researched 
area in finance literature. The performance of forecasting 
models of varying complexity has been investigated 
according to a range of measures and generally mixed results 
have been recorded. On the one hand some argue that 
relatively simple forecasting techniques are superior, while 
others suggest that the relative complexity of ARCH-type 
models is worthwhile. The weakness of most previous studies 
is their dependence on a single approach that is expected to 
capture all aspects of the volatility formation process. In this 
paper we seek to extend previous studies by combining 
individual forecasts based on models of different 
specifications and/or information sets to produce improved 
volatility forecasts. 

In an effort to improve the accuracy of forecasting stock 
market volatility, we have proposed a method to combine 
forecasts that uses the inverse of the EWMA of the APE as the 
weight for an individual forecast. A key advantage of our 
proposed method is that a forecast associated with a smaller 
EWMA is given a large weight. This means that recent 
performances are considered to a greater extent than more  

historical performances. The performance of the proposed 
method and four other forecasting models in predicting 
Shenzhen Stock market volatility have been investigated. 

The results of our empirical study indicate the following.  
First, the GARCH and EGARCH models have a better 
accuracy than the random walk model. Secondly, the 
combining methods generally outperform the individual 
models. However, the EWMA ( 1.0=λ ) combining method 
have a worse performance than the GARCH and EGARCH 
models. This result indicates that the combining method with 
smallλ  may be ineffective when the difference in accuracy 
for the individual forecasts is large. Lastly, the proposed 
EWMA combining method ( 9.0,5.0 == λλ ) has a better 
accuracy than the MAPE combining method.  
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