



The Question Being Asked in VaR

"What loss level is such that we are X% confident it will not be exceeded in N business days?"

Lecture 18: VA

VaR and Regulatory Capital

- Regulators base the capital they require banks to keep on VaR
- The market-risk capital is *k* times the 10-day 99% VaR where *k* is at least 3.0

Lecture 18: VAR 3 of 28

Lecture 18: VAR

 $10 - day \ VaR = \sqrt{10} \times 1 - day \ VaR$ • This is exactly true when portfolio changes on successive days come from independent identically distributed

normal distributions

The Model-Building Approach

- The main alternative to historical simulation is to make assumptions about the probability distributions of return on the market variables and calculate the probability distribution of the change in the value of the portfolio analytically
- This is known as the model building approach or the variance-covariance approach

Lecture 18: VAR

Daily Volatilities

- In option pricing we measure volatility "per
- In VaR calculations we measure volatility "per

$$\sigma_{\text{day}} = \frac{\sigma_{\text{year}}}{\sqrt{252}}$$

Daily Volatility continued

- \bullet Strictly speaking we should define σ_{day} as the standard deviation of the continuously compounded return in one day
- In practice we assume that it is the standard deviation of the percentage change in one day

Microsoft Example

- We have a position worth \$10 million in Microsoft shares
- The volatility of Microsoft is 2% per day (about 32% per year)
- We use *N*=10 and *X*=99

Microsoft Example continued

- The standard deviation of the change in the portfolio in 1 day is \$200,000
- The standard deviation of the change in 10 days is

 $200,000\sqrt{10} = \$632,456$

Lecture 18: VAR

Microsoft Example continued

- We assume that the expected change in the value of the portfolio is zero (This is OK for short time periods)
- We assume that the change in the value of the portfolio is normally distributed
- Since *N*(-2.33)=0.01, the VaR is

 $2.33 \times 632,456 = $1,473,621$

Lecture 18: VA

AT&T Example

- Consider a position of \$5 million in AT&T
- The daily volatility of AT&T is 1% (approx 16% per year)
- The S.D per 10 days is

$$50,000\sqrt{10} = $158,144$$

• The VaR is

 $158,114 \times 2.33 = \$368,405$

Lecture 18: VA

- The benefits of diversification are (1,473,621+368,405)-1,622,657=\$219,369
- What is the incremental effect of the AT&T holding on VaR?

The Linear Model

We assume

- The daily change in the value of a portfolio is linearly related to the daily returns from market variables
- The returns from the market variables are normally distributed

The General Linear

$$\Delta P = \sum_{i=1}^{n} \alpha_i \Delta x_i$$

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \sigma_i \sigma_j \rho_i$$

The O
$$\Delta P = \sum_{i=1}^{n} \alpha_{i} \Delta x_{i}$$

$$\sigma_{P}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \sigma_{i} \sigma_{j} \rho_{ij}$$

$$\sigma_{P}^{2} = \sum_{i=1}^{n} \alpha_{i}^{2} \sigma_{i}^{2} + 2 \sum_{i < j} \alpha_{i} \alpha_{j} \sigma_{i} \sigma_{j} \rho_{ij}$$
where σ_{P} is the validities of variable

where σ_i is the volatility of variable iand σ_P is the portfolio's standard deviation

Monte Carlo Simula

To calculate VaR using M.C. simulation we

- Value portfolio today
- Sample once from the multivariate distributions of the Δx_i
- Use the Δx_i to determine market variables at end of one day
- Revalue the portfolio at the end of day

tate University u.edu/~jsdoran				
ation				
:				
Lecture 18: VAR 21 of 28				
	•			

Example: Sensitivity of portfolio to rates (\$m)

1 yr	2 yr	3 yr	4 yr	5 yr
+10	+4	-8	-7	+2

Sensitivity to first factor is from Table 18.3: $10\times0.32 + 4\times0.35 - 8\times0.36 - 7\times0.36 + 2\times0.36 = -0.08$ Similarly sensitivity to second factor = -4.40

Lecture 18: VAI

Dr. James S. Doran, Department of	Einanco	Elorida	State	Universit	
Dr. james 5. Doran, Department of					
				ha l-ácdora	

Using PCA to calculate

VaR continued

• As an approximation

$$\Delta P = -0.08f_1 - 4.40f_2$$

- The f₁ and f₂ are independent
 The standard deviation of ΔP is

$$\sqrt{0.08^2 \times 17.49^2 + 4.40^2 \times 6.05^2} = 26.66$$

• The 1 day 99% VaR is 26.66 x 2.33 = 62.12

			_
			_
			-