

Estimating Volatilities and Correlations

Lecture 19: Volatility

Standard Approach to Estimating Volatility

- Define σ_n as the volatility per day between day n-1 and day n, as estimated at end of day n-1
- Define S_i as the value of market variable at end of day i
- Define $u_i = \ln(S_i/S_{i-1})$

$$\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \overline{u})^2$$
$$\overline{u} = \frac{1}{m} \sum_{i=1}^m u_{n-i}$$

Lecture 19: Volatilit

Dr. James S. Doran, Department of Finance, Florida State Universit

Simplifications Usually Made

- Define u_i as $(S_i S_{i-1})/S_{i-1}$
- Assume that the mean value of u_i is zero
- Replace *m*-1 by *m*

This gives

$$\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2$$

Weighting Scheme

Instead of assigning equal weights to the observations we can set

$$\sigma_n^2 = \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where

$$\sum_{i=1}^{m} \alpha_i = 1$$

Lecture 19: Volatility

ARCH(m) Model

In an ARCH(m) model we also assign some weight to the long-run variance rate, V_L :

$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where

$$\gamma + \sum_{i=1}^{m} \alpha_{i} = 1$$

Lecture 19: Volatility

5 of 2

EWMA Model

- In an exponentially weighted moving average model, the weights assigned to the *u*² decline exponentially as we move back through time
- This leads to

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1 - \lambda) u_{n-1}^2$$

Attractions of EWMA

- Relatively little data needs to be stored
- We need only remember the current estimate of the variance rate and the most recent observation on the market variable
- Tracks volatility changes
- RiskMetrics uses $\lambda = 0.94$ for daily volatility forecasting

FLORIDA STATE UNIVERSITY

The COLLEGE of BUSINESS

GARCH (1,1)

In GARCH (1,1) we assign some weight to the long-run average variance rate

$$\sigma_n^2 = \gamma V_L + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2$$

Since weights must sum to 1

$$\gamma + \alpha + \beta = 1$$

GARCH (1,1) continued

Setting $\omega = \gamma V$ the GARCH (1,1) model is

$$\sigma_n^2 = \omega + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2$$

and

$$V_L = \frac{\omega}{1 - \alpha - \beta}$$

Example

• Suppose

$$\sigma_n^2 = 0.000002 + 0.13u_{n-1}^2 + 0.86\sigma_{n-1}^2$$

• The long-run variance rate is 0.0002 so that the long-run volatility per day is 1.4%

Lecture 19: Volatility

Example continued

- Suppose that the current estimate of the volatility is 1.6% per day and the most recent percentage change in the market variable is 1%.
- The new variance rate is

 $0.000002 + 0.13 \times 0.0001 + 0.86 \times 0.000256 = 0.00023336$

The new volatility is 1.53% per day

Lecture 19: Volatility

GARCH (p,q)

$$\sigma_n^2 = \omega + \sum_{i=1}^p \alpha_i u_{n-i}^2 + \sum_{i=1}^q \beta_i \sigma_{n-j}^2$$

Maximum Likelihood Methods

• In maximum likelihood methods we choose parameters that maximize the likelihood of the observations occurring

Example 1

- We observe that a certain event happens one time in ten trials. What is our estimate of the proportion of the time, p, that it happens?
- The probability of the event happening on one particular trial and not on the others is

$$p(1-p)^9$$

• We maximize this to obtain a maximum likelihood estimate. Result: p=0.1

Example 2

Estimate the variance of observations from a normal distribution with mean zero

Maximize:
$$\prod_{i=1}^{m} \left[\frac{1}{\sqrt{2\pi\nu}} \exp\left(\frac{-u_i^2}{2\nu}\right) \right]$$

Taking logarithms this is equivalent to maximizing:

$$\sum_{i=1}^{m} \left[-\ln(v) - \frac{u_i^2}{v} \right]$$

$$1 \sum_{i=1}^{m} \frac{1}{v}$$

Result:

Application to GARCH

We choose parameters that maximize

$$\prod_{i=1}^{m} \frac{1}{\sqrt{2\pi v_i}} \exp\left(-\frac{u_i^2}{2v_i}\right)$$

۸r

$$\sum_{i=1}^{m} \left[-\ln(v_i) - \frac{u_i^2}{v_i} \right]$$

Lecture 19: Volatility

Excel Application

- Start with trial values of ω , α , and β
- Update variances
- Calculate

$$\sum_{i=1}^{m} \left[-\ln(v_i) - \frac{u_i^2}{v_i} \right]$$

- Use solver to search for values of $\omega,\,\alpha$ and β that maximize this objective function
- Important note: set up spreadsheet so that you are searching for three numbers that are the same order of magnitude

Lecture 19: Volatility 17 of 28

Or. James S. Doran, Department of Finance, Florida State Universitgamet.acns.fsu.edu/~jsdorai

Variance Targeting

- One way of implementing GARCH(1,1) that increases stability is by using variance targeting
- We set the long-run average volatility equal to the sample variance
- Only two other parameters then have to be estimated

How Good is the Model?

- The Ljung-Box statistic tests for autocorrelation
- We compare the autocorrelation of the u_i^2 with the autocorrelation of the u_i^2/σ_i^2

Lecture 19: Volatility

garnet.acns.fsu.edu/~jsdoran

Forecasting Future Volatility

A few lines of algebra shows that

$$E[\sigma_{n+k}^2] = V_L + (\alpha + \beta)^k (\sigma_n^2 - V_L)$$

The variance rate for an option expiring on day m is

$$\frac{1}{m}\sum_{k=0}^{m-1}E\left[\sigma_{n+k}^{2}\right]$$

Lecture 19: Volatility

Or. James S. Doran, Department of Finance, Florida State Universit

Forecasting Future Volatility continued

Define 1

The volatility per annum for a T -day option is

$$\sqrt{252\left(V_L + \frac{1 - e^{-aT}}{aT}\left[V(0) - V_L\right]\right)}$$

Volatility Term Structures

- The GARCH (1,1) suggests that, when calculating vega, we should shift the long maturity volatilities less than the short maturity volatilities
- Impact of 1% change in instantaneous volatility for Japanese yen example:

Option Life (days)	10	30	50	100	500
Volatility increase (%)	0.84	0.61	0.46	0.27	0.06

Lecture 19: Volatility

FLORIDA STATE UNIVERSITY

The COLLEGE of BUSINESS

Dr. James S. Doran, Department of Finance, Florida State University garnet.acns.fsu.edu/~jsdoran

Correlations and Covariances

Define $x_i = (X_i - X_{i-1})/X_{i-1}$ and $y_i = (Y_i - Y_{i-1})/Y_{i-1}$ Also

 $\sigma_{x,n}$: daily vol of X calculated on day n-1 $\sigma_{y,n}$: daily vol of Y calculated on day n-1 cov_n : covariance calculated on day n-1 The correlation is $\operatorname{cov}_n/(\sigma_{u,n}\sigma_{v,n})$

Lecture 19: Volatility

Dr. James S. Doran, Department of Finance, Florida State University gamet.acns.fsu.edu/~jsdoran

Updating Correlations

- We can use similar models to those for volatilities
- Under EWMA

$$cov_n = \lambda cov_{n-1} + (1-\lambda)x_{n-1}y_{n-1}$$

Dr. James S. Doran, Department of Finance, Florida State University Garnet.acns.fsu.edu/-jsdoran The COLLEGE of BUSINESS	
Positive Finite Definite Condition	
A variance-covariance matrix, Ω , is internally consistent if the positive semi-definite condition	
-	
$\mathbf{w}^{\mathrm{T}} \mathbf{\Omega} \mathbf{w} \geq 0$	
for all vectors w	
Lecture 19: Volatility 25 of 28	
Dr. James S. Doran, Department of Finance, Florida State University FLORIDA STATE UNIVERSITY The COLLEGE of BUSINESS	
Example	

The variance covariance matrix

is not internally consistent

 $\begin{pmatrix} 1 & 0 & 0.9 \\ 0 & 1 & 0.9 \\ 0.9 & 0.9 & 1 \end{pmatrix}$