



# Types of Rates

- Treasury rates
- LIBOR rates
- Repo rates



# Measuring Interest Rates

- The compounding frequency used for an interest rate is the unit of measurement
- The difference between quarterly and annual compounding is analogous to the difference between miles and kilometers



## Continuous Compounding

- In the limit as we compound more and more frequently we obtain continuously compounded interest rates
- \$100 grows to  $$100e^{RT}$  when invested at a continuously compounded rate R for time T
- \$100 received at time T discounts to \$100e-RT at time zero when the continuously compounded discount rate is R



Conversion Formulas

Define

 $R_c$ : continuously compounded rate  $R_m$ : same rate with compounding m times per year

$$R_c = m \ln \left( 1 + \frac{R_m}{m} \right)$$

$$R_m = m \left( e^{R_c/m} - 1 \right)$$



### Zero Rates

A zero rate (or spot rate), for maturity T is the rate of interest earned on an investment that provides a payoff only at time T

| Maturity (years) | Zero Rate<br>(% cont comp) |
|------------------|----------------------------|
| 0.5              | 4.5                        |
| 1.0              | 4.8                        |
| 1.5              | 5.4                        |
| 2.0              | 5.7                        |

### Par Yield continued

In general if m is the number of coupon payments per year, P is the present value of \$1 received at maturity and A is the present value of an annuity of \$1 on each coupon date

$$c = \frac{(100 - 100P)m}{A}$$

FLORIDA STATE UNIVERSITY

The COLLEGE of BUSINESS

### Sample Data

| Bond<br>Principal<br>(dollars) | Time to<br>Maturity<br>(years) | Annual<br>Coupon<br>(dollars) | Bond Cash<br>Price<br>(dollars) |
|--------------------------------|--------------------------------|-------------------------------|---------------------------------|
| 100                            | 0.25                           | 0                             | 97.5                            |
| 100                            | 0.50                           | 0                             | 94.9                            |
| 100                            | 1.00                           | 0                             | 90.0                            |
| 100                            | 1.50                           | 8                             | 96.0                            |
| 100                            | 2.00                           | 12                            | 101.6                           |
|                                |                                |                               |                                 |



nance, Florida State University garnet.acns.fsu.edu/~jsdoran

## The Bootstrap Method

- An amount 2.5 can be earned on 97.5 during 3 months.
- The 3-month rate is 4 times 2.5/97.5 or 10.256% with quarterly compoundingThis is a discrete payment



## The Bootstrap Method continued

• To calculate the 1.5 year rate we solve

$$4e^{-0.10469\times0.5} + 4e^{-0.10536\times1.0} + 104e^{-R\times1.5} = 96$$

to get R = 0.10681 or 10.681%

• Similarly the two-year rate is?





### Forward Rates

The forward rate is the future zero rate implied by today's term structure of interest rates



## Calculation of Forward Rates

|          | Zero Rate for    | Forward Rate       |
|----------|------------------|--------------------|
| ar       | n -year Investme | nt for $n$ th Year |
| Year (n) | (% per annum)    | (% per annum)      |
| 1        | 3.0              |                    |
| 2        | 4.0              | 5.0                |
| 3        | 4.6              | 5.8                |
| 4        | 5.0              | 6.2                |
| 5        | 5.3              | 6.5                |
|          |                  |                    |



### Formula for Forward Rates

- Suppose that the zero rates for time periods  $T_1$ and  $T_2$  are  $R_1$  and  $R_2$  with both rates continuously compounded.
- The forward rate for the period between times  $T_I$ and  $T_2$  is  $R_2T_2-R_1T_1$
- Is the forward rate greater than the zero rate if the yield curve is upward sloping?



Instantaneous Forward Rate

• The instantaneous forward rate for a maturity T is the forward rate that applies for a very short time period starting at T. It is

$$R + T \frac{\partial R}{\partial T}$$

where R is the T-year rate

• Why is this useful?



## FRA Example

- Assume the yield curve has 1 year rate equal to 6% and a 2 year rate equal to 6.5%
- You have entered into a FRA earning 7% annually between year 1 and 2 for \$1,000,000
- Is this a good deal?
- What is the FRA worth?



### Duration

• Duration of a bond that provides cash flow  $c_i$  at time  $t_i$  is

$$\sum_{i=1}^{n} t_{i} \left[ \frac{c_{i} e^{-yt_{i}}}{B} \right]$$

where B is its price and y is its yield (continuously compounded)

• This leads to

$$\frac{\Delta B}{B} = -D \Delta y$$



### **Duration Continued**

• When the yield y is expressed with compounding m times per year

$$\Delta B = -\frac{BD\Delta y}{1 + v/m}$$

• The expression

$$\frac{D}{1+y/m}$$

is referred to as the "modified duration"



### Duration based Hedging

- You have invested 10 million in Govt. Bonds and you are concerned that interest rates are going to be volatile
  - What risks are you exposed to?
- You are going to hedge using a T-Bond future using 94-07. T-Bonds are quoted in 32nd and each contract is worth
- Let us assume that the duration of the bond portfolio is 4.8 and the duration of the hedge is 6.7 years.
  - How many contracts do you use to hedge?



Convexity

The convexity of a bond is defined as

$$C = \frac{1}{B} \frac{\partial^2 B}{\partial y^2} = \frac{\sum_{i=1}^{n} c_i t_i^2 e^{-yt_i}}{B}$$

so that

$$\frac{\Delta B}{B} = -D\Delta y + \frac{1}{2}C(\Delta y)^2$$



## Theories of the Term Structure

- Expectations Theory: forward rates equal expected future zero rates
- Market Segmentation: short, medium and long rates determined independently of each
- Liquidity Preference Theory: forward rates higher than expected future zero rates