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Abstract

This paper explores life insurance holdings from a general equi-
librium perspective. Drawing on the data explored in Chambers,
Schlagenhauf, and Young (2003), we calibrate an overlapping genera-
tions lifecycle economy with incomplete asset markets to match facts
regarding the uncertainty of income and demographics. We then esti-
mate that life insurance holdings for the purpose of smoothing family
consumption are so large that they constitute a puzzle from the per-
spective of standard economic theory. Furthermore, the welfare gains
from a life insurance market are concentrated in the minds of house-
holds who use the real world market very little.
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Failure of the head of a family to insure his or her life against a
sudden loss of economic value through death or disability amounts
to gambling with the greatest of life’s values; and the gamble is a
particularly mean one because, in the case of loss, the dependent
family, and not the gambler must suffer the consequences.

S. Huebner and K. Black, Jr., Life Insurance

1 Introduction

Simply put, the life insurance market is big. In terms of policy face values,
the total size of this market in 1998 was 0.95 times annual GDP. Alterna-
tively, in terms of expenditures LIMRA data reports $212 billion in total
premiums paid during 1998, and the BEA category ”Expenses of Handling
Life Insurance and Pension Plans” constitutes 1.4 percent of total consump-
tion. The general perception, perhaps as a result of the marketing strategy of
life insurance firms, is that households are holding an insufficient amount of
life insurance - the quote from the textbook by Huebner and Black insinuates
this, as do commercials that assert how frequently a widow falls to poverty
income levels as the result of the untimely death of her spouse.1 A recent
study by Bernheim et.al. (2003) examines life insurance holdings in light
of financial vulnerability and finds that more financially-vulnerable house-
holds seem to be underinsured.2 This argument is difficult to assess because
life insurance can be held for various reasons that are unrelated directly to
financial insurance; those authors do not attempt to measure each motive
separately.

There are two main classes of life insurance policies available. Term
insurance requires premium payments over a specified period; if death occurs
during the period, the household receives the face value payment, but receives
nothing if a death does not occur. In contrast, whole-life insurance lasts
until cancelled and accumulates a cash value, which available for borrowing,
in the form of savings over the life of the policy. The net cash value is

1For example, an advertising campaign that aired during the 2001 World Series claimed
that the average widow under the age of 50 would use up her life insurance payment within
nine months. Recently, Zick and Holden (2000) find evidence in the Survey of Income and
Program Participation that widows face significant wealth declines upon the death of their
spouse. See also Hurd and Wise (1989).

2See also Bernheim et.al. (2001,2002) and Gokhale and Kotlikoff (2002).
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disbursed to the household upon termination of the policy. The face value is
still paid in the event of a death. In this paper, we define total life insurance
holdings as the sum of term life insurance plus the face value of whole life
insurance minus the accumulated cash value of the whole-life policy. The
accumulated cash value of a whole-life insurance policy is savings and should
not be considered life insurance. In Chambers, Schlagenhauf, and Young
(2003) we examine life insurance data from the Survey of Consumer Finances
for 1995, 1998, and 2001 and document facts from a different number of
perspectives. Some of the facts documented in that paper from the 1998
abstract of the SCF that are especially pertinent to issues examined in this
paper are:

• The life insurance participation and holding levels increase monotoni-
cally in earnings, income and wealth.

• A comparison of the top quintile with the bottom quintile indicates
that average insurance holdings are 13.4 times larger by earnings, 11.9
times larger by income, and 6.33 times larger by wealth.

• As can be seen in Figure 1, the participation rate for life insurance
peaks around age 70.

• Figure 2 indicates that the peak holding of life insurance occurs around
age 50.

• The insurance participation rate for two worker families is 69.5 percent
while the participation rate for one worker families is 67.7 percent.

• The average life insurance holdings of a one worker family exceeds the
two worker family by $6, 338. Compared to a two worker family, a one
worker family has essentially equal earnings, income, and wealth.

• The average single female widow has $27, 746 lower earnings, $27, 000
less income and $161, 610 less wealth compared to the average one
worker family.

Life insurance potentially has several driving forces – among them be-
quests, tax issues, and most importantly to our paper, consumption-smoothing
within the household. The purpose of this paper is to provide an estimate
of the size of this last motive; in spirit our exercise is in the same vein as the
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estimate of the size of precautionary savings in Aiyagari (1994) and Pijoan-
Mas (2003) or the classic estimate of the contribution of technology shocks
to business cycles found in Kydland and Prescott (1982).

In order to do so we construct a dynamic overlapping generations model.
The decision making unit is the household, which enters a period with a
demographic state comprised of age, sex, marital status, and the number
of children. Households face idiosyncratic uncertainty in the hourly wage
they command as well as in their demographic state. To insulate themselves
against these shocks, agents can accumulate interest-bearing assets and life
insurance policies and supply labor to the market. A competitive life insur-
ance industry determines the equilibrium price of the life insurance policies.
Our model is calibrated to produce a wealth and earnings distribution consis-
tent with the data and demographic shocks that match observed transition
probabilities from the Central for Disease Control and the Census Bureau.

We require a model because our data does not contain critical pieces
of information needed to investigate our question. First, the SCF does
not collect data on the premium paid for a policy. In addition, it does
not identify who the policy covers, so that the pricing data would not be
perfectly informative in any case. We focus on a general equilibrium model,
rather than a partial equilibrium one, because we believe that the pricing
of policies may constitute an important piece of the puzzle and these prices
are not specified exogenously; in reality, the life insurance industry is quite
competitive. Therefore, we take seriously the notion that general equilibrium
effects contribute to decisions.3

The specification of a fully-specified model allows us to clearly state what
is meant by ”adequate life insurance.” Although this term is used repeatedly
in the literature – especially in Auerbach and Kotlikoff (1989, 1990, 1991),
Bernheim et.al (2001, 2002, 2003), and Gokhale and Kotlikoff (2003) – it is
not defined in terms of a calibrated general equilibrium model. Instead, those
papers use a partial equilibrium decision problem with exogenous prices and
a very specific utility function – Leontief over consumption across periods – to
assess whether patterns are puzzling. We instead use more standard theory
to assess the life insurance patterns. In particular, we wish to estimate
how much life insurance is being held for consumption-smoothing purposes
rather than the multitude of other motives. In the course of the estimation,

3In addition, the endogenous relationship between the return to savings and the amount
of self-insurance through financial assets is too important to be left unrestricted.
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we actually find that the amount of actuarially-fair life insurance held for
consumption-smoothing purposes would greatly exceed the observed value
from the data, even with relatively-low amounts of curvature in the utility
function, and thus constitutes a puzzle.

Certain government policies are substitutes for private life insurance. In
particular, survivor benefits from social security are a potentially-important
channel that reduces the amount of life insurance held in the data. In
addition, conditional transfer programs like welfare, which pays only single
mothers, are also effectively substitutes for private life insurance policies.
We therefore are careful to introduce these policies into the model economy.
Our finding is that these programs do not crowd out very much private
insurance, as the distributions are very similar whether or not such programs
exists; however, this result tends to strengthen our belief that life insurance
purchases are puzzling.

Given our model, we make welfare calculations to determine the impact
of a life insurance market. We find that aggregate welfare increases by only
0.02 percent if households have access to an actuarially-fair life insurance
market. However, simulations of particular groups suggest that this increase
in concentrated in the hands of the middle-aged working poor who have a
large number of children. Such groups do not hold a lot of life insurance,
suggesting that the mismatch identified by Bernheim et.al. (2001,2003) may
hold up under a more complete theoretical investigation.

The paper is organized as follows. First, we present the theoretical
model. Then, we calibrate the model to U.S. data. Third, we present our
results regarding three main points. One, we estimate the extent to which
consumption-smoothing motives drive life insurance decisions, both with and
without government programs that act as substitutes. Two, we compute the
welfare gains to newborns of having access to a life insurance market. And
three, we explore the implications for consumption and leisure in households
experiencing a death to the husband. Finally, we conclude with some com-
ments about the model abstraction and future work.

2 The Model Economy

In this section, we describe our dynamic general equilibrium model. The
decision making unit is the household, which may contain more than one
individual. Households enter a period with a demographic state comprised
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of age, sex, size, and marital status; this state evolves stochastically over time.
Within this environment, households make consumption-savings, labor-leisure,
and portfolio decisions. In addition to the households, we have three other
types of agents. Production firms rent capital and labor from households
and produce a composite capital-consumption good. Insurance firms collect
premium payments for life insurance policies and make payments to house-
holds. Finally, the government collects labor income taxes, consumes goods,
and makes transfer payments to households in the form of welfare and social
security.

2.1 The Demographic Structure

The economy is inhabited by individuals who live a maximum of I periods.
The demographic structure of a household is a four-tuple that depends on
age, the adult structure of the household, the marital status of the household,
and the number of children in the household. Denote the age of an individual
by i ∈ I = {1, 2, ..., I}. Survival probabilities are dependent on age and sex.
The second element of the demographic variable is the adult structure of the
household; we assume this variable can take on one of three values: p ∈ P
= {1, 2, 3}. If p = 1, then the household is made up of a single male. A
value of p = 2 denotes a household comprising of a single female, while p = 3
denotes a household with a male and a female who are married.

The third element in the four-tuple is the marital status of the household.
We define the marital status by m ∈M = {1, 2, 3, 4}. Four values are needed
to account for various events that have an impact on the house. A value of
m = 1 denotes a household that is composed of a single adult, either male
or female, that has never been married. If m = 2, then the household
is comprised of a single individual that has become single due to a previous
divorce. If m = 3, the household is a single individual that has been widowed.
Finally, m = 4 represents a married household.4

The last element in the four-tuple denotes the number of children in
the household. We denote this demographic state variable by x ∈ X =
{0, 1, 2, 3, 4}. This tells us that the household can have between zero and
four children. We limit the number of children to four per household for

4Some gender-marital status pairs are infeasible. The only pairs that are feasible are
(p = 1,m = 1), (p = 1,m = 2), (p = 1,m = 3), (p = 2,m = 1), (p = 2,m = 2),
(p = 2,m = 3), and (p = 3,m = 4).
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computational reasons.5 Single female households can bear children, but
single male households cannot. We do not separately track the age of the
children; rather, we assume that they age stochastically according to a pro-
cess that leaves them in the household twenty years on average.

A household’s demographic characteristics are then given by the four-
tuple {i, p, m, x}. We will define a subset of demographic characteristics
made up of the tuple {p,m, x} as ẑ; this subset evolves stochastically over
time. We assume that the process for these demographic states is exogenous
with transition probabilities denoted by πi (ẑ

′|ẑ); note that the transition
matrix is age-dependent. To avoid excessive notation, we define the age spe-
cific transition matrices so that their rows add up to the probability of being
alive in the next period. In constructing the transition matrix, a number of
additional assumptions had to be made. In particular, marriage and divorce
create some special problems. We assume that when a divorce occurs, the
household splits into two households and economic assets are split into shares
according to the sharing rule (ρ, 1− ρ) where ρ is the fraction of household
wealth allocated to the male. Any children are assigned to the female. If a
household happens to die off (all parents die in a given period) we assume
that the children disappear as well. For marriage, we only allow individuals
of the same age to marry. In addition, a male with children and a female
with children can only marry if the joint number of children is less than the
upper bound. This set of assumptions and our demographic structure results
in a relatively sparse transition matrix.6

The computation of this transition matrix is described in the appendix.
The basic demographics of the calibrated population are presented in Table 1.
We find that 68 percent of the population is currently married and 32 percent
is single. Of the single households, divorced households make up 14 percent
of the population, widowed households make up 7 percent of the population,
and households which have never been married make up 10 percent of the
population. When looking at children, we find 77 percent of households live
with no kids, either because they have never had children or the children are
adults and have left the household. 18 percent of households contain a single

5Actual data for number of children per female for 1999 indicates that the number of
females with five or more children is less than 2.7 percent of females. By abstracting away
from these households we are not ignoring a significant fraction of the population.

6The transition matrix for a specific age is (p,m, x) × (p,m, x). Out of this set of
transition elements, only twenty-seven can be non-zero, plus the nonzero probability of
transition into death.
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child, while households with multiple children constitute about 5 percent of
the population. This distribution exactly matches that found in the data.

2.2 The Household

2.2.1 Preferences

Household utility depends on the level of household consumption, male leisure,
and female leisure. We specify the household utility function as

E0

I∑
t=1

βt−1

[
Cµ

t (Tm − hmt)
χ(1−µ) (Tf − hft − ιxt)

(1−χ)(1−µ)
]1−σ

− 1

1− σ

where Ct denotes the level of household consumption, Ti is the time endow-
ment, Tm − hmt represents male leisure , and Tf − hft − ιxt defines female
leisure. Female leisure differs from male leisure; female leisure depends on
hours supplied hf as well as a leisure cost per child captured by ιx, where
ι ∈ [0, 0.25).7 In contrast, male leisure depends solely on hours supplied hm.
The remaining parameters in the utility function are the discount factor
β ≥ 0, the weight of household consumption in utility µ ∈ (0, 1), the relative
weight of male leisure χ ∈ (0, 1), and the curvature parameter σ ≥ 0.

Our utility function requires some discussion. The preference ordering
that is represented by this utility function assumes that there is no dis-
agreement over future states between married individuals, which would not
generally be true in the presence of differential mortality rates, wages, and
leisure costs. We finesse this problem by assuming that gender has no mean-
ing within a marriage; that is, members of a married household do not know
whether they are male or female. Further, each adult member views becom-
ing a single male or a single female upon divorce to have the same probability
(50 percent), and therefore do not disagree about the value of savings in those
states. This assumption also ensures that preferences are not fundamentally
altered by the death of an adult member.

The other complication related to our household utility function is the
elasticity of substitution between male and female leisure. Mainly for com-
putational purposes we have set this value to 1. There does not appear to

7The upper bound is the maximum time endowment divided by the maximum number
of children.
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be any accepted theory addressing the issue of the joint household decision
for labor supply that applies to our model; hence, we lack any standard by
which to judge our assumption outside the performance of the model itself.
If we consider a specification with a constant elasticity of substitution that
differs from one, the decision rules for labor supply are no longer linear and
the model becomes computationally infeasible. Special cases that we can
solve have grossly counterfactual implications for joint labor supply. For
example, perfect complementarity implies that either no member or both
members hit the lower bound of zero for labor supply, which does not cor-
respond to observed patterns in the data. On the other extreme, perfect
substitutability implies that females will only work in households with zero
male leisure, clearly at odds with the data as well. By continuity, degrees
of substitution close to either extreme will generate the same counterfactual
implications.

We define household consumption as

Ct = (1pt + ηxt)
θ ct

where 1pt is an indicator function that takes on the value of 1 if the state
variable p is either 1 or 2 or the value 2 if p is equal to 3, (i.e., the married
state), xt is the state variable indicating the number of children in the family,
and (θ, η) are parameters. The parameter θ ∈ [−1, 0) accounts for economies
of scale in consumption, while the parameter η ∈ [0, 1] converts children
into adult equivalents. Our utility function will enforce nonnegativity of
consumption and leisure without imposing a constraint of that sort.

The labor-leisure decision in our environment will not be smooth – rather,
it will feature a nonconvexity in the choice set for hours. To accommodate
this feature, we assume that the time endowment is 1 for each member of
the household, but supplying a positive amount of labor in a given period
requires a fixed time cost of 0.02 units. In addition, we restrict the labor
supply decision to involve the choice of supplying zero or more than 0.15
units of time to the market, with nothing in between.8 We incorporate
this nonconvexity into the model economy because smooth versions did not
produce the wealth equality between single and dual earner families observed
in the data – dual earner families had close to twice as much wealth, which

80.15 units of labor supply corresponds to approximately halftime employment (20
hours a week).
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is counterfactual. That is, we have the choice for hours being

hm ∈ {0, [0.15, 0.98]}
hf ∈ {0, [0.15, 0.98− ιx]} .

2.2.2 Household Environment

Households live in an uncertain environment that arises from demographic
factors as well as a household specific productivity shock. Each period the
household receives a productivity shock ε ∈ E = {ε1, ε2, ..., εE}.9 In addition
to the demographic state discussed above, the household begins a period with
wealth a ∈ A; this space will be bounded from below by the requirement that
consumption be nonnegative and bounded from above by the finiteness of
the individual time horizon. The state for the household is the demographic
situation, the productivity shock, and the wealth position:

s = (a, ε, p,m, x, i) .

Given this state, the household’s sources of funds are wealth and labor
earnings. Labor earnings come from the hours worked by both males and
females (if of working age) or government social security payments (if retired).
Let hi denote hours worked by the household member of gender i ∈ {f,m}.
Each unit of labor pays wευi to the male worker and wευiφ to the female; w is
the aggregate wage rate, ε is the age-independent idiosyncratic wage factor,
υi is the age-specific earnings parameter, and φ ∈ (0, 1) corrects for the
male-female wage gap. Let $ denote the social security payment, ϕ denote
welfare, τ the payroll tax rate, 1$ an indicator of social security qualification,
and 1ϕ an indicator of welfare qualification.10 Total labor income is then
given by

H = (1− 1$) (1− τ) wευi (hm + φhf ) + 1$$ + 1ϕϕ.

9We assume the productivity shock is household specific, meaning that both the hus-
band and wife receive the same productivity shock. This assumption is made for compu-
tational purposes; given the strong degree of assortative matching that occurs in marriage
markets, it probably is not terribly inaccurate.

10That is, we have the indicator functions defined as

1ϕ =
{

1 if the household can get welfare
0 otherwise

.
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With this level of funds, the household must consume and purchase assets.
The only assets that are available are capital k and term life insurance policies
l. The budget constraint for a household of age i is

c + k′ + ql′ ≤ a + H (1)

where q is the price of a life insurance policy.11 We will discuss the details
of the government transfer system in the calibration section.

The next period wealth level of a household a′ depends on the capital and
life insurance choices as well the future demographic state. If the household
enters the period and remains in the same demographic state, the future
wealth level is constrained by

a′ ≤ (1 + r′) k′ (2)

where r′ is the net return of capital.12 If a divorce occurs in a household that
starts the period married, the male adult in the marriage has a wealth level
next period equal to

a′ ≤ ρ (1 + r′) k′ (3)

and the female adult’s next period wealth level is

a′ ≤ (1− ρ) (1 + r′) k′ (4)

where ρ ∈ (0, 1) is the sharing rule. If death of a spouse occurs, the wealth
evolution equation is

a′ ≤ (1 + r′) k′ + l′ (5)

as the life insurance policy pays off. If a household enters as a single adult
and becomes married, we have to merge the budget constraints of two single
adult households. A marriage yields the wealth equation

a′ ≤ (1 + r′) (k′ + k′si) (6)

where k′si is the age-dependent average capital for single households. The
wealth of households that entirely die is estate-taxed at 100 percent and used
to fund government expenditures.

11In our model, whole life insurance policies are equivalent to a portfolio of term life
insurance policies and riskless capital, given that we abstract from tax issues.

12We employ the convention that a ’prime’ on a variable denotes the value in the next
period.
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Both life insurance and capital holdings are restricted to be nonnegative:

k′, l′ ≥ 0.

We do not specifically model the reasons behind our asset market restrictions.
For life insurance at least, appealing to adverse selection would probably suf-
fice as a negative position in life insurance is equivalent to a long position in
an annuitized asset. For capital, however, this restriction is somewhat more
troublesome. We do not wish to complicate the model further by incorpo-
rating debt constraints.

The timing of events is important. We assume that divorce and marriage
occur before death; that is, demographic changes occur first and then sur-
vival is determined. Furthermore, our demographic state only includes the
last change; for example, households who get married, then divorced, then
remarried, then widowed, are considered widowed. Fortunately, there will be
only a small number of such households in equilibrium, and we do not feel
the added burden involved in tracking past states to be worthwhile. Fur-
thermore, we lack the individual data necessary to calibrate the transition
matrix to these past events.

2.3 Aggregate Technology

The production technology of this economy is given by a constant returns to
scale Cobb-Douglas function

Y = KαN1−α

where α ∈ (0, 1) is capital’s share of output and K and N are aggregate inputs
of capital and labor, respectively. The aggregate capital stock depreciates at
the rate δ ∈ [0, 1] each period. Our assumption of constant returns to scale
allows us to normalize the number of firms to one.

Given a competitive environment, the profit maximizing behavior of the
representative firm yields the usual marginal conditions. That is,

r = αKα−1Nα − δ (7)

w = (1− α) KαN−α. (8)

The aggregate inputs of capital and labor depend on the decisions of
the various individuals in the economy. Let Γ denote the distribution of
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households over the idiosyncratic states (a, ε, p, m, x, i) in the current period.
The aggregate labor input and capital inputs are defined as

N =

∫

A×E

∑
P×M×X×I

ευi (hm (a, ε, p, m, x, i) + φhf (a, ε, p, m, x, i)) Γ (da, dε, p,m, x, i)

and

K =

∫

A×E

∑
P×M×X×I

aΓ (da, dε, p,m, x, i) .

The goods market clears when

C + I + G = Y,

where G is aggregate government consumption.

2.4 The Life Insurance Firm

In this paper, we assume that the life insurance market is a perfectly com-
petitive market. As a result, we can examine the behavior of the single firm
that maximizes profits subject to a constant returns to scale technology. The
price of insurance (the premium) will be determined by the zero profit con-
dition in each period. We further assume that this firm accumulates no net
worth, so that intertemporal pricing mechanisms are not operative.

We will consider an insurance firm that offers only term life insurance;
we set the term to 1 period because the household always has the option
to cease payment and terminate the contract.13 The life insurance company
sells policies at the price q and pays out to a household that loses a spouse.
The price q can depend on the age and demographic characteristics of the
household; however, we will not allow means-testing or history-dependence
in these prices. Means-testing can be ruled out by allowing for unobservable
storage technologies that enable a household to falsify observable wealth
freely; history-dependence is ruled out entirely for computational reasons.
To the extent that the transition matrix encodes some of the past outcomes
that are relevant for current mortality, this restriction likely has little content.

Life insurance only pays off if an adult household member dies; we assume
that the policy covers both members. Clearly, a critical aspect in the pricing

13We abstract from annual renewal pricing issues. Because life insurance markets are
characterized by adverse selection problems which may be revealed over time, the price of
renewals could differ from a first time buyer.
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of life insurance is the expected survival rate for an individual. We will
represent the probability of an age i individual surviving to age i + 1 as
ψp,m,x,i. The zero profit condition for a life insurance firm is

∫

A×E

∑
P×M×X×I

(
1− ψp,m,x,i

) 1

1 + r′
l′Γ (da, dε, p,m, x, i) (9)

=

∫

A×E

∑
P×M×X×I

q (p,m, x, i) l′Γ (da, dε, p,m, x, i) .

The right hand side of this equation measures the revenue generated from the
sale of life insurance policies to households in the economy. The left hand
side measures the payout due to deaths at the end of the period, appropriately
discounted.

3 Stationary Equilibrium

We will use a wealth-recursive equilibrium concept for our economy and
restrict ourselves to stationary steady state equilibria. Let the state of
the economy be denoted by (a, ε, p,m, x, i) ∈ A× E × P ×M× I where
A ⊂ R+, E ⊂ R+,P ⊂ R+, X ⊂ R+and M ⊂ R+. For any household,
define the constraint set of an age i household Ωi (a, ε, p, m, x, i) ⊂ R5

+ as all
five-tuples (c, k′, l′, hm, hf ) such that the budget constraint (2) and wealth
constraints (3)− (6) are satisfied as well as the nonnegativity constraints.

Let v (a, ε, p,m, x, i) be the value of the objective function of a household
with the state vector (a, ε, p, m, x, i), defined recursively as

v (a, ε, p, m, x, i) = max
(c,k′,l′,hm,hf)∈Ωi

{
U

(
(1p + ηx)θ c, Tm − hm, Tf − hf − ιx

)
+

βE [v (a′, ε′, p′,m′, x′, i + 1) |a, ε, p, m, x]

}

where E is the expectation operator conditional on the current state of the
household. A solution to this problem is guaranteed because the objec-
tive function is continuous and the constraint correspondence is compact-
valued and continuous.14 However, since the constraint correspondence is
not convex-valued, we cannot make definitive statements about the unique-
ness of the solution or the properties of the value function.

14We are guaranteed compactness because the state space is bounded below by 0 and
above by the future value of the highest finite realization of labor productivity times the
maximum labor supply for the family.
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Definition 1 A stationary competitive equilibrium is a collection of
value functions v : A× E × P ×M× I →R+ ; decision rules k′ : A× E × P ×M× I →R+,
l′ : A× E × P ×M× I →R+, hm : A× E × P ×M× I →R+ , and hf :
A× E × P ×M× I →R+; aggregate outcomes {K, N, s}; prices {q, r, w};
government policy variables {τ , $, ϕ}; and an invariant distribution Γ (a, ε, p, m, x, i)
such that

(i) given {w, r, q} and {τ , $, ϕ}, the value function v and decision rules c,
k′, l′, hm, and hf solve the consumers problem;

(ii) given prices {w, r}, the aggregates {K, N} solve the firm’s profit max-
imization problem;

(iii) the price vector q is consistent with the zero-profit condition of the life
insurance firm;

(iv) the goods market clears:

f (K, N) =

∫

A×E

∑
P×M×X×I

cΓ (da, dε, p,m, x, i) + K ′ − (1− δ) K;

(v) the labor market clears:

N =

∫

A×E

∑
P×M×X×I

ευi (hm + φhf ) Γ (da, dε, p, m, x, i) ;

(vi) the government budget constraint holds:
∫

A×E

∑
P×M×X×I

$I$Γ (da, dε, p, m, x, i) +

∫

A×E

∑
P×M×X×I

ϕIϕΓ (da, dε, p,m, x, i) + G

=

∫

A×E

∑
P×M×X×I

τ (1− I$) wευi (hm + φhf ) Γ (da, dε, p,m, x, i) ;

(vii) letting T be an operator which maps the set of distributions into itself,
aggregation requires

Γ′ (a′, ε′, p′,m′, x′, i + 1) = T (Γ)

and T be consistent with individual decisions.

We will restrict ourselves to equilibria which satisfy T (Γ) = Γ.
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4 Calibration

We calibrate our model to match features in the U.S. data. Our calibra-
tion will proceed as an exercise in exactly-identified Generalized Method of
Moments where we attempt to match a small set of moments in the data.
These moments will not involve the distribution of life insurance, however,
so we will be able to ask the model questions about the size of the demand
for life insurance for consumption-smoothing purposes, the main point of the
paper.

We select the period in our model to be one year. First we examine the
preference parameters in the model. The average wealth-to-GDP ratio in the
postwar period of the U.S. is about three; this number will help pin down
the value for the discount factor β. The average individual in the economy
works about thirty percent of their time endowment; we use this number to
help determine the parameter µ. We also select χ so as to match the ratio
of the hours supplied by females to males. The 1999 Current Population
Survey reports average annual hours worked for males in 1998 is 1, 899 while
average annual hours worked for females in the same period is 1, 310; this
ratio is used to help determine χ, the relative weight of male leisure. These
three targets are appended to the market clearing conditions and the entire
system is solved numerically.

Other parameters we set directly. From time use surveys, we note that
females allocate about 2 hours per day per child for care and females conduct
about two-thirds of all such care, leading us to set ι = 0.145. The relative
wage parameter φ is selected to be 0.77, consistent with estimates from the
1999 CPS on the relative earnings of males and females, and we set the
divorce sharing rule to ρ = 0.5.15 We use Greenwood, Guner, and Knowles
(2001) to specify the first two of these parameters: η = 0.3 and θ = −0.5.
Given little a priori consensus on the value of the curvature parameter, we
choose σ = 1.5, a value which is consistent with choices typically made in
the business cycle literature.16 Choosing this value provides a lower bound
for our estimate, since higher risk aversion (which is positively related to σ)
generates a higher demand for life insurance.

The technology parameters that need to be specified are determined by

15We abstract from alimony and related post-divorce transfer payments for computa-
tional reasons.

16σ turned out to have little impact on the distribution of life insurance holdings over
the range [1.0, 4.0].
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the functional form of the aggregate production function and the capital
evolution equation. The aggregate production function is assumed to have a
Cobb-Douglas form, since the share of income going to capital has been es-
sentially constant. We specify labor’s share of income, 1−α, to be consistent
with the long-run share of national income in the US, implying a value of
α = 0.36. The depreciation rate is specified to match the investment/GDP
ratio of 0.25, taken from the same data, yielding a value of δ = 0.1.

The specification of the stochastic idiosyncratic labor productivity process
is extremely important because of the implications that this choice has for
the eventual distribution of wealth. Storesletten, Telmer and Yaron (2001)
argue that the specification of labor income or productivity process for an
individual household must allow for persistent and transitory components.
Based on their empirical work, we specify ε to evolve according to

log (ε′) = ω′ + ε′

ω′ = Ψω + v′

where ε˜N (0, σ2
ε) is the transitory component and ω is the persistent compo-

nent with v˜N (0, σ2
v). STY estimate Ψ = 0.935, σ2

ε = 0.01, and σ2
v = 0.061.

Fernández-Villaverde and Krueger (2000) approximate the STY process with
a three state Markov chain using the Tauchen (1986) methodology – this
approximation yields the productivity values {0.57, 0.93, 1.51} and the tran-
sition matrix

π =




0.75 0.24 0.01
0.19 0.62 0.19
0.01 0.24 0.75


 .

The invariant distribution associated with this transition matrix implies that
an individual will be in the low or the high productivity state just under 31
percent of the time and the middle productivity state 38 percent of the time.
The age-specific component of income is estimated from earnings data in
the PSID and produces a peak in earnings at real age 47. Note that with
endogenous hours, this process (which is estimated from labor earnings) is not
correct, but we checked that it produces an earnings distribution relatively
consistent with the data despite the bias.

For the horizon, we assume that the mandatory retirement age is 65 (45
in model periods) and that agents live at most 100 years (80 model periods).
We enforce retirement by setting the efficiency units of ages above 64 equal to
zero. Pricing in the life insurance industry is done relative to an individual
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who lives to be 100, so this horizon seems appropriate. Furthermore, a long
retirement phase mitigates the impact of the terminal age on the behavior
during the working ages. We require a relatively-short period to induce
the persistent demographic states that give rise to significant demand for
life insurance. The transition matrix for demographic states is difficult to
construct. Due to the presence of history-dependence in the probabilities
of marriage, divorce, mortality, and fertility, we found that we could not
analytically construct this matrix. As a result, we used a Monte Carlo
approach to generate the probability of transitioning between different states.
In the computational appendix we detail the procedures followed to generates
the transition matrix.

The last issue we must examine is the government income support system.
We choose to set the labor income tax to τ = 0.353, which is the average
marginal tax rate on income plus payroll taxes and Medicaid. Social security
benefits are set to be 0.4 percent of average earnings with survivor benefits
that pay 60 percent of the deceased partner’s wages; note that this means the
female survivor will receive higher benefits than the male would. Further-
more, survivor benefits are also paid to working age households with children
at the same rate; these benefits drop to zero if children are not present in the
household. To qualify for a welfare payment, the household must consist of
a single mother who supplies no labor and has less than 1/3 average wealth;
payments are equal to 17 percent of average earnings for each child in the
household. Government consumption is computed as a residual value that
sets the government budget constraint to equality.

5 Actuarially-Fair Insurance

We now detail our results. This section will consist of three subsections.
In the first section, we explore the patterns of life insurance holdings in the
model when all government policies are in place and pricing is actuarially-
fair. We define this term to mean that the price that a household pays to
purchase a life insurance contract is exactly equal to the conditional proba-
bility that one (but not both) of the adult members of the household does
not survive to the next period.

To focus the paper on a narrow set of questions, we restate some of the
relevant facts. One, we wish to see what the model predicts for the total
amount of life insurance held; in the data (see Chambers, Schlagenhauf, and
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Young 2003) married households have 0.65 GDPs worth of life insurance.
Given that the model has no incentives for singles to hold insurance, this
number is the appropriate one to use as a benchmark. Two, the participa-
tion rate of married households is 68.7 percent with single and dual earners
having participation rates of 67.7 and 69.5 percent respectively; in quantita-
tive terms, they are essentially equal. Three, holdings by single and dual
earners are approximately the same size: 3 times earnings. Four, the peak in
participation rates lags the peak in holdings by 10 years. We wish to assess
the extent to which these observations are driven by consumption-smoothing
motives within the household.

5.1 Benchmark

Our calibration results are presented in Table 2. As can be seen, the interest
rate r − δ is around 1.16 percent per annum which is a reasonable value for
risk-free government debt over the postwar US period, consistent with the
average return to capital measured in McGrattan and Prescott (2003). Given
that we have abstracted from default and aggregate risk, we do not find this
to be a failure of the model. Regarding the values for ks, the model economy
finds that the amount of capital held by singles is quite low; they hold about
13 percent of the total wealth in the economy. The wealth distribution
produced by the model is broadly consistent with the data as well, especially
along inequality dimensions; for example, the Gini coefficient in the model is
0.74, which is fairly close to that from the data. Furthermore, the ratio of
the average to the peak of consumption, labor supply, and wealth also match
those in the data. The model misses the upper tail of the income distribution,
a common problem in overlapping generations economies with realistic wage
processes, because no household can draw a good enough sequence of labor
productivity.

In Figure 3, we plot the distribution of life insurance holdings by age from
the model (we use five-year cohorts to eliminate high frequency noise from
the data caused by sampling error). The peak in holdings occurs at age 30,
well before the peak in the data (which is at age 50). The peak in the model
coincides with the peak in the present value of future labor earnings (on
average), and that consideration drives the very high life insurance/income
ratios during the early periods of working life. The initial increasing segment
is caused by a combination of rising present values for future labor income
and the liquidity constraint. Clearly, the model is overstating the demand
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for life insurance for purely consumption-smoothing concerns, because we
are predicting LI/income ratios in excess of four at the peak, while the data
peaks at only 2.5.

The participation rate for married households in the model is 59 percent,
about 8 percent below that in the data. Our estimate is that a large number
of households are using life insurance as a consumption-smoothing device (at
least partially). Figure 4 presents the distribution of participation rates by
age – it peaks at real age 33 at a value of 100 percent and declines over the rest
of the lifecycle; by retirement age, only a very small fraction of households
participate at all (but this number is not zero because there is some risk due
to imperfect survivor benefits). In contrast, the data for married households
peaks much later – age 70 – at 85 percent and remain above 60 percent across
all ages.

In static insurance environments, it is straightforward to show that our
utility function will imply that an agent will hold a positive amount of any
fair insurance policy. However, our economy does not produce this result, as
evidenced by the distribution of participation rates. Part of this hump-shape
may be due to the government policies that act as life insurance, but as we
will show in the next subsection not very much. More importantly, there is
an interaction between the liquidity constraint and the insurance holdings.
Young households who choose l′ = 0 in the model are liquidity constrained in
capital; as a result, their marginal rate of substitution is too high relative to
the interest rate. Furthermore, this inequality means that, in equilibrium,
their marginal rate of substitution also does not get equated to the price of a
life insurance contract, effectively forcing this agent to buy actuarially-unfair
insurance. Since the fraction of agents who are liquidity-constrained initially
declines with age, we observe rising participation rates over this range.

On the down side, age-specific productivity is beginning to fall and wealth
is still rising, so that labor supply is falling, particularly for the less-productive
females. But the constraint hi ≥ 0.15 then will start to bind for some of
these agents, pushing them off their first-order conditions along that dimen-
sion. Again, the binding of this constraint – which forces the marginal
utility of consumption to be too high today – causes the household to face
an effectively-unfair life insurance market, generating a drop in participation.
If we eliminate the nonconvexity in the labor decision (as we did in previous
versions of this paper), the participation rate does not decline over the later
working years, instead displaying a discontinuous decline at retirement, sug-
gesting that the corners are the key to generating participation rates strictly
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below one.
The two results – holdings and participation – suggest that retirees have

reasons for holding life insurance that are dominated by bequest motives or
tax avoidance concerns, suggesting that social security is an effective public
provider of life insurance. To discern whether this interpretation is correct,
we eliminate the survivor benefits in the next subsection; we expect to see
an increase in life insurance holdings by the retired households in response
to a rise in the uncertainty about their transfer income.

5.2 The Effects of Survivor Benefits

We next explore the effects of altering the nature of the government policies
that are substitutes for life insurance. We eliminate the survivor benefit for
social security – that is, the household receives $ if two adults are present but
0.5$ if only one is present, regardless of the reason (never married, divorced,
or widowed). Benefits to working age households who lose their spouse are
also completely eliminated. Our intuition suggests that this change will
increase the amount of life insurance purchased, particularly by the retired
households, since they are now exposed to significantly more labor income
risk.

The equilibrium changes very little when survivor benefits are eliminated
– this is possibly to be expected given that we are abstracting away from
changes in tax policy that such changes would permit. Aggregate life insur-
ance rises to 98 percent of GDP. The change in the distributions are in the
expected direction – more holdings and larger participation rates – but the
changes are quantitatively so small that aggregates are unaffected to four
decimal places. Similar effects are present if welfare payments are elimi-
nated, but these effects are even smaller. It does not appear that survivor
benefits are critical to understanding the decisions relating to life insurance;
for the remainder of the paper they will remain in place.

5.3 Welfare Gains

The results in the prior subsections suggest that the aggregate welfare gains
emanating from the life insurance market might be large in the model, since
agents in the model are purchasing very large amounts of insurance. Our
preferred approach for calculating welfare gains would be to use a transitional
dynamic approach, since we could make welfare statements about individuals.
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Unfortunately the computational burden of the model keeps us from using
this approach. We therefore provide a crude estimate of the welfare gains
by calculating the lifetime expected welfare gains associated with a newborn
person getting to live in the economy with life insurance versus being forced
to live in an economy without that market.17

We define the ex ante welfare of a newborn individual as:

W =

∫

E

∑
P

v (0, ε, p, 1, 0, 1) πinv
ε πp. (10)

Consistent with newborns, the age is 1, the initial asset position is zero, and
the number of children is zero. If the newborn is male, p = 1, while a
newborn female would be characterized by p = 2. πinv

ε denotes the invariant
distribution of ε and πp is the probability of being born a given gender. We
compute welfare under a version of the model without operative life insurance
markets; denote this welfare value by W0. We then compute the lifetime
percent increase in consumption λ needed to make an individual indifferent
between that world and the one with operating life insurance markets. Given
the utility function, this increase solves the equation

W1 = (1 + λ)µ(1−σ) W0 (11)

where W1 is average newborn utility in an economy with life insurance mar-
kets. λ thus measures the welfare gain associated with life insurance assets.18

The equilibrium outcomes from the economy without operative life in-
surance markets is essentially identical to the benchmark model. Compared
to this economy, we find that having access to a life insurance market that
is priced actuarially-fairly yields a welfare gain of 0.2 percent of consump-
tion. Oddly, the gain from having access to a life insurance market in the
economy without survivor benefits is smaller: 0.1 percent of consumption.
These calculations are on the same order of magnitude as those in Lucas
(2003) for the welfare costs of consumption fluctuations, numbers which are
universally considered small. The reason for such small numbers here is
that most agents end up fairly well-insured over the lifecycle. The ones

17This calculation is not too misleading since the aggregate capital stock is essentially
the same across the two model economies.

18Note that, since we have incomplete markets, we cannot be sure that introducing
additional assets will increase welfare. Such perverse outcomes are associated with very
strong general equilibrium effects, which our previous results show are not present in our
economy.
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who are typically poorly-insured – the young – face very little mortality risk
and are also disproportionally single. Other poorly insured agents, such as
single mothers with many children, are rare events from the perspective of a
newborn and thus bad outcomes in those states get very little weight.

The aggregate number above can be quite misleading, however, when
heterogeneity is present. As mentioned above, we would prefer to compute
individual-specific welfare costs based on wealth, productivity, and demo-
graphics. Such computations are impossible given the size of the model
environment. However, we suspect that the welfare gains are concentrated
in certain groups, in particular the poor and middle-aged widows who have
large numbers of children. In an attempt to identify these groups, we use our
model to conduct a series of simulations that examine how a household is
impacted by a death of a spouse over their remaining life cycle. We consider
a household who is impacted by a death of a wage earner when they can
and cannot hold life insurance, paying particular attention to the impact of
a death on the average paths for consumption and hours worked. Specifi-
cally, we take a household in a particular state of the world and simulate the
effect of losing the male adult member of the household, averaging over 5000
sample impulse responses to create the expected effect.

For these experiments, we will concern ourselves only with poor house-
holds. Wealthy households self-insure effectively without having access to a
life insurance market, and thus the absence of that market is of limited rel-
evance to them. We explore the impact of being widowed when the family
has limited resources during middle age, both with a small number of chil-
dren and a large number (1 versus 4). Our finding here is that both groups
appear to benefit from the presence of a life insurance market and that the
benefit is increasing in the number of children present. Calculations based
on households being in other states of the world are qualitatively similar, but
the gains appear to be largest for this group.

5.3.1 Poor Households with One Child

We first consider a household with a low wealth level - less than half average
wealth – that is 40 years old. Such a household is really in much worse shape
than it may first appear, since at age 40 years old they are in the middle
of their prime earning years and have very little wealth relative to their
cohort. As a result, the household cannot self-insure against the unexpected
loss of a wage earner effectively. A death in this household will likely have
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large ramifications for consumption-saving and labor-leisure decisions and
the availability of a life insurance market may be quite important.

Figure 5 shows the paths for consumption and labor supply for this house-
hold. Overall, since the effective discount rate is negative, consumption will
be rising over the lifetime of the household, and this is clearly evident in
the consumption paths. In the period after the shock, consumption for the
household in the LI economy rises while that in the no LI economy falls.
Consumption remains higher in the LI economy until retirement (the large
spike in consumption at retirement is due to the massive increase in leisure
evident in the second row of panels). Although not shown on the graph, the
standard deviation of consumption also falls when life insurance is available,
so that this measure understates the true gain. As for labor supply, the
household in the no LI economy must increase hours by much more than the
one in the LI economy, and this increase is permanent (until retirement of
course), but in each case labor supply is declining from its initial value.

The reason consumption falls in the no LI case but not in the LI case
involves the total wealth of the household, where total wealth is measured
as the sum of current financial wealth and the present discounted value of
all future labor income plus transfers. If there is no life insurance market,
wealth unambiguously falls since the maximum labor income during work-
ing ages is cut by more than half and transfers are reduced on net (survivor
benefits generally do not replace enough to cover the losses). As a result,
consumption and leisure both decline. When given access to life insurance,
the household can mitigate the loss of wealth caused by reduced time en-
dowment by generating an increase in current financial wealth through life
insurance payments; this results in the smaller increase in labor supply. Rel-
ative to an female whose husband did not die, the widow in the LI economy
still has less financial wealth and less consumption – these households are
not fully-insuring themselves against mortality risk.

5.3.2 Poor Households with Four Children

The situation is more extreme for a poor household that has 4 children, the
maximum allowed for in the model. The behavior of consumption is not
qualitatively different; however, the magnitude of the lost consumption is
larger. It is in the labor supply decision that the main difference arises.
In both economies, a poor household with 4 children will not be supplying
positive female hours. When the death shock occurs, the no LI widow must
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increase labor supply much more over the course of her remaining life – the
peak at retirement age is 3 times as high. Given that childcare costs are
nearly 80 percent of the time endowment at the beginning of this simulation,
increasing labor supply is very costly for this widow. Again, we find that
the wealth of the widow lies below that of an equivalent nonwidow.

6 Conclusion

Our model has examined the life insurance portfolio decisions of households
in a model with a reasonable amount of demographic detail. Our estimate
is that the consumption-smoothing motive for holding life insurance is po-
tentially very large, so large in fact that it constitutes a puzzle from the
perspective of economic theory. We find that, in an actuarially-fair environ-
ment, married households would hold life insurance equal to twice that in the
data despite having no bequest or tax avoidance motives. We see this as a
major puzzle, and we provide supporting evidence to that in Bernheim et.al.
(2001, 2002, 2003) that the buying patterns in this market seem difficult to
rationalize.

There are omitted motives for holding life insurance that may be rele-
vant to our discussion, but we argue that they would increase not decrease
the puzzle. First, the data contain a large number of $5000 policies, held
disproportionally by the elderly. These policies are ”death policies” that
cover the average cost of a funeral in the US.19 Such policies are clearly
for consumption-smoothing, and as such they would increase the amount of
policies held in the model and also drive the participation rate up to nearly
1, deepening the puzzle. Second, many divorce settlements require life in-
surance equal to the present value of future alimony payments – again,
this would increase holdings in the model. Furthermore, it would provide
single males a motive for holding life insurance that is in fact related to
consumption-smoothing. Since the model’s prediction for married holdings
exceeds the total held in the data, adding this feature would only make this
market more at odds with existing theory.

Theoretically, there are modifications to the model environment that
would potentially change our estimates. For example, habit formation
in consumption would dramatically increase the demand for consumption-
smoothing via life insurance, as the household views the drops in consump-

19Source: BEA.
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tion evident in our model with strong distaste. Thus, we expect our results
to be robust to those types of preference modifications, as well as changes
due to increased risk aversion. Myopic behavior or excessive short-run dis-
counting – as in Laibson (1994) – might have the opposite effect, reducing
demand sufficiently that it no longer constitutes a puzzle, but such models
are difficult if not impossible to work with and we prefer to stay closer to
established theory.20

Allowing for endogenous marriage and divorce might also change our
results, but this margin is unlikely to be important enough to overturn the
answers here. Households who perceive a high probability of divorce at
the end of the period will be less likely to buy life insurance, but this effect
will be of second-order importance if calibration is done to match average
flows.21 For this reason, we suspect our answers will also be robust along
this dimension. Finally, we have abstracted from a very important source of
disposable income variation, particularly for retirees – unexpected medical
expenses. As seen in Livshits, MacGee, and Tertilit (2003), such shocks can
be quite large and would be expected to increase in variance as the household
ages. Adding this source of uncertainty into the model would increase the
demand for life insurance since assets would be needed for precautionary
purposes much more so than they are now.

Our model also has shown that demographic shocks combined with wage
uncertainty is capable of producing a wealth concentration that close to that
observed in US data. That is, consistent with evidence in Cubeddu and Ríos-
Rull (2002), we argue that the composition of families matter, as divorces,
children, and premature deaths are major shocks to the wealth and income of
a household. The study of public programs which could provide insurance
against these shocks, like alimony, no-fault divorce, and child support, is
clearly possible within our framework.

20Excessive optimism of the sort considered in Brunnermeier and Parker (2003) would
likely operate in the same way, producing a ”it won’t happen to me” aversion to life
insurance. Again, the theory is not well-developed enough to yield a good estimate.

21The issue of the interrelation between wealth and the endogenous marriage/divorce
decision is studied in Guner and Knowles (2003), among other places.
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7 Computational Appendix

This appendix details the computational strategy used to solve the model.
The appendix is divided into four parts. First, we discuss the computation of
the household problem; we use backward induction along the lifetime to solve
for the value function. Second, we discuss the generation of the invariant
distribution over wealth, productivity, demographics, and age. Third, we
discuss our method for computing market clearing prices and the solution
to calibration equations. Fourth, we detail our Monte Carlo method for
computing the transition matrix for the demographic states.22

The basic algorithm is as follows:

1. Guess values for the vector of wealth for single individuals ksi and the
rental rate r.

2. Solve the consumer’s problem and obtain the value function v and the
decision rules k′, l′, hm, and hf . This step involves building a nonlinear
approximation to the value function and is described in detail below.

3. Iterate on an initial distribution of idiosyncratic states until conver-
gence. This step assumes that the distribution of a is over only a
finite number of points and redistributes mass iteratively. To conserve
on computational time, we calculate the invariant distribution over
stochastic states and use this information to start the iterations on the
distribution of wealth.

4. Check that the values for r and ksi agree with those in step 1. If not,
then update and return to step 1.

When calibrating the model, we add to step 1 guesses for the discount fac-
tor β, the consumption weight µ, and the relative male leisure weight χ. We
then check whether our guesses imply the right values for the wealth/GDP
ratio, the average hours worked, and the ratio of female to male labor supply.
We do not need to check the profit condition of the life insurance company,

22Fortran 95 code to solve for this equilibrium is available at
http://garnet.acns.fsu.edu/˜eyoung/programs. This code does not implement the
parallel solution method and thus is appropriate for casual users, but runtimes are
extremely long. The program’s search for the equilibrium price and parameter vector
also requires a significant amount of babysitting.
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since it will earn zero profit at every point in the price space even with oper-
ating costs, given that we assume everyone pays the same surcharge. Also,
since we are assuming that government consumption is determined residually,
we do not need to check the government budget constraint.

7.1 Solving the Household Problem

We will now discuss the solution of the household’s problem. Let current
wealth a lie in a finite grid A⊂ A. We must solve a two-dimensional con-
tinuous portfolio problem in (k′, l′); furthermore, to complicate the problem
both face short-sale constraints and the price of life insurance is small, lead-
ing to flat objective functions in the portfolio space. As a result, we take the
approach used in Krusell and Smith (1997) and Guvenen (2001) to solve the
problem. To begin, we guess that the agent holds zero life insurance. We
then find the optimum level of savings in capital by solving the Kuhn-Tucker
condition

(1p + ηx)θµ(1−σ) cµ(1−σ) (1− hm)χ(1−µ)(1−σ) (1− hf − ιx)(1−χ)(1−µ)(1−σ) ×(
µ

c

(
−1 +

∂hm

∂k′
wυiε +

∂hf

∂k′
φwυiε

)
− χ (1− µ)

1− hm

∂hm

∂k′
− (1− χ) (1− µ)

1− hf − ιx

∂hf

∂k′

)

+βE [v1 (a′, ε′,m′, i + 1)] (r + 1− δ)

≤ 0

where hm and hf solve

µwυjε

a + wυiε (hm + φhf )− k′ − ql′
=

χ (1− µ)

Tm − hm

µwυiεφ

a + wυiε (hm + φhf )− k′ − ql′
=

(1− χ) (1− µ)

Tf − hf − ιx
;

this equation is solved via bisection. If hi fails to satisfy the lower bound
0.15, we set it to that value. Next, we let life insurance holdings be slightly
positive: l′ = 0.0001. If this increase reduces lifetime utility, the agent has
zero life insurance optimally. If not, we use bisection to locate the correct
value for l′, increasing l′ whenever the gradient at the optimal value for k′ is
positive and decreasing it whenever the gradient is negative. We repeat this
process for zero labor supply for the female and for both members – it can
be shown that the male member of a married household will never set labor
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supply to zero if the female supplies a positive amount so we have only three
cases to check. The value function is then set equal to the max over these
three cases.

Ignoring bequests, we assume that

v (·, ·, ·, ·, I + 1) = 0.

Then, for each i ≤ I and using v(·, ·, ·, ·, i + 1) as the value function for the
next age, we can obtain the value function for this age as the solution to

v (a, ε, p,m, i) = u
(
C∗, h∗m, h∗f

)
+ βE [v (a∗′, ε′, p′, m′, i + 1)] .

Cubic spline interpolation is used whenever we need to evaluate v(·) at points
not on the grid for a.

7.2 Computing the Invariant Distribution

For the invariant distribution, the procedure outlined in Young (2002) is
employed. For each idiosyncratic state and age vector (a, ε, p, m, i) we com-
pute next period’s wealth contingent on demographic changes. After locating
a′ (a, ε, p, m, i) in the grid using the efficient search routine hunt.f from Press
et.al. (1993), we can construct the weights

A (a, ε, p, m, i) = 1− a′ (a, ε, p, m, i)− ak

ak+1 − ak

where
a′ ∈ [ak, ak+1] .

Now consider a point in the current distribution

Γn (a, ε, p,m, i) .

This mass is moved to new points according to the following process. For
each set (ε, p, m, i) × (ε′, p′,m′) we calculate the probability of transition;
denote this value by ρ (ε, p, m, i, ε′, p′,m′) . Mass is distributed then to the
point

Γn+1 (ak, ε
′, p′,m′, i + 1)

in the fraction
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A (a, ε, p, m, i) ρ (ε, p, m, i, ε′, p′,m′) Γn (a, ε, p, m, i)

and to the point

Γn+1 (ak+1, ε
′, p′,m′, i + 1)

in the fraction

(1− A (a, ε, p, m, i)) ρ (ε, p, m, i, ε′, p′,m′) Γn (a, ε, p, m, i) .

Looping this process over each idiosyncratic state and age computes the new
distribution. This process continues until the change in the distribution is
negligible. Note that we can compute the weights and the brackets before
iteration begins; since these values do not change we can store them and use
them as needed without recomputing them at each step.

7.3 Solving for Market Clearing and Calibration

We now discuss how we solve for the equilibrium, given the algorithms for
computing the value function and the invariant distribution. This algorithm
takes the following form:

1. Take the fitness functions to be the sum of the squared deviations of
the equilibrium conditions. We then attempt to solve

min
ω
{〈F (ω) , F (ω)〉}

where ω is a vector of prices and parameters, F is the vector-valued
function of equilibrium conditions, and 〈·〉 is the inner product function.
For the initial calibration this vector is of dimension 4:

[r, β, χ, µ] .

It turns out that the wealth held by singles can be computed ex post,
then the model resolved once at that vector, without affecting the other
variables in the system.

2. Set an initial population Ω which consists of n vectors ω. Given our
strong priors on the values for certain variables, we do not choose this
population at random. Rather, we concentrate our initial population
in the region we expect solutions to lie.
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3. Evaluate the fitness of each member of the initial population.

4. From the population, select n pairs with replacement. These vector-
pairs will be candidates for breeding. The selection criterion weights
each member by its fitness according to the rule

1− 〈F (ωj) , F (ωj)〉∑n
j=1 〈F (ωj) , F (ωj)〉

so that more fit specimens are more likely to breed.

5. From each breeding pair we generate 1 offspring according to the BLX-
α crossover routine. This routine generates a child in the following
fashion. Denote the parent pair by (ω1

i , ω
2
i )

4
i=1 . The child is then given

by
(hi)

4
i=1

where hi ∼ UNI (cmin − αI, cmax + αI), cmin = min {ω1
i , ω

2
i }, cmax =

max {ω1
i , ω

2
i }, and I = cmax − cmin . Our choice for α is 0.5, which was

found to be the most efficient value by Herrera, Lozano, and Verdegay
(1998) in their horse-race of genetic algorithms for a sum-of-squares
objective function like ours.

6. We then introduce mutation in the children. With probability µG =
0.15 + 0.33

t
, where t is the current generation number, we mutate a

particular element of the child vector. This mutation involves 2 random
numbers, r1 and r2, which are UNI (0, 1) and 1 random number s which
is N (0, 1). The element, if mutated, becomes

hi =





hi + s

[
1− r

(1− t
T )

δ

2

]
if r1 > 0.5

hi − s

[
1− r

(1− t
T )

δ

2

]
if r1 < 0.5

where we set δ = 2 following Duffy and McNelis (2001). Note that both
the rate of mutation and the size shrinks as time progresses, allowing
us to zero in on potential roots.

7. Evaluate the fitness of the children.

8. From each family trio, retain the most fit member. We now are left
with exactly n members of the population again.
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9. Compare the most fit member of the last generation, if not selected for
breeding, with the least fit member of the new generation. Keep the
better of the two vectors. If the most fit member of generation t − 1
is selected for breeding this step is not executed. This step is called
elitism and is discussed in Arifovic (1994).

10. Return to step 4 unless the population’s average fit has not changed
significantly across generations.

11. After obtaining a good calibration vector, subsequent equilibria are
computed using Brent’s method to find a zero in the equilibrium con-
dition for the capital market.

Note that some parameter values are not permitted; for example, µ cannot
be larger than one or less than zero. In these cases the fitness of a candidate
is assumed to be 106; that is, a large penalty function is attached to imper-
missible combinations. These candidates will be discarded immediately and
never breed.

In our implementation of the genetic algorithm, we parallelize computa-
tion by attempting to send each separate evaluation of F (ω) to a separate
processor. For the genetic algorithm, each generation requires n evaluations
for the new offspring (the parents have already been computed). This can
be very costly when conducted serially, so we exploit parallel coding and
multithreading to the extent that it is possible.

7.4 Monte Carlo Generation of Transition Matrix

The transition matrix for the demographic states turned out to be impossible
to write down analytically. The problem is that we wish to remain faithful
to the Census data on mortality, marriage, divorce, and fertility. To do
so requires that the transition probabilities be dependent on the path taken
to a particular state; for example, it matters for mortality of women how
many children they have had, not just the number that they currently have,
due to the inherent health risks associated with childbirth. Also, large
numbers of children typically are associated with lower income families who
have higher mortality rates as well. We were not able to construct the matrix
analytically as a result, since any given current demographic state could have
a very large number of histories associated with it. Therefore, we chose the
following Monte Carlo approach.
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To begin, we draw a random UNI (0, 1) random variable; if below 0.495
the new household is a male, if not it is a female. We then check whether
the household dies, gets married, bears children, or survives unchanged, us-
ing data from the US Census and CDC to determine age and gender specific
transition probabilities. We truncate the number of children to 4 (which
leaves out less than 2.7 percent of the population), we do not allow for multi-
ple births within 1 year, and single males cannot have children (no adoption).
In cases of divorce, the children proceed with their mother, and if the last
adult in the household dies, all the children living in the household die as well.
Given the data and these assumptions, we then let the household age 1 year
and repeat the process until death. This procedure is repeated 60 million
times; the transition matrix is then estimated using the sample probabilities.
Due to sampling error (even with this gigantic number of observations), some
states are rarely encountered in the simulation, which leads to some irregu-
larities in the transition matrix used in the program.23

This sampling error introduced by our Monte Carlo approach to calcu-
lating the transition matrix is not innocuous. Small irregularities in the
mortality rates generate large irregularities in life insurance holdings since
the premium paid by an individual is tied down by their mortality rate.
Thus, we are careful to generate death probabilities which match the ob-
served data. That is, the small dip in the death probability of males around
age 30 is actually observed in the data. To insure the correct probability of
death, we normalize the transition matrix to the correct death probability.
Each row of the matrix is divided by the simulated survival probability and
then multiplied by the true survival probability. Each row contains the true
survival probability and a smooth death probability is observed over the life
cycle.

23Matlab code to generate this matrix is available at
http://garnet.acns.fsu.edu/˜eyoung/programs.
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Table 1
Demographics of Simulated Economy

Characteristic Percent of Population
Married 68.02
Single 31.98
Divorced 7.25
Widowed 14.49
Never Married 10.24
0 Kids 76.63
1 Kid 18.83
2 Kids 4.30
3 Kids 0.20
4 Kids 0.01
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Table 2
Calibration Results

Variable Value
r 0.116
β 1.005
µ 0.310
χ 0.575
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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