Dynamic Optimization Examples

Example (Sequential Formulation): It is useful to have an example that has closed form solu-
tion. Assume that preferences are of the form u(c) = logc. In this particular case, the optimization
problem is

vp(W1) = max Zleﬁt’I log(¢y)
s.t. Zlect = Wl,

Let A be the Lagrange multiplier of the resource constraint, then we can write down the Lagrangian

as
vr(Wh) = max }Zt B og(er) + AW = 32,

The Euler equation implies
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The growth rate of consumption is decreasing, that implies ¢; > ¢3 > .... > ¢p. In general, we can
write consumption in period ¢; as a function of the initial period ¢,

a=p""q

Now, we can replace this value in the budget constraint to calculate the optimal consumption at
c1. Formally,

Zt 15t 1Cl Wi,

or .
A= oM
> b
Now, we can calculate the optimal consumption value for any period ¢. Formally,
ﬁt 1

C = 1

> B

This expression can be used to calculate the optimal consumption sequence as a function of 5 and
Wi, that is {c¢;}7_;. The optimal consumption sequence can be used to calculate the value function,
that determines the optimal return function given an initial value W;. That is
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UT(Wl) = Zf:lﬁt_l IOg(Zt 15t 1

Wh).

Rearranging terms,

ﬁt 1
> B!

where the value function is log-linear in W;. We can rewrite this expression as

vr(Wh) = S0 B og(—r——) + 3., 87 log (W)

UT(Wl) = AT + BT lOg(Wl)
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where Ap = Zleﬁt_llog(g;l) and By = Y.L 3""'. The value function depends on the
1 gt—1
horizon of the problem. Since the utility function is concave, the utility function is increasing in t,
that follows directly from the definition of concavity u((1 — )¢y + Bee) < (1 — B)u(cr) + Bu(ce). We
can see some specific cases:
1. T'=1: The implied value function is

vi(Wh) = 1log(1) + 5% log(W1) = 0 + 1log(W1) = log(Wh)

2. T = 2: In this case,

1a(11) = In(5) + BIn(—) + 1+ ) g1,
3. T'= 3 : In this case,
— ; L 2 6—2 2
vg(Wl)—log(HfHBz)+Blog(1+ﬁ+62)+6 log(1+6+52)+(1+6+6 ) log(Wh),

Example (Recursive Formulation): Next, we show how to construct the value function and
the optimal decision rules recursively, when u(c) = Inc. We begin with the last period and solve it
backwards.

o I'=1,
v1(W1) = maxIn(c;)

s.to. W2 = Wl —C

The optimal choice implies, ¢; = W; and W5 = 0. The implied value function is

U1 (W1> = ln<W1>

o =2
ve(Wh) = r%%x{ln(Wl — Wa) + o (Wa)}

given that we know the value function on the last period

va(W1) = %X{ln(Wl — Wa) + SIn(Wy)}

the FOC imply

_ _B
Wy—W, Wy
or ﬁ
Wy = ——Wh,
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This is the optimal savings function in the first-period W5 = ¢(W7), where in this case is a
linear function. Note that in this case if § = 0, the consumer does not value consumption in



the second period and the optimal savings for the next period is zero, that is W5 = 0. We can
compute the implied consumption decision rule for period 1 and 2

CT:W1—W2:W1—%W1
or 1
R ¢ /4
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and we can use the intertemporal constraint to compute second period consumption, that is
c1 + co = Wi. But we already know the in the last period we have

B

Cy =Wy = mWh

both consumption levels satisfy the resource constraint. Now we can compute the value
function for the two-period problem.

1
1+

ve(W1) = In( W) + B1n( W)

1+

rearranging terms we have
UQ(Wl) = AQ + BQ ln<W1)

where Ay = ln(ﬁ) +0 ln(%) and By = (14 /). It is important that the value function does
not include the maz(-) operator because we are using the optimal decisions to construct it.

T = 3, now we solve

vs(Wh) = II‘}[%X{III(Wl — Wa) + B(Az + BaIn(Wh))}

the FOC imply

1 _ BBy
(W1 —=Wy) Wy
or 5B
Wy = ——2-W
T 148B, !
but we know that By = 1+ 3, so we have,
. _B+p5
= —W ,
Pl pe

again, we have calculated the optimal decision rule given W;. Now, we can compute the
consumption levels for all three periods by using the sequential resource constraint

W2:W1—Cl
W3:W2—CQ
W4:W3—C3



Then, we obtain
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Again, with the optimal decision rules we can compute the new value function
U3(W1) = Ag + Bg ln<W1)
where Az = In(y575) + ﬁln(wﬁwz) + 32 ln(%) and By = (14 3+ (?).

However, there is an important aspect of the problem that we might have missed. The dynamic
programming approach gives us recursive decision rules, that only depend on last period size of the
cake. In particular, another way to look at decision rules is

Wy = —1525252 W, = = 15, +51+52 Wi
W3 = %WQ = Co = ﬁWQ
Wy=0-Ws; = c3 = Ws
So when § = 1, we have
Wy = %Wl = Cc1 = %Wl
W3 = %WQ = C = %WQ
Wys=0 = c3 = Ws

If we want to have every thing in terms of first-period cake size, we only need to move across the
optimal decision rules. In particular

C1 = %Wl
=i
c3 = (53(3W)) = 3

As expected, with no discount it is optimal split the cake evenly over time. With a concave utility
function this is optimal.



