SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

Andrew Culham aculham@math.fsu.edu

Department of Mathematics Florida State University

November 8, 2005

ANDREW CULHAM

1 THE LUCAS ASSET PRICING MODEL

2 LEGENDRE POLYNOMIALS AND QUADRATURE RULES

3 The Projection Method

4 RESULTS

SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

 LUCAS MODEL
 BACKGROUND
 THE PROJECTION METHOD
 RESULTS
 CONCLUSION

 THE BASIC SETUP
 Conclusion
 Co

Assume:

- A large number of investors.
- One stock paying stochastic dividends.
- One risk-free bond.
- All agents are identical with utility function

$$u(c)=\frac{c^{1-\gamma}-1}{1-\gamma},$$

where $\gamma > 0$ is the level of risk aversion.

LUCAS MODEL	BACKGROUND	THE PROJECTION METHOD	CONCLUSION
NOTATION			

• Define the following notation:

- c_t the agent's consumption in time t
- s_t, b_t the agent's holdings of the stock and bond, respectively
- S_t , B_t the market holdings of the stock and bond, respectively ($S_t = 1$ and $B_t = 0$ at equilibrium)
- p_t , q_t the market price of the stock and bond, respectively
- d_t the per capita dividend paid by the stock
- For each *t*, the agent chooses $\{c_t, s_{t+1}, b_{t+1}\}$.
- The individual states are $z_t = \{s_t, b_t\}$ and the aggregate states are $Z_t = \{S_t, B_t, d_t\}$.

 LUCAS MODEL
 BACKGROUND
 THE PROJECTION METHOD
 RESULTS
 CONCLUSION

 THE AGENT'S PROBLEM (CONT)
 Conclusion
 Conclusion

• The agent solves

$$v(z_t, Z_t) = \max_{\{c_t, s_{t+1}, b_{t+1}\}} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\},$$

subject to

$$c_t + p_t s_{t+1} + q_t b_{t+1} \leq s_t (p_t + d_t) + b_t \quad \forall t,$$

where s_0 and b_0 are known.

• In addition, $c_t \geq 0, \forall t$.

< 行 →

 Lucas Model
 Background
 The Projection Method
 Results
 Conclusion

THE EULER EQUATIONS

Stock:
$$p_t c_t^{-\gamma} = \beta E_t [c_{t+1}^{-\gamma} (p_{t+1} + d_{t+1})]$$

Bond: $q_t c_t^{-\gamma} = \beta E_t [c_{t+1}^{-\gamma}]$

or

Stock:
$$pc^{-\gamma} = \beta E[(c')^{-\gamma}(p'+d')]$$

Bond: $qc^{-\gamma} = \beta E[(c')^{-\gamma}]$

SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

< 17 >

LUCAS MODEL BACKGROUND THE PROJECTION METHOD RESULTS CONCLUSION A TRANSFORMATION

• Suppose dividends grow according to $d_t = e^{x_t} d_{t-1}$, where $x_t = (1 - \rho)\mu + \rho x_{t-1} + \varepsilon_t$ with ε_t being i.i.d. $N(0, \sigma^2)$ and $|\rho| < 1$.

• Let
$$v_t = \frac{p_t}{d_t}$$
 and $\theta = 1 - \gamma$.

- The equilibrium conditions imply that $c_t = d_t$ for all t.
- The Euler equation for the stock can be written as

$$v_t = E_t \left[\beta e^{\theta x_{t+1}} (v_{t+1} + 1) \right].$$

AN ANALYTIC SOLUTION

BURNSIDE'S SOLUTION

Burnside (1998) shows the exact solution for the price-dividend ratio is: \sim

$$v_t = \sum_{j=1}^{\infty} \beta^j \exp[a_j + b_j(x_t - \mu)],$$

where

$$a_{j} = \theta j \mu + \frac{1}{2} \theta^{2} \frac{\sigma^{2}}{(1-\rho)^{2}} \left[j - 2 \frac{\rho}{1-\rho} (1-\rho^{j}) + \rho^{2} \frac{1-\rho^{2j}}{1-\rho^{2}} \right]$$

and

$$b_j = \theta \frac{\rho}{1-\rho} (1-\rho^j).$$

LEGENDRE POLYNOMIALS

DEFINITION

The Legendre polynomials, P_i , can be defined recursively as

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$P_k(x) = \frac{1}{k} [(2k - 1)xP_{k-1} - (k - 1)P_{k-2}].$$

These polynomials are orthogonal with respect to the weight function w(x) = 1 on [-1, 1]. That is,

$$\langle \varphi_i(x), \varphi_j(x) \rangle = \int_{-1}^1 \varphi_i(x) \varphi_j(x) dx = 0, \text{ for all } i \neq j.$$

LUCAS MODEL

GAUSS-LEGENDRE QUADRATURE

FORMULA

$$\int_a^b f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^n \omega_i f\left(\frac{(x_i+1)(b-a)}{2} + a\right)$$

- x_i and ω_i are the nodes and weights, respectively, over [-1, 1].
- The error is bounded by $\pi 4^{-n}M$, where

$$M = \sup_{m} \left[\max_{a \le x \le b} \frac{f^{(m)}(x)}{m!} \right]$$

• See Judd (1998) for more details.

• Used to approximate integrals of the form
$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx$$

- Particularly useful for computing expectations involving normal random variables.
- x_i and ω_i are the nodes and weights, respectively, over $(-\infty, \infty)$.

FORMULA

Suppose $Y \sim N(\mu, \sigma^2)$. Then

$$E[f(Y)] \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{n} \omega_i f(\sqrt{2}\sigma x_i + \mu)$$

 LUCAS MODEL
 BACKGROUND
 THE PROJECTION METHOD
 RESULTS
 CONCLUSION

 THE BASIC IDEA
 Conclusion
 Con

PROBLEM

Find a function *f* such that $v_t = f(x_t)$ and $f(x_t) = \beta E_t \left[e^{\theta x_{t+1}} (f(x_{t+1}) + 1) \right]$, for all *t*.

The idea is as follows:

• Approximate
$$f$$
 by $\hat{f}(x) = \sum_{i=0}^{n} a_i \varphi_i(x)$, for some suitable basis.

Plug this into the above equation and define the residual:

$$R(x; \mathbf{a}) = \hat{f}(x) - \beta E\left[e^{\theta x'}(\hat{f}(x') + 1)\right],$$

where **a** =
$$(a_0, a_1, ..., a_n)$$
.

- So Ideally we would like to find **a** such that $R(x; \mathbf{a}) = 0$ for all *x*. This is generally not possible so instead we insist that it be "close" to 0 for all *x*.
- Find **a** to accomplish 3.

The previous steps leave us with some questions:

- How do we choose the basis $\{\varphi_i\}_{i=0}^n$?
- How many of these do we use (i.e what should *n* be)?
- What is meant by "close to zero"?
- How will we solve for **a**?

< A i

LUCAS MODEL BACKGROUND THE PROJECTION METHOD RESULTS CONCLUSION
BASIS FUNCTIONS

We have several choices for the basis functions:

- Trigonometric functions.
 - This is a typical approach for solving PDEs but is not generally a good idea in economic problems such as this.
 - The reason is that it takes a large number of basis functions to approximate a nonperiodic function.
 - The price-dividend ratio will not be periodic.
- Monomials (i.e. $\{1, x, x^2, ...\}$).
 - This is certainly the easiest option.
 - Will make for slow code if the degree is high.
- Legendre polynomials.
 - The orthogonality will reduce the computational burden.
 - This is the best choice.

BASIS FUNCTIONS (CONT)

How many of these polynomials should we use in our approximation?

- It is usually not known a priori what the best value for *n* is.
- Usually we will solve the model many times and check the solution each time for accuracy.
- The more curvature we can expect in the true solution, the more terms we will expect to use.

- Setting up the approximation as outlined above will result in n + 1 unknown coefficients.
- This means we need to generate n + 1 equations to solve for the coefficients.
- There are many ways to do this (see Judd (1998) for a complete list).
- Included in the most popular methods are least squares, collocation and Galerkin.
- A detailed illustration of the Galerkin method will be given here.

LUCAS MODEL BACKGROUND THE PROJECTION METHOD RESULTS CONCLUSION
THE GALERKIN METHOD

• Recall the Legendre polynomials:

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$P_k(x) = \frac{1}{k} [(2k - 1)xP_{k-1} - (k - 1)P_{k-2}].$$

- Suppose we wish to approximate the price-dividend ratio on the interval [*a*, *b*].
- For i = 0, 1, ..., n define

$$\varphi_i(x) = \begin{cases} P_i\left(2\frac{x-a}{b-a} - 1\right) & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

4 日

 LUCAS MODEL
 BACKGROUND
 THE PROJECTION METHOD
 RESULTS
 CONCLUSION

 THE GALERKIN METHOD (CONT)
 THE GALERKIN METHOD (CONT)
 THE GALERKIN METHOD (CONT)
 THE GALERKIN METHOD (CONT)

The φ_i are now orthogonal on [a, b] with respect to the weighting function w(x) = 1 (in fact, they are orthogonal on any interval containing [a, b]). That is,

$$\langle \varphi_i(x), \varphi_j(x) \rangle = \int_a^b \varphi_i(x) \varphi_j(x) dx = 0, \text{ for all } i \neq j.$$

• Using this basis, form
$$\hat{f}(x) = \sum_{i=0}^{n} a_i \varphi_i(x)$$
.

• Plug $\hat{f}(x)$ into $R(x; \mathbf{a})$ and re-arrange terms.

LUCAS MODEL

THE PROJECTION METHOD

RESULT

CONCLUSION

THE GALERKIN METHOD (CONT)

$$R(x; \mathbf{a}) = \sum_{i=0}^{n} a_i \varphi_i(x) - \beta E_x \left[e^{\theta x'} \left(\sum_{i=0}^{n} a_i \varphi_i(x') + 1 \right) \right] \\ = \sum_{i=0}^{n} a_i \varphi_i(x) - \beta E_x \left[e^{\theta x'} \sum_{i=0}^{n} a_i \varphi_i(x') + e^{\theta x'} \right] \\ = \sum_{i=0}^{n} a_i \varphi_i(x) - \beta E_x \left[e^{\theta x'} \sum_{i=0}^{n} a_i \varphi_i(x') \right] - \beta E_x \left[e^{\theta x'} \right] \\ = \sum_{i=0}^{n} a_i \varphi_i(x) - \beta \sum_{i=0}^{n} a_i E_x \left[e^{\theta x'} \varphi_i(x') \right] - \beta E_x \left[e^{\theta x'} \right] \\ = \sum_{i=0}^{n} a_i \left(\varphi_i(x) - \beta E_x \left[e^{\theta x'} \varphi_i(x') \right] \right) - \beta E_x \left[e^{\theta x'} \right]$$

< 17 >

LUCAS MODEL BACKGROUND THE PROJECTION METHOD RESULTS CONCLUSION

THE GALERKIN METHOD (CONT)

The projection condition for the Galerkin method is that the residual must be orthogonal to each basis function, that is:

 $\langle R(x; \mathbf{a}), \varphi_k(x) \rangle = 0$ for each $k = 0, 1, \dots, n$.

Imposing this gives (for each *k*):

$$\int_{a}^{b} \varphi_{k}(x) \sum_{i=0}^{n} a_{i} \left(\varphi_{i}(x) - \beta E_{x} \left[e^{\theta x'} \varphi_{i}(x') \right] \right) dx = \int_{a}^{b} \varphi_{k}(x) \beta E_{x} \left[e^{\theta x'} \right] dx,$$

or, after interchanging the (finite) sum and integral:

$$\sum_{i=0}^{n} a_{i} \int_{a}^{b} \varphi_{k}(x) \left(\varphi_{i}(x) - \beta E_{x} \left[e^{\theta x'} \varphi_{i}(x') \right] \right) dx = \int_{a}^{b} \varphi_{k}(x) \beta E_{x} \left[e^{\theta x'} \right] dx.$$

LUCAS MODEL

THE GALERKIN METHOD (CONT)

The previous equation can be written more compactly as a matrix system:

Ma = b,

where

$$M_{k,i} = \int_{a}^{b} \varphi_{k}(x) \left(\varphi_{i}(x) - \beta E_{x} \left[e^{\theta x'} \varphi_{i}(x') \right] \right) dx$$

and

$$b_k = \int_a^b \varphi_k(x) \beta E_x \left[e^{\theta x'} \right] dx.$$

Notes:

- Recall that $x' = (1 \rho)\mu + \rho x + \varepsilon'$ so that $x' \sim N(\alpha(x), \sigma^2)$. This allows the expectations to be computed using Gauss-Hermite.
- The remaining integrals are computed using Gauss-Legendre.

LUCAS MODEL BACKGROUND THE PROJECTION METHOD RESULTS CONCLUSION ERROR ANALYSIS

• The following norms were used to compute the error:

$$E_1 = 100 \times \frac{1}{N} \sum_{t=1}^{N} \left| \frac{y_t - \hat{y}_t}{y_t} \right| \quad \text{and} \quad E_\infty = 100 \times \max\left\{ \left| \frac{y_t - \hat{y}_t}{y_t} \right| \right\},$$

where y_t is the true solution and \hat{y}_t is the approximated solution.

- The code was run for increasing orders until each of the above errors seemed to roughly converge. In most cases this was around 10^{-7} .
- N = 20 was used for the error computations.

- Benchmark Values: $\mu = 0.0179, \sigma = 0.0348, \rho = -0.139, \theta = -1.5, \beta = 0.95$
- Large values of ρ (near 1) and large negative values of θ will result in the most curvature in the exact solution.
- Burnside's solution converges if and only if the following is satisfied:

$$\beta \exp\left[\theta \mu + \frac{1}{2}\theta^2 \frac{\sigma^2}{(1-\rho)^2}\right] < 1.$$

• With all other parameters held at their benchmark levels, ρ cannot exceed 0.85 if the true solution is to converge.

< A i

Lucas Model

THE PROJECTION METHOD

Order 5 Plot for $\rho = 0.7$

SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

< 17 →

LUCAS MODEL

THE PROJECTION METHOD

Log Error Plot for $\rho = 0.8$

SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

< (P) >

PROS AND CONS OF THE METHOD

Pros

- Easy to code for a general *n*.
- Reasonably fast to compute even for high orders.
- The idea works for multiple dimensions also.
- Cons
 - Computationally challenging to implement in many dimensions (number of unknown coefficients grows exponentially).
 - Not as straightforward to use on a nonlinear problem.

The End

aculham@math.fsu.edu http://www.math.fsu.edu/~aculham

SOLVING THE LUCAS ASSET PRICING MODEL USING A PROJECTION METHOD APPROACH

ANDREW CULHAM

< (P) >