ECO-5282

Financial Economics II: Homework #2Fall 2005

Professor: Carlos Garriga

- 1. An economy consists of two infinitely lived consumers named i=1,2. There is one nonstorable consumption good. Consumer i consumes c^i at time t. Consumer i ranks consumption streams by $\sum_{t=0}^{\infty} \beta^t u(c_t^i)$ where $\beta \in (0,1)$ and u(c) is strictly increasing, concave, and twice continuously differentiable. Consumer 1 is endowed with a stream of the consumption of good $y_t^1 = 1, 0, 0, 1, 0, 0, 1, \dots$ Consumer 2 is endowed with a stream of consumption good $y_t^2 = 0, 1, 1, 0, 1, 1, 0, \dots$ Assume that markets are complete with time-0 trading.
 - (a) Define a competitive equilibrium.
 - (b) Compute a competitive equilibrium.
 - (c) Suppose that one of the consumers markets a derivative asset that promises to pay .05 units of consumption each period. What would the price of that asset be?
- 2. Consider an economy with a single consumer. There is one good in the economy, which arrives in the form of an exogenous endowment obeying $y_{t+1} = \lambda_{t+1}y_t$, where y_t is the endowment at time t and $\{\lambda_{t+1}\}$ is governed by a two-state Markov chain with transition matrix $P = \begin{bmatrix} p_{11} & 1 p_{11} \\ 1 p_{22} & p_{22} \end{bmatrix}$, and initial distribution $\pi_{\lambda} = [\pi_0, 1 \pi_0]$. The value of λ_t is given by $\overline{\lambda}_1 = 0.98$ in state 1 and $\overline{\lambda}_2 = 1.03$ in state 2. Assume that the history of y_s, λ_s , up to t is observed at time t. The consumer has endownment process $\{y_t\}$ and has preferences over consumption streams that are ordered by $E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma}$ where $\beta \in (0,1)$ and $\gamma \geq 1$.
 - (a) Define a competitive equilibrium, being careful to name all of the objects of which it consists.
 - (b) Tell how to compute a competitive equilibrium. For the remainder of this problem, suppose that $p_{11} = 0.8$, $p_{22} = 0.85$, $\pi_0 = 0.5$, $\beta = .96$, and $\gamma = 2$. Suppose that the economy begins with $\lambda_0 = .98$ and $y_0 = 1$.
 - (c) Compute the (unconditional) average growth rate of consumption, computed before having observed λ_0 .
 - (d) Compute the time-0 prices of three risk-free discount bonds, in particular, those promising to pay one unit of time-j consumption for j = 0, 1, 2, respectively.
 - (e) Compute the time-0 prices of three bonds, in particular, ones promising to pay one unit of time-j consumption contingent on $\lambda_i = \overline{\lambda_1}$ for j = 0, 1, 2, respectively.
 - (f) Compute the time-0 prices of three bonds, in particular, ones promising to pay one unit of time-j consumption contingent on $\lambda_j = \overline{\lambda}_2$ for j = 0, 1, 2, respectively.
 - (g) Compare the prices that you computed in parts d, e, and f.
- 3. An economy consists of two consumers, named i=1,2. The economy exists in discrete time for periods $t\geq 0$. There is one good in the economy, which is not storable and arrives in the form of an endowment stream owned by each consumer. The endowments to consumers i=1,2. are $y_t^1=s_t$ and $y_t^2=1$, where s_t is a random variable governed by a two-state Markov chain with values $s_t=\overline{s}_1=0$ or $s_t=\overline{s}_2=1$. The Markov chain has time-invariant transition probabilities denoted by $\pi(s_{t+1}=s'|s_t=s)=\pi(s'|s)$, and the probability distribution over the initial state is $\pi_0(s)$. The aggregate endowment at t is $Y(s_t)=y_t^1+y_t^2$.

Let c^i denote the stochastic process of consumption for agent i. Household i orders consumption streams according to

$$U(c^i) = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi(s^t) \ln[c_t^i(s^t)],$$

where $\pi(s^t)$ is the probability of the history $s^t = (s_0, s_1, ..., s_t)$.

- (a) Give a formula for $\pi(s^t)$.
- (b) Let $\theta \in (0,1)$ be a Pareto weight on household 1. Consider the planning problem

$$\max_{\{c_t^1(s^t), c_t^2(s^t)\}} \{\theta \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi(s^t) \ln[c_t^1(s^t)] + (1-\theta) \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi(s^t) \ln[c_t^1(s^t)] \}$$

where the maximization problem is subject to

$$c_t^1(s^t) + c_t^2(s^t) = Y(s^t).$$

Solve the Pareto problem, taking θ as a parameter.

- (c) Define a competitive equilibrium with history-dependent Arrow-Debreu securities traded once and for all at time 0. Be careful to define all of the objects that compose a competitive equilibrium.
- (d) Compute the competitive equilibrium price system (i.e., find the prices of all of the Arrow-Debreu securities).
- (e) Tell the relationship between the solutions (indexed by θ) of the Pareto problem and the competitive equilibrium allocation. If you wish, refer to the two welfare theorems.
- (f) Briefly tell how you can compute the competitive equilibrium price system before you have figured out the competitive equilibrium allocation.
- (g) Now define a recursive competitive equilibrium with trading every period in one-period Arrow securities only. Describe all of the objects of which such an equilibrium is composed. (Please denominate the prices of one-period time-t+1 state-contingent Arrow securities in units of time-t consumption.) Define the "natural borrowing limits" for each consumer in each state. Tell how to compute these natural borrowing limits.
- (h) Tell how to compute the prices of one-period Arrow securities. How many prices are there (i.e., how many numbers do you have to compute)? Compute all of these prices in the special case that $\beta = 0.95$ and $\pi(s_j|s_i) = P_{ij}$ where $P = \begin{bmatrix} .8 & .2 \\ .3 & .7 \end{bmatrix}$.
- (i) Within the one-period Arrow securities economy, a new asset is introduced. One of the house-holds decides to market a one-period-ahead riskless claim to one unit of consumption (a one-period real bill). Compute the equilibrium prices of this security when $s_t = 0$ and when $s_t = 1$. Justify your formula for these prices in terms of first principles.
- (j) Within the one-period Arrow securities equilibrium, a new asset is introduced. One of the households decides to market a two-period-ahead riskless claim to one unit consumption (a two-period real bill). Compute the equilibrium prices of this security when $s_t = 0$ and when $s_t = 1$.
- (k) Within the one-period Arrow securities equilibrium, a new asset is introduced. One of the house-holds decides at time t to market five-period-ahead claims to consumption at t+5 contingent on the value of s_{t+5} . Compute the equilibrium prices of these securities when $s_t = 0$ and $s_{t+5} = 1$.