\documentclass[11pt]{article} \usepackage{amsmath} \usepackage{lscape} \textwidth=7.7in \textheight=10in \hoffset=-1.5in \voffset=-1.5in %\pagestyle{empty} \newcommand{\boxspace}{\parbox{1.42in}} \newcommand{\hhspace}{\hspace{0.02in}} % \newcommand{\bboxspace}{\parbox{2.0in}} \newcommand{\hhhspace}{\hspace{0.05in}} \input{tcilatex} \begin{document} \begin{flushright} Jaime Frade\\ ECO5282-Dr. Garriga\\ Homework\:$\#2$\\ \end{flushright} \begin{enumerate} \item A economy consists of two infintely lived consumers named $i=1,2$. There is one nonstorable consumption good. Consumer $i$ consumers $c^i$ at time $t$. Consumer $i$ ranks consumptions streams by $\sum^\infty_{t=0}\,\beta^t u(c^i_t)$ where $\beta\in(0,1)$ and $u(c)$ is strictly increasing, concave, and twice continiously differentiable. Comsumer $1$ is endowed with a stream of the consumption good $y^1_t = 1,0,0,1,0,0,1, \ldots$. Consumer 2 is endowed with a stream of the consumption good $y^1_t = 0,1,1,0,1,1,0, \ldots$. Assume that markets are complete with time-0 trading. \begin{description} \item[(a)] Define a competitive equilibrium. \vspace{.25cm} \\ \textbf{Definition} An \underline{allocation} for agent $i$ is defined as state contingent function $c^i = \{c^i_t(s^t)\}^\infty_{t=0}$ for $i=1,2$ \vspace{.25cm} \\ \textbf{Definition} A allocation is said to be a \underline{feasible allocation} if it satisfies \begin{equation}\label{eq:feas1} \sum^2_{i=1} c^i_t(s^t) = \sum^2_{i=1} y^i_t(s_t) \end{equation} \textbf{Definition} A \underline{competitive equilibrium} is a feasible allocation, $\{c^i\}^2_{i=1} = \{\{c^i_t(s^t)\}^\infty_{t=0}\}^2_{i=1}$, and a price system, $\{p^0_t(s^t)\}^\infty_{t=0}$, such that the allocation solves each household problem. \vspace{.25cm} \\ For a given household $i$ solves \begin{displaymath} U(c^i) = \max_{\{c^T_t(s^t)\}} E_0 \sum^\infty_{t=0}\beta^t\,u(c^i_t) \end{displaymath} \begin{equation}\label{eq:max1} U(c^i) = \max_{\{c^T_t(s^t)\}}\sum^\infty_{t=0}\sum_{s^t}\beta^t\,\pi(s^t|s_0)\,u(c^i_t(s^t)) \end{equation} \begin{equation}\label{eq:bc1} \textrm{subject to} \hspace{.25cm} \sum^\infty_{t=0}\sum_{s^t}\,p^0_t(s^t)c^i_t(s^t) = \sum^\infty_{t=0}\sum_{s^t}\,p^0_t(s^t)y^i_t(s_t), \hspace{.25cm} \textrm{and} \hspace{.25cm} c^1_t(s^t),c^2_t(s^t) \geq 0 \end{equation} \textbf{First Order Conditions:} \vspace{.25cm} \\ $\beta^t\,\pi(s^t|s_0)\,u\,'(c^i_t(s^t)) = \gamma^i\,p^0_t(s^t)$ \vspace{.25cm} \\ \begin{equation} \label{eq:max2} p^0_t(s^t) = \beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^i_t(s^t))}{\gamma^i} \end{equation} at $t=0$, we have the following: \vspace{.25cm} \\ $p\,^0_0(s^0) = \dfrac{u\,'(c^i_0(s^0))}{\gamma^i}$ \vspace{.25cm} \\ solving for $p^0_0(s^0) = 1$, we have the following: \vspace{.25cm} \\ $1 = \dfrac{u\,'(c^i_0(s^0))}{\gamma^i}$ \hspace{.25cm} $\Rightarrow$ \hspace{.25cm} $\gamma^i = u\,'(c^i_0(s^0))$ \vspace{.25cm} \\ Subsititing into (\ref{eq:max2}), obtain \begin{equation} \label{eq:max3} p^0_t(s^t) = \beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^i_t(s^t))}{u\,'(c^i_0(s^0))} \end{equation} For the problem above for $i=1,2$, there is no aggregate risk (hence $c^i_t = c^i_0$), thus \vspace{.25cm} \\ $\beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^1_t(s^t))}{u\,'(c^1_0(s^0))} = p^0_t(s^t) = \beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^2_t(s^t))}{u\,'(c^2_0(s^0))}$ \vspace{.25cm} \\ \newpage In equilibrium, from $MRS^1_{0,T} = MRS^2_{0,T}$ obtains \vspace{.25cm} \\ \begin{equation}\label{eq:equal} \dfrac{u\,'(c^1_t(s^t))}{u\,'(c^1_0(s^0))} =\dfrac{u\,'(c^2_t(s^t))}{u\,'(c^2_0(s^0))} \end{equation} Subsituting into the buget constraints (\ref{eq:bc1}) to find the feasible allocation for each agent for a competitive equilibrium. \vspace{.25cm} \begin{displaymath} \sum^\infty_{t=0}\sum_{s^t}\,\beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^i_0(s^t))}{\gamma^i}\,[c^i_t(s^t) - y^i_t(s_t)] = 0 \end{displaymath} \begin{displaymath} \dfrac{u\,'(c^i_0(s^t))}{\gamma^i}\sum^\infty_{t=0}\sum_{s^t}\,\beta^t\,\pi(s^t|s_0)\,[c^i_t(s^t) - y^i_t(s_t)] = 0 \end{displaymath} Because $\dfrac{u\,'(c^i_0(s^t))}{\gamma^i} \neq 0$, then obtain the following to solve for $c^i_0$ \begin{displaymath} c^i_o\,\underbrace{\sum^\infty_{t=0}\beta^t}_{=\frac{1}{1-\beta}} \,\, \underbrace{\sum_{s^t}\pi(s^t|s_0)}_{=1} = \sum^\infty_{t=0}\sum_{s^t}\,\beta^t\,\pi(s^t|s_0)\,y^i_t(s_t) \end{displaymath} Sum of probabilities in all states, $\pi(s^t|s_0) = 1$, and using a geometric series for for $\beta$ \begin{displaymath} \dfrac{u\,'(c^i_0(s^t))}{\gamma^i}\sum^\infty_{t=0}\sum_{s^t}\,\beta^t\,\pi(s^t|s_0)\,[c^i_t(s^t) - y^i_t(s_t)] = 0 \end{displaymath} \begin{equation}\label{eq:consum} c^i_0 = (1-\beta)\,\sum^\infty_{t=0}\sum_{s^t}\,\beta^t\,\pi(s^t|s_0)\,y^i_t(s_t) \end{equation} Solve each consumption for each agent, $i=1,2$, where comsumer $1$ is endowed with a stream of the consumption good $y^1_t = 1,0,0,1,0,0,1, \ldots$. Consumer 2 is endowed with a stream of the consumption good $y^1_t = 0,1,1,0,1,1,0, \ldots$. \vspace{.25cm} \\ \begin{tabular}{l l l} \textbf{agent 1} & \hspace{.25cm} & \hspace{.25cm} \textbf{agent 2} \vspace{.5cm} \\ $c^1 = (1-\beta) \sum^\infty_{t=0}\, \beta^t\, y^1_t$ & \hspace{.25cm} & \hspace{.25cm} $c^2 = (1-\beta) \sum^\infty_{t=0}\, \beta^t\, y^2_t$ \vspace{.5cm} \\ $c^1 = (1-\beta) [\beta^0 + \beta^3 + \beta^6 + \ldots]$ & \hspace{.25cm} & \hspace{.25cm} $c^2 = (1-\beta) [\beta + \beta^2 + \beta^4 + \beta^5 + \ldots]$ \vspace{.5cm} \\ $c^1 = (1-\beta) \sum^\infty_{t=0} \beta^{3t}$ & \hspace{.25cm} & \hspace{.25cm} $c^2 = (1-\beta) \sum^\infty_{t=0} [\beta^{t} - \beta^{3t}]$ \vspace{.5cm} \\ using sum of a geometric series, can obtain: \vspace{.25cm} \\ $c^1 = \dfrac{(1-\beta)}{(1-\beta^3)} = \dfrac{1}{1+\beta+\beta^2}$ & \hspace{.25cm} & \hspace{.25cm} $c^2 = \dfrac{(1-\beta)}{(1-\beta)} - \dfrac{(1-\beta)}{(1-\beta^3)}= \dfrac{\beta\,(1+\beta^2)}{1+\beta+\beta^2}$ \end{tabular} \begin{eqnarray}\label{eq:comsum} c^1 = \dfrac{1}{1+\beta+\beta^2} \hspace{.25in} \textrm{and} \hspace{.25in} c^2 = \dfrac{\beta\,(1+\beta^2)}{1+\beta+\beta^2} \vspace{.33in} \\ \textrm{subject to:} \hspace{.25cm} \sum^2_1 c^i = w_0 = 1 \Rightarrow c^1 + c^2 = 1 \label{eq:sbto1} \end{eqnarray} \newpage \item[(b)] Compute a competitive equilibrium. \vspace{.25cm} \\ Since only one agent, \textbf{comsumption $=$ endowment}, obtain the following: \begin{equation}\label{eq:ceqe} c_t = y_t \end{equation} In (\ref{eq:ceqe}), $y$ is defined as $y_{t+1}= \lambda_{t+1}\,y_{t}$, where ${\lambda_{t+1}}$ is defined as a two state Markov Chain. Using the properites of Markov process, \begin{equation}\label{eq:income1} y_{t+1}= \prod^t_{i=0}\lambda_{i}\,y_{0} \end{equation} Substituting (\ref{eq:ceqe}) into the first order conditions of the household problem, into (\ref{eq:max3}), will obtain an equation that will solve the price system for any asset that will lead to competitive equilibrium. \begin{equation} p^0_t(s^t) = \beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(c^i_t(s^t))}{u\,'(c^i_0(s^0))} \hspace{.75in} \textrm{from (\ref{eq:max3})} \end{equation} \begin{equation}\label{eq:ans} p^0_t(s^t) = \beta^t\,\pi(s^t|s_0)\,\dfrac{u\,'(y_t)}{u\,'(y_0)} \hspace{.75in} \textrm{using (\ref{eq:ceqe})} \end{equation} \vspace{.25in} \\ \item[(c)] Suppose that one of the consumers markets a derivative asset that promises to pay $.05$ units of consumption each period. What would the price of the asset be? \vspace{.25cm} \\ From Cochrane, (pg.52 1ed.), using to what he refers to as the \textbf{happy-meal theorem (3.1):} \begin{equation}\label{eq:happy} p(x) = \sum_s \,pc(s)x(s) \end{equation} where $x(s)$ denotes an asset's payoff in state of nature $s$, $pc$ is the price of a contingent claim and $(s)$ is used to denote which state $s$ the claim pays off. From (\ref{eq:happy}), obtain \vspace{.33cm} \\ \begin{equation}\label{eq:happy1} p = \sum_s \,\beta^t\, \dfrac{u\,'(c_{t+1}))}{u\,'(c_{t})}\,\pi(s^t|s_0)\,x_{t+1} \end{equation} In the setup of problem $\#\,1$: $\dfrac{u\,'(c_{t+1}))}{u\,'(c_{t})} = 1$, and $\pi(s^t|s_0) = 1$. Obtain: \begin{equation}\label{eq:happy2} p = \sum_s \,\beta^t\,x_{t+1} \end{equation} Since a derivative asset that promises to pay $.05$ units of consumption each period, \begin{displaymath} p^0_t(s) = \sum_s \,\beta^t\,(.05) = \dfrac{.05}{1-\beta} \end{displaymath} \end{description} \end{enumerate} \end{document}