ECO-5282

Financial Economics II: Homework #3Fall 2005

Professor: Carlos Garriga

- 1. Consider an economy with a representative consumer with preferences described by $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$ where $u(c_t) = \ln(c_t + \gamma)$ where $\gamma \geq 0$ and c_t denotes consumption of the fruit in period t. The sole source of the single good is an everlasting tree that produces d_t units of the consumption good in period t. The dividend process d_t is Markov, with $\operatorname{prob}\{d_{t+1} \leq d' | d_t = d\} = F(d', d)$. Assume that the conditional density f(d', d) of F exists. There are competitive markets in the title of trees and in state-contingent claims. Let p_t be the price at t of a title to all future dividends from the tree.
 - (a) Prove that the equilibrium price p_t satisfies

$$p_t = (d_t + \gamma) \sum_{j=1}^{\infty} \beta^t E_t \left(\frac{d_{t+j}}{d_{t+j} + \gamma} \right),$$

- (b) Find a formula for the risk-free one-period interest rate R_{1t} . Prove that in the special case in which $\{d_t\}$ is independently and identically distributed, R_{1t} is given by $R_{1t}^{-1} = \beta k(d_t + \gamma)$, where k is a constant. Give a formula for k.
- (c) Find a formula for the risk-free two-period interest rate R_{2t} . Prove that in the special case in which $\{d_t\}$ is independently and identically distributed, R_{2t} is given by $R_{2t}^{-1} = \beta^2 k(d_t + \gamma)$, where k is the same constant you found in part b.
- 2. Consider the following version of the Lucas's tree economy. There are two kind of trees. The first kind is ugly and gives no direct utility to consumers, but yields a stream of fruit $\{d_{1t}\}$, where d_{1t} denotes a positive random process obeying a first-order Markov process. The second tree is beautiful and yields utility on itself. This tree also yields a stream of the same kind of fruit $\{d_{2t}\}$, where it happens that $d_{2t} \equiv d_{1t} = (1/2)d_t$ for all t, so that the physical yields of the two kinds of trees are equal. There is one of each tree for each N individuals in the economy. Trees last forever, but the fruit is not storable. Trees are the only source of fruit.

Each of the N individuals in the economy has preferences described by

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, s_{2t})$$

where $u(c_t, s_{2t}) = \ln c_t + \gamma \ln s_{2t}$, where $\gamma \geq 0$, c_t denotes consumption of the fruit in period t and s_{2t} is the stock of beautiful trees owned at the beginning of the period t. The owner of a tree of either kind i at the start of the period receives the fruit d_{it} produced by the tree during that period.

Let p_{it} be the price of a tree of type i (i=1,2) during period t. Let R_{it} be the gross rate of returns of tree i during that period held from period t to t+1.

- (a) Write down the consumer optimization problem in sequential and recursive form.
- (b) Define a rational expectations equilibrium.
- (c) Find the pricing functions mapping the state of the economy at t unto p_{1t} and p_{2t} (give precise formulas). [Hint: You should be able to directly derive p_{1t} from the example seen in class, then since pricing functions have to be linear you can guess a pricing function $p_{2t} = kd_t$ and solve for k parameter using the Euler equation of the second stock.]

1

(d) Prove that if $\gamma > 0$, then $R_{1t} > R_{2t}$ for all t.