Chapter 1

Mathematical and
Computational Tools

1.1 Dynamic Optimization

We will start with a very simple dynamic optimization problem, that it is
nothing else than an application a finite dimension optimization problem.
Then, we will discuss extensions to infinite dimension problems.

Consider a consumer that has to decide how to consume a cake of a size W3
over T periods. Let ¢; denote the consumption level of period ¢, and let u(c;)
the flow of consumption or utility associated to ¢;. Preferences are stationary
and not indexed by time. We make the following set of assumptions on u(-)

1. Real valued function
2. Differentiable

3. Strictly increasing
4. Strictly concave

5. Inada conditions lim. o u/'(c) = oc.

Consumer preferences are represented by

Zf:lﬁt_lu(ct)
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where 8 € (0,1) is the discount rate. We assume that the cake does not
depreciate over time. The law of motion for the cake is given by

Wt-i-l:VVt_ct) t:]-aaT

The objective is to determine the optimal consumption plan {c;}L

1.1.1 Sequence problem approach

A direct approach would solve the constraint optimization problem directly.
Formally

T o1
{Ct}z;‘[f‘fla/};t z":+21 Zt:l/g U/(Ct)

s.to. Wt+1 = Wt—Ct, t= 1,...,T
together with some non-negativity constraints, ¢; > 0, and W;,; > 0, where

W1 is given. There are two different ways to simplify this problem and reduce
the number of choice variables.

1. Sequential formulation: Substitute the laws of motion into the ob-
jective function. Formally,

max Zzzlﬁt_1U(Wt — Wt+1)

T+1
{Wt t:Jrz

and we still have that W;,; > 0. The non-negativity constraint on
consumption implies that ¢; = Wy, — W;; > 0, which amounts to say
that the cake just gets smaller over time W; > W, ;.

2. Compact formulation: Combining the laws of motion for all periods
we have

S+ Wi =W,
Wit >0

This is a well-behaved problem with a strictly concave objective func-
tion over a compact set. Weierstrass theorem guarantees a solution on
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the problem. One way of characterizing the solution is using the first-
order conditions. Let A and u be the Lagrange multiplier of the resource
constraint and the non-negativity constraint respectively. Formally

ﬁtflu’(ct) — )\
A=p

Given that consumption will always be positive ¢; > 0, the implied
multiplier is always positive too, A > 0. Consequently p > 0, and the
non-negativity constraint binds in the last period ¢ > 0 and Wi41 > 0.

Euler Equations: The results of both formulations yield to a necessary
condition for optimality that links consumption across two periods.

u' () = Bu'(cer1)

This condition is called Euler equation. Explain the economic intuition be-
hind the Euler equation....

The Euler equation can also be used to cover deviations that last more
than one period. In particular, we can combine it over extended periods of
time

u'(e) = BT (cpir)
As long as the problem is finite, the fact that the Euler equation holds across
adjacent periods implies that any finite deviations from a candidate solution
that satisfies the Euler equation will not increase utility.
Terminal conditions: Why the Euler equation is only sufficient? There
could be solutions that satisfy all the Euler equations but satisfy this property
Wr > cr, so there is cake left. Clearly, this is not an optimal solution because
we can increase total utility by increasing the consumption, on the last period
or even better a bit on every period. Therefore the optimal solution has to
satisfy

u'(e;) = Bu'(crin)
for all ¢, as well as Wy, > 0. This last constraint has to purposes. First,
it does no allow the consumer to try to set Wy, = —oo in the last period
and obtain unbounded utility. Second, it ensures that in the limit there is
no cake left, uWp; = 0.

The Euler equation together with the non-negativity constraint Wr,.; > 0
and the initial condition WW; > 0 determine a second-order difference equation
with two boundary conditions that we need to solve for.
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Example (Sequential Formulation): It is useful to have an
example that has closed form solution. Assume that preferences
are of the form u(c) = logc. In this particular case, the optimiza-
tion problem is

vp(Wy) = max 31, B og(e;)

s.t. Zlect = Wl,

Let X\ be the Lagrange multiplier of the resource constraint, then
we can write down the Lagrangian as

vr(Wh) = max 336 logler) + AW = Xyl
Ctiz—1>

The Euler equation implies

1 p

Ct Ct+1

or

Vc:ﬁ:ﬁ<1
Ct

The growth rate of consumption is decreasing, that implies ¢; >
co > .... > cp. In general, we can write consumption in period ¢,
as a function of the initial period c;

Cy = ﬁt_lcla

Now, we can replace this value in the budget constraint to calcu-
late the optimal consumption at ¢;. Formally,

T _
Zt:lﬁt 161 - Wla

or

B 1
Zf:lﬁt*l

Now, we can calculate the optimal consumption value for any
period t. Formally,
ﬁt—l

Gt = ST oo
DB

Wla

*
€y

Wi



1.1. DYNAMIC OPTIMIZATION 9

This expression can be used to calculate the optimal consumption
sequence as a function of 3 and W, that is {c}}{_,. The optimal
consumption sequence can be used to calculate the value function,
that determines the optimal return function given an initial value

W;i. That is
T i1 Bt_l
vp(Wh) = >, log(————W1).
= Z?:lﬁt_l
Rearranging terms,
_ [t _
or(Wh) = 2,8 log(W) + 3B log(Wh)
t=1

where the value function is log-linear in ;. We can rewrite this
expression as
’UT(W;[) = AT + BT log(Wl)

where Ay = Zleﬁt_llog(%) and By = Y1, 3. The

value function depends on the _thI‘iZOIl of the problem. Since the
utility function is concave, the utility function is increasing in t,
that follows directly from the definition of concavity u((1—/3)c;+
Pea) < (1 — B)u(cr) + fu(ca). We can see some specific cases:

1. T'=1: The implied value function is

v (Wh) = 1log(1) + 5°log(W1) = 0+ 1log(W1) = log(Ws)

2. T = 2: In this case,

0a(IW1) = In( )+ Ala() + (14 5) log(I13)
3. T'= 3 : In this case,
2
v3(Wh) = log(mﬂﬁ log(ﬁﬂﬁ 10%(%)+(1+5+52) log(W1),

Example: We could use a different utility function, with constant
elasticity of substitution u(c) = ¢!=7(1 — ¢)~! where o > 0. The Euler

( ] ) —0 ( /8 ) 7
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o Ctt1 1
7= — g7 <1
Ct
Now the growth rate of consumption can be affected by the parameter
o, but we still have a decreasing sequence of consumption over tlme
We can redefine the discount rate to incorporate o, so we have B 6 -
and obtain a similar solution. Formally

1
1+ B+ B2+ B8+ ..+ T2

C1 =

or more generally
(57)
T—1, piv;
t=1 (5“)t !
In particular, when ¢ = 1 we obtain the previous solution with
logarithmic preferences. When ¢ — 0, then we have that 4. =
c 1 . -
“+ = % = 0, which can only be true when ¢;; = 0. With linear

Ct
preferences we have

Cy = 1

U= 1+ ﬁCQ + 5203 + ...+ ﬁTﬁlcT

Clearly, it is optimal to consume all the cake in the first-period,
because that maximizes the consumer life-time utility.

The examples illustrate that the solutions are consumption func-
tions that depend on the initial size of the cake. Substituting all
the optimal consumption sequence in the objective function we
obtain a function that depends on W, and the number of periods.
We call this a value function vy (1/7) and represents the maximum
utility flow you obtain from the T-period optimization problem.
Formally,

vr(Wh) = 0,8 ul; (Wh)
where ¢ (1) denotes the optimal level of consumption given the
initial cake size Wj.

Envelope condition: Clearly, if we increase the size of the cake
the lifetime utility should increase. The questions is how much?
We can find it by taking the derivative with respect to W; and
obtain

V(W) = A = B ()
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forallt =1,2,...,T. It is increased by a constant amount given by
the Lagrange multiplier of the resource constraint, and it does not
matter when the additional cake is consumed because consumers
are going to act optimally

1.1.2 Dynamic programming approach
Finite Horizon

Suppose we add an additional period ¢ = 0 to our optimization
problem. One way of solving it would be add the additional
period and solve the sequence problem again. An alternative way
would use the information that we already have from period 1
onwards. That would convert the T' 4+ 1 optimization problem
into a two period problem. Given W, we have to solve

v (W) = max u(co) + Bor(Wh)

s.to. W1 = Wo — Cp

where Wj is the initial size of the cake that we take as given. The
choice of W; determines the size of the cake next period W;. Once
we know these two values we are done because we already know
the solution from then on, because it is given by vy (W7). It is not
important how the cake will be consumed in the future. what it
matters is that the agent will be optimizing and choosing vy (W7)
optimally. This is know as the Principle of optimality. If we
substitute the constraint into the objective function we obtain

vpp(Wo) = max u(co) + BVr(Wo — o)

and the first-order condition assuming that Vp is differentiable
and concave is

u'(co) + Bvr(W1)(—1) =0
or

u'(co) = Pop(Wh)

The change of consumption today affects the size of the cake
in the future. The optimal choice implies that there cannot be
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any utility gains from deviating. We know from the envelope
condition that

vp(Wh) = /(1) = ﬁtul(CtH)

for all £. Combining this expressions we obtain the very familiar
necessary condition for optimality, the Euler equation.

u'(co) = ' (cr)

Since the Euler equation holds for the other periods underlie the
creation of the value function, one should suspect that solution
to the T'+ 1 problem using dynamic programming is identical to
the sequence problem. The FOC of both problems are identical,
thus the strict concavity of u(c) ensures that the solutions will be
identical as well.

Problems: The problem was simple because we had some in-
formation about vy (W7). I general we will not have information
about v(-). There are several ways we could construct the value
function:

1. Start with a single period problem, and build the value function recur-
sively by vy (W), then vy(W;), and so on vy (W) for any T

2. Guess a value function, and verify your guess. We will discuss this
method later on.

Example: Next, we show how to construct the value function
and the optimal decision rules recursively, when u(c) = Inc. We
begin with the last period and solve it backwards.

o I'=1,
v1(W1) = maxIn(cp)
c1
s.to. W2 = W1 —C

The optimal choice implies, ¢; = W; and Wy = 0. The implied value
function is
Ul(Wl) = ln(WI)
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o ['=2
U2<W1> = III}%X{IH(Wl - W2> + Bvl(Wg)}
given that we know the value function on the last period

ve(W1) = nvl%x{ln(W1 — Wa) + BIn(Wy)}

the FOC imply

1 _ 8

Wi =Wy, Wy
or 5

Wy = 2w,

2 1+6 1

This is the optimal savings function in the first-period Wy = g(W),
where in this case is a linear function. Note that in this case if g = 0,
the consumer does not value consumption in the second period and the
optimal savings for the next period is zero, that is Wy = 0. We can
compute the implied consumption decision rule for period 1 and 2

CI:W1—W2:W1—%W1
or 1
*:—W
AT 1y

and we can use the intertemporal constraint to compute second period
consumption, that is c¢; +co = W;. But we already know the in the last
period we have

s

C; = W2 = —Wl,
both consumption levels satisfy the resource constraint. Now we can

compute the value function for the two-period problem.

1
1+

va(W1) = In( Wi1) + B1n( W)

1+

rearranging terms we have
'UQ(Wl) = Ag + Bg ln(WI)

where Ay = ln(ﬁ) + ﬁln(%) and By = (1+ ). It is important that

the value function does not include the maz(-) operator because we are
using the optimal decisions to construct it.
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e T'= 3, now we solve

Ug(Wl) = H‘}%X{ln(wl — Wg) + /B(AQ + B2 ID(WQ))}

the FOC imply
1 _ BB,

(W= Wa) Wy

B
1+ 3B,

but we know that By = 1+ 3, so we have,

. BB
L1+ 8+

or
W2 —

Wi

—— W7,

again, we have calculated the optimal decision rule given W;. Now, we
can compute the consumption levels for all three periods by using the
sequential resource constraint

W2 W1 —C1
W3 = W2 — Co
W4 = W3 — C3
Then, we obtain
. 1
Cl - 1 ‘I—/B +62W1
. _ B
Rl
ﬁ2
3 =——"7—W,
ST irsrp !

Again, with the optimal decision rules we can compute the new value
function

Ug(Wl) = Ag + Bg ln(Wl)

where A3 = IH(WIJFB?> + 51n<1+5ﬁ+52> 52ln(1+5+52) and By = (1 +
B+ 6%).
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However, there is an important aspect of the problem that we
might have missed. The dynamic programming approach gives
us recursive decision rules, that only depend on last period size
of the cake. In particular, another way to look at decision rules
is

Wo=ZmWi = o=
W3 = %WQ = Co = ﬁWQ
Wi=0-W; = c3 = Ws
So when = 1, we have
Wy = %Wl = c1 = %Wl
Wiy = §W2 = Co = §W2
Wi=0 = c3 = Ws

If we want to have every thing in terms of first-period cake size, we
only need to move across the optimal decision rules. In particular

C1 = %Wl
R
c3 = (53(3W)) = 3

As expected, with no discount it is optimal split the cake evenly
over time. With a concave utility function this is optimal.

Infinite Horizon

Next, we assume that T' = oo. It is always useful consider the infi-
nite sequence problem before studying the recursive formulation.
In particular, our cake-eating problem becomes

v(Wh) = max % Btulc
( 0) {Ct}?im{wt}fil Zt_O/B ( t)
S'to. Wt+1 - Wt o Ct7 t - 17 ceey

It is direct to construct the Bellman equation from the sequential
objective function. Developing the sum just one period ahead we
obtain.

v(Wo) = ulco) + 32721 B'ulcr) = ulco) + B3 oS ulcer1)
(S ——

v(Wh)

15
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so we have

v(Wo) = u(co) + Bu(Wh)

In general, we can specify the problem for any point in the W
space
v(W) = max {u(c) + fv(W —¢)}
c€[0,W]

We use the variables with primes to denote future variables. The
consumer starts the period with a cake of size W, and it has to
choose present consumption ¢ and that directly determines W'.
The starting value for next period is given by the transition equa-
tion W’ = W — ¢, and the future value for the size of the cake left
is V(W — ¢). The relevant variables for a dynamic programming
problem are given by:

e State variable: The size of the cake given at the start of the period,
W. The state completely summarizes all the information from the past
needed for the forward looking optimization problem.

e Control variables: This is the variable that is being chosen. In this
particular case the consumption level, ¢ that lies in a compact set,
c € [0, W]. The size of the cake is irrelevant, in the sense that all the
important information for future choices in summarized by the state
variable.

e Transition equation: This equation determines the relation between
present control and state variable today on tomorrow state variables.
In particular, W/ =W — c.

Alternatively, we can state the problem so we choose tomorrow’s
state variable WW'.

o(W) = max {u(W —W')+ fu(W)}

Either specification should yield the same results, but in some
cases it is easier to work with the last case. The present value
function is a functional equation (or Bellman equation)
that is the object that we want to solve. With an infinite number
of periods, we cannot solve the problem backwards from the last
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period. To solve it we will use the fact that the value function
appear in both sides, such that the functional equation always
has to satisfy

v(W) = u(W —g(W)) + pu(g(W))

where W' = g(w) is the policy function of the optimal decision
rule associated to the problem. We will use iterative methods
to find the correct value function. In particular, we could start
with a guess of the value function vy(W), solve the optimization
problem, and check if the implied value function is the same.
Formally,

visn (W) = u(W = gi(W)) + Bui(g:(W))

if this is not the case, update the value function with the new one
and iterate until it converges according to some norm sup |v;1 (W)—
v (W) < e.

Now, we go back to our original problem and explore some prop-
erties of the optimal conditions.

v(W) = max }{u(W — W) + po(W")}

W'el0,W
the first-order conditions are given by
u'(c) = pv'(W')

This condition will hold if the value function is differentiable
(might not be always the case). However, we can calculate the
value using the envelope condition

V(W) =u' (W —W') =4d/(c)

since this condition holds for any period and for all W, it must
also hold for W', so we have

V) = u(¢)
Combining both terms we obtain the Euler equation.

u'(c) = pu'(c)
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The optimal decision rules have to satisfy the necessary condition
for all W. The solution of our dynamic programming problem are
two functions that depend on the state of the economy W.

¢= gl<W)7
W/ = QQ(W) = W — gl(W),

The optimal policy functions have to satisfy the Euler equation.
This is one procedure that we can use to check the accuracy of
the solution, because the Euler equations are not generally used
to compute the value function. Therefore, we only need to check
that the implied errors are small.

U (gi(W)) = pu (g (W) = Bu(g2(W — g1(W))),
or
(g1 (W) = Bu (g2(W — g1 (W)))] < €
The equations need to hold for any point in the state space W.

Example: Next, we consider the infinite horizon version of the
previous problem. The utility function is u(c) = Inc. We don’t
know the true value function, but we conjecture based on the
finite horizon solution that it has this form

v(W) = A+ BIn(W)

for all W. So we only need to determine the coefficients A and
B that makes both sides of the value function be satisfied. The
functional equation is given by

A+Bmmq:M%%ﬁmW—ww+mA+Bmmﬂﬂ

the first-order conditions imply

1 3B
w-w W
or
w8y

" 1+3B
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and
B B B B
c=W 1+BBW_W1 1+ 8B
finally
1
“=1558"

this is the policy function that depends on the state variable, and
an unknown coefficient B. We need to find the coefficients that
ensures both sides are equal. Substituting the optimal choice in
the value function

W

B BBW
A+BIH(W)_lnl—l—ﬁB_l_B(A_l_Bln(l—i—ﬁB))

Notice that we do need the max operator because we are substi-
tuting the optimal choice in. Collecting terms

A+BIn(W) = (144B) In ( ) +BA+FBIn fB+(1+4B) In(W)

1+ BB

it must be the case that

A= (l—l—ﬁB)ln(l_lﬁB
BIn(W) = (1+ B) In(W)

>+5A+5Bm53

The B value that satisfies the second expression is

1
B=14+3B=B=——

1-p5
then, we can finally solve for
_ s B
A= 1_61n(1—5)+514+1_ﬁln1_5
or
_ 1 g
A= -7 ln(1—6)+1_ﬁln6
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With the optimal coefficients we can compute the optimal policy
functions.

c=(1=p)W,
W' = W,

The optimal policy is always to save a constant fraction S of the
cake, and eat the remaining fraction.

The solution of the infinite dimension problem can be usually
obtained from the solution of the T" period problem where T = cc.
Using the optimal decision rule we have

1

BT:(1+5+52+...+5T>:Tlgx;ozleﬁt:m

Infinite Horizon: Stochastic version of the cake-eating problem

Dynamic programming provides a convenient way of introduc-
ing uncertainty into the model. In particular, we could have to
different ways of introducing uncertainty into the model

1. Taste shocks: The propensity to consumer changes every period with
a certain probability. An alternative formulation could include changes
in the discount rate [3.

2. Shocks law of motion or transition equation: The cake depre-
ciates at random rate, or it could even get bigger in some states of
nature.

We focus on taste shocks and assume that the new utility function
takes the form U(c,e) = eu(c) where ¢ is a random variable. The
timing of the problem is important, and we need to decide what
does the agent know. Does he know the shock before making any
choice? Should the choice be contingent on the shock? These
are important elements that need to be defined ahead of time.
For simplicity we consider a finite value for the taste shock ¢ €
{€1,€2,€3,...,e5} where g1 < g9 < £3 < ... < £5. We can assume
that the shock follows a first-order Markov process, where m;; =
Prob(e' = ¢jle = ¢;) and ) ¢m;s = 1 for all i. Let I denote the
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transition matrix that summarizes all the information about the
probability of moving across states of nature.

The Bellman equation for this problem is given by

(e, W) = max {eu(c) + BBz, W)

s.to. W =W —c,
e, W' >0

The FOC of the problem are given by
eu'(c) = BBV (", W)

for all W and . Using the envelope condition v'(e, W) = eu/(c),
and updating one period we have an stochastic Euler equation

eu/(¢) = BB/ (W — W)
The optimal decision rule of the problem is
W' = g(W,e)
so we can rewrite the Euler equation as
e (W —g(W,e)) = BE e’ (9(W, e) — g(g(W,e), )

The optimal decision rule has to satisfy this equation for all point
in the state space W and .
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