Chapter 4

General Equilibrium with
Complete Markets

4.1 Environment

e Finite number of states s € S

o 7(s'/s) = prob(s1 = s'/s; = s) is a first-order Markov chain
mo(s) = prob(sg = ) is the initial distribution

7(s') is a sequence of probability measures to achieve a particular his-
tory

t_

8" = (81, St-1, St-2, -+, 51, 50)

This probability can be computed via recursion
m(s") = m(st/st-1)7(84-1/8t_2)...7(51/50)7(50)

This is the unconditional probability when sy has not been observed yet.
When sy has been observed, we then have the conditional probability

7(s'/s0) = m(ss/8¢-1)7(8t-1/8t—2)...m(51/50)
where 7(s") = w(s"/s9)m(s0)
e Finite number of agents ¢ € |

e Endowment for each household y! = y'(s;) is a time-invariant function
that only depends on the the shock at time t.

41



42CHAPTER 4. GENERAL EQUILIBRIUM WITH COMPLETE MARKETS

e Endowments are publicly observable

e An allocation for agent i is defined as state contingent function ¢! =

{ci(s)}2

e Preferences are represented by

U(c) = Eog)ﬁtU(Ci)

or

U(c') = ;{)Z;ﬁtﬂ(st/zsa)u(d(st))
where the utility function u(-) satisfies v’ > 0, v” < 0, C? and the
Inada conditions lim; .o u'(c) = +00.

e An allocation is a list of sequence of functions ¢! = {ci(s*)}, for all 4.
An allocation is said to be feasible if it satisfies

I I
ECi(St) = Zlyl(st) =Y(s)

Notice that consumption can depend on history, but the period income

only depends on the realization of the shock.

4.2 Arrow-Debreu Markets

Household trade dated state-contingent claims to consumption.
There is a complete set of claims. Trade takes place at t = 0
after the shock has been realized. The price of a claim on time
t consumption contingent on history s’ is denoted by pY(s'). The
superscript 0 refers to the date at which trades occur, while the
time subscript ¢ refers to the date that deliveries are to be made.
A price system is a sequence of functions {p?(s")},,.

A given household 7 solves

U(c) = max 35 84(s"/so)u(ci(s"))

t=0 st
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sto SYpU(s)ci(sh) = S5 p0(s )y (s:)

t=0 st t=0 st
ci(s") >0

The single budget constraint implicitly assumes complete markets
because it allows unrestricted trade in all states of nature.

Definition (Competitive Equilibrium): A competitive equi-
librium is a feasible allocation {c'}._; = {{ci(s")}2,}_; and
a price system {p?(s')}22, such that the allocation solves each
household problem.

Proposition: The competitive equilibrium allocation is not his-
tory dependent.
c(s') = c'(s)

Proof: The first-order conditions of the consumer problem are
given by
Bir(s'[so)u'(cy(s')) = 7'pE(s")

For two different consumers that face the same prices we have

W) o
w(d(s) 7

The ratios of marginal utilities between pairs of agents is constant
across time and states. In general, that will not imply constant
consumption levels, but proportional. Latter we will show that in
absence of aggregate uncertainty, consumption will be constant
across time and states of nature.

The relative consumption is given by

() = o (u%c{(st))j—j)l

This fact comes from combining the first-order of the consumer
problem with the resource constraint

> (we <st>>l)1 = S0 = V()
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44CHAPTER 4. GENERAL EQUILIBRIUM WITH COMPLETE MARKETS

If the right-hand side does not depend on history, it only depends
on the existing shock s;. Therefore, the left-hand side does not
depend on history either.ll

The equilibrium price function is derived from the consumer first-
order conditions

0(sty — Btr(st/s u/(cf;(st))
pe(s") = B'x( /0)—7i

At t = 0, we also have

0/ .0
po(s’) = ———=
0 f)/l

or
0/t t ' (cy(s"))

p) = (s o) 4
where p)(s°) = 1. The ratio of expected marginal utilities gives
the stochastic discount factor, and the return of the state-contingent
claim is one unit of consumption. Therefore, the price has to be
lower than one. Once we determine the consumption allocation,
we can compute the equilibrium prices.

4.2.1 Risk Sharing

Economist are interested on the insurance properties of financial
markets, and increase welfare. Consider a utility function of the

form .
IS —0
ule) = l—-0o
where o > 0. The optimality condition of the market equilibrium
implies .
()7 _ 7y
() ¥
or

4(3) =

Complete markets assumption implies that consumption alloca-
tions to distinct agents are constant fractions of another. With
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this preferences, individual consumption is perfectly correlated
with aggregate output or consumption, but is not correlated with
individual income y'(s;). The fraction of consumption that each
agent receives is independent of s'. Hence, the model exhibits an
extensive cross-state and cross-time consumption smoothing.

4.2.2 No Aggregate Uncertainty

We consider an economy with two types of consumers, and a
continuum of each type. The Markov process s; takes place on
the unit interval s; € [0, 1], such that y*(s;) = s and y*(s;) = 1—s.
In the absence of aggregate uncertainty, we know that the optimal
choice implies perfect insurance ¢} = ¢,

L) o W36
) gy = W = I )y
That is in equilibrium, we have
u(ci(s') _ ui((s'))

w(cp(s9)  u(cp(s))

From the first-order conditions of the consumer problem, we have

u'(cl(st
pR(s") = (st ) A
Substituting the first-order condition into the budget constraint

izﬁwst/sw%@[cg )] =0

0 st

( )zm (5" 50)lch — y(s)] = 0

=0 st

given that v’ (cf)) /7" # 0, then it must be the case that

S5 B (s s0) [ — i(se)] = 0

t=0 st
or

b LB (s o) = ST (s 50}y ()

t=0 st
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46CHAPTER 4. GENERAL EQUILIBRIUM WITH COMPLETE MARKETS

where Y 7m(s"/s9) = 1, so we have
St

¢ = (1= B) S 587 (s!/50)y (1)

t=0 gt

Finally, we check feasibility

&) [e.°]

cot+co=(1=B) 3 87(s /s0)y' (se) + (1= B) 33 B"7(s"/s0)y* (s)

t=0 gt t=0 st

= (1= 8) 228" m(s"/s0)[y' (s:) +y°(s0)] = (1 = B) YB3 om(s"/s0) = 1
t=0 st S—— ‘-1\:-’ =0 st

Using the optimal consumption levels, we can compute the im-

plicit asset prices.

u'(ci(st
pg(st) _ ﬁtﬂ'(st/SO) ( t(i ))
Y
with constant marginal utility, and using the usual normalization
vt = /(ci(s")) and pd(s°) = 1. We obtain

pi(s") = B'n(s'/s0)

where remember that 7(s'/sg) is the conditional probability for
this particular history when sq has been observed. An important
feature is that prices do not depend on the idiosyncratic income
shock. It only depends on the particular realization of a given
history.

We can further specialize the example assuming a particular en-
dowment process for both consumers. Formally, assume that y* =
(1,0,1,0,...) and *> = (0,1,0,1,...). In this case pY(s') = 3. The
implied consumption allocations for both consumers are given by

= (1= BB (s sl (s1) = (1 — B)S3%1

t=0 st t=0

or

(=5 __0a=5 1

Co— — —

1-p) (@=p50+p) 1-p
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and for the other consumer we have,

> s
cg=——
0 1— /3
The first-consumer is relatively wealthier because it receives the
high shock on the first-period. That allows high to consume more
because the present value of his/her future income is higher.

4.3 Contingent Claims or Sequential Markets
Structure

In a seminal paper Arrow (1964) showed that one-period securi-
ties are enough to implement complete markets, as long as a new
one-period market re-opens for trading next period. In this econ-
omy, trade takes place at each date and state ¢ > 0 using a set
of contingent claims to one-period ahead state consumption. We
prove that with a full array of these one period set of claims, the
sequential market structure attains the same consumption allo-
cation as the competitive equilibrium with Arrow-Debreu market
structure.

In this economy, the sequential budget constraint is given by

ci(se) + 20 Qsea1/50)bpy (se01) = yi(se) + bi(se) Vs

st+1

where Q(s¢11/5:) denotes the price of one unit of consumption t
time t + 1 contingent on state s;;; given that today is state s;.
We assume that this function does not depend on t. Notice that
consumption only depends on the existing shock s;, and does not
depend on history. All the history for household 7 is summarized
by its present wealth given by bi(s;).

A given household 7 solves

Definition: A sequential equilibrium is an allocation {c'},_; =

{{ci(st), bi+1(3t+1)}fio}f:1 and a price system {Q(5t+1/3t)}?io such
that
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i) the allocation solves each household problem, and

U(c) = max 358 (s" /so)u(ci(s1))

t=0 st

sto ci(se) + 2 Qsea1/50)bir (se01) = yp(s0) + bi(se) Vs

st+1

¢i(s)) >0 by y(se41) > —B(s) Vs

ii) Markets clear

Sel(sn) = L/ s0) = V(s
ébiﬂ(stﬂ) =0

Proposition: If {c'}_| = {{ci(s")}2,}._; is the solution of the
Arrow-Debreu competitive equilibrium, this allocation also is the
solution of the sequential equilibrium.

Proof: From the first-order conditions of the sequential problem
we have

N GGl
Q(s141/51) = Br(se/s1) w'(ci(s))

together with a transversality condition

lim 32 Q(se41/50)bj 1 (5141) = 0

OO gt+1

That implies b, (s411) > 0 if Q(s411/5¢) = 0, or b4 (s"*1) =0 if
Q(si41/8¢) > 0. The first-order conditions of the Arrow-Debreu
equilibrium are

pgﬂ(stﬂ) _ t U/(Czitﬂ(stﬂ))
AE T )
That implies
Q(StJrl/St) = M

pi(st)
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Finally, we need to show that the Arrow-Debreu consumption
allocation satisfies the sequential budget constraint. In this case,
we choose the initial level of wealth so the allocations are the
same bf) = 0 for all 4. Then, the portfolio decisions should be the
same in both economies. To show it we need to add up all the
budget constraints across states of nature s and across time t,
basically across all histories s*. We start at time ¢ = 0

t=0 s=1 B ~ 0] = BK0) ~ SR /b ()
(=1 s=5 OO - (S)] = BSH(S) — TS5/ S)H(S)

If we add them up we have

Zpo( ")l (s”)=wio(s0)] = 2po(s”)bj(s0) —2po(5)Qs1/50)b1 (51)

For the next periods we have

Epl( DIE(sh) = wilsn)] = Zpi(sh)b(s1) = 2pa(s*)ba(s2)

2P (8 e (87 = g (sim)] = 2P (s )b (s11) = 2P (s")bi(st)

SN — i) = S (s0) = X pbr (5 (s00)

St+1

If we add them all up,

Zpo( ")lco(s”) v (s0)]+. +Zpt( Olei(s)=yi(se)] = 2P (8 )by (s141)

gt+1

if we take the limit in both sides de have

S S e(s") — wi(s0] = lim gy (87 by (s0e0) = 0

t=0 gt t—o0 gt+1

4.4 Pareto Efficient Allocations

It is useful to have a welfare measure to compare the outcomes
of different trading mechanism. We focus on Pareto efficient.
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Definition (Pareto Efficiency): An allocation {¢'}._; = {{ci(s:)}°0}_;
is said to be Pareto efficient, if there not exists another feasible
allocation {¢'}/_, such that

U@ >U(d) Vi
U(&) > U(c) some i

The set of Pareto efficient allocation can be calculated by com-
puting the so called social planner problem. Consider a social
planner that has to allocate resources among a large number of
households. We assume that each consumer receives a time in-
variant discount rate A\’ € (0, 1), and Zle)\i = 1. The benevolent
planner maximizes

U, ...,c!) = max ZA’ZZﬁt (s'/s0)u(ci(s"))

{ci(s)}H_1i=1 t=0st

s.to izzljlci(st) = i:ZI:lyi<5t) =Y (s)
ci(s") 2 0

Let p denote the Lagrange multiplier of the resource constraint.
The first-order conditions for a given consumer ¢ with respect to
ci(s') are . A

NB'm(s' [so)u/ (ci(s)) =
Notice that marginal utility of consumption only depends on the

aggregate variables, not on the individual income shock 3'(s;).
Formally,

1ar by H
) = (s

For two different consumers ¢ and j we have

N B7(s'/s0)u (c)(s"))
N Bt (st /s0)u'(c] (s1))

or

=1




4.5.

FIRST AND SECOND WELFARE THEOREMS

or , ,
u(cy(s) N
wic(sh)) N
Clearly, the allocation of consumption across households depends
on the relative weight that the social planner assigns to each
household. In particular, if A > M then u'(ci(s")) < u/(c](s?)),
and ci(s') > ¢/(s?). The agent with higher weight receives more
consumption. In a symmetric allocation \* = )\ all agents receive
the same allocation, c!(s') = aY(s;), where a = 1/I. Individual
consumption only depends on the aggregate shock, not on the
idiosyncratic labor income shock. Finally, we can replace the
optima consumption levels on the first-order conditions

w(a(s) _ waY(s)) N
w(c(sh) w(a¥(s)) N

and obtain M = X\’ that both agents need to have the same initial
wealth to achieve the symmetric allocation. If all agents do not
have the same initial wealth, it is necessary to implement lump-
sum taxes to achieve this allocation.

4.5 First and Second Welfare Theorems

First, we want to prove the so called first-welfare theorem. The
theorem highlights some of the nice welfare properties of complete
markets economies.

Proposition (First-welfare theorem): An equilibrium alloca-
tion {c'}_, = {{ci(s")}2,}L, in the market economy is Pareto
efficient.

Proof: Suppose the contrary, then there exists another feasible
allocation {¢'}/_; that Pareto dominates the equilibrium alloca-
tion. At the equilibrium prices {pY(s')}22,, this allocation has
to cost strictly more than the endowment for the individual that
can be improved. Otherwise this agent is not maximizing utility.
That is . .

> 2opi(s1)e(s) > 23 pi(s)y' (se)

t=0 st t=0 st

o1
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for the other consumers this constraint is satisfied with equality.
If we add up all the constraints we find

I

ST E () > STy (51)

t=0 st i=1 t=0 st 1=1

00 I
S0 (260 - V(s ) >0
given that p?(s) > 0 for all ¢ and s, the alternative allocation
{¢}L_, is not feasible. That contradicts the assumption of Pareto
efficient allocations. Clearly, there exists better allocations but
there are not feasible.ll

Proposition (Second-welfare theorem): An allocation {c¢'}/_; =
{{ci(s") 122, 1L, is Pareto efficient, there exists a price system that
supports this allocation as a market equilibrium.

Proof: If we compare the first-order conditions of the social plan-
ner

N B (s' 5o (ci(s") =

with the competitive equilibrium from the previous section
Bir(s'/so)u(cy(s")) = 7'pi(s")

It is clear, that both economies will deliver the same allocations
if /Nt = ~'p?(s'). There exist a vector of relative weight {\*}1_,,
such that the solution of both economies is the same given the
initial distribution of entitlements. In particular, we can use the
social planner allocations two compute the optimal consumption,
and the implied equilibrium price system.

For the symmetric case, that is \! = ... = M\, where ci(s!) =
aY (s;) for all ¢ and o = 1/I represents the individual share on
aggregate output.

pg(st) _ Btﬂ_(st/so)zll ZY(St))

(
(Y (s0))

The price of state-contingent claims depends on the co-movements
of output.l
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Assume that the changes in aggregate output across time and
states is given by Y (s;) = ¢g(s¢)Y (so), where you can think of
Y (so) as the average level of output. We can rewrite this equation

- o et (ag(s)Y (50))
PR = B'7(s ) ol S

In the absence of aggregate uncertainty g(s;) = 1 for all s and ¢.
Then, the equilibrium prices are given by

pi(s") = B'7(s'/50)
We obtain the same pricing that with risk-neutral preferences

u(c) = c. In the presence of aggregate uncertainty and isolastic
preferences u'(c) = ¢,

pi(s') = B'n(s'/s0)

(ag(s)Y (s0) "
(@Y (s0))~7

or
pi(s') = B'm(s'/s0)g(s) ™

The price of consumption goods is lower in states with high out-

put growth, and higher in states with low output growth. Agents

with high endowments in periods with low output are relatively

wealthier.

One way to test the model is to use estimate a process for con-
sumption growth, and see whether the implied equilibrium prices
satisfy the some properties observed in the data.

The advantage of the second welfare theorem, is that we can use
the social planner problem to compute the optimal allocations,
and the used them to derive the equilibrium prices. Notice that
the equilibrium prices do not depend on the social planner weight,
because they depend on the ratio of marginal utilities, and this
ratio is unaffected by the weight. We will exploit this result to
solve Lucas model of asset prices.

4.6 Lucas Model of Asset Prices

The two previous specifications do not specify the market struc-
ture that yields a constant interest rate for example. Lucas asset
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pricing model uses a simple exchange economy to determine the
pricing function. The economy considers a large number of iden-
tical agents which receive no labor income. We consider and
economy populated by a large number of identical households
solving

max Fj Z Bru(cy)
=0

{Ct 73t+1}

s.a.  Cp+ piSie1 = Si(py + dy)
Si11 = —B

where B is a large positive constant that never binds but prevents
Ponzi schemes. Notice that we have set y; = 0 in all . The only
durable good is a set of "trees" which are equal in number to
the number of people in the economy. At each period ¢, each
tree yields a fruit or dividend in the amount d; to its owner. We
assume that the dividend is nonstorable, but the tree is perfectly
durable. The solution of this problem yields

Pe = Et[ﬁ%(%ﬂ + dyy1)]

together with a transversality condition lim; o S0/ (14 )prsj =
0. This condition says that in the limit consumer will not hold
assets if the price is positive, or will hold positive amounts if the
price is zero.

The competitive equilibrium consumption allocation of this econ-
omy can be readily be computed once we notice that the economy
can be treated as autarkic. Because preference and endowment
patterns are the same across individuals, there can be no gains
from trade. In equilibrium it must be the case that ¢; = d; be-
cause the utility function u(-) is strictly increasing (that means
no satiation), and the dividend is the only source of consumption
goods. We can deal with a representative consumer directly.

In equilibrium, prices have to be such that markets clear. That
means that the total amount of borrowing in the economy is zero,
and the share holdings has to be one, s; = 1. Substituting the
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equilibrium conditions in the Euler equation, and using the law of
iterated expectations we conclude that the price of a share must
satisfy

= b Z ﬁ] tﬂ dt—i—] + By hm B (diy )iy

The transversality condition of the consumer problem rules out
solutions that include a bubble term. If the last term where
positive Fylim; o 870/ (dyy;)pi4; > 0, the marginal utility of sell-
ing shares excess the marginal utility of holding assets and con-
sume the expected flow p,u/(d;) > E; Z]oil B (dyyj)dyyj. Con-
sequently, all households would sell share to increase their con-
sumption, and as a result the price of a share will fall. We have
a similar argument if the additional term is negative. There in
equilibrium it must be the case that

()
=F J ity
Pt t ; %) u/(dt) 1+

or

pe = B, thﬂdtﬂ

=1

where my,; = 70/ (dyy;) /v (d;) represents the stochastic discount
factor. This equation is a generalization of the random walk the-
ory of stock prices, in which the share price is an expected dis-
counted stream of dividends but with a time-varing and stochastic
discount rate my; that is different from one as in the previous
case. We can decompose the price of the asset in two terms: the
discounted value of the consumption flow and the correction term
for risk. Formally,

o0

pr = Z (Ee(mer) Ei(dig ;) + cov(miy, diy;))

=1

with risk neutral preferences we have that m,y; = (°, and with
perfect insurance we have that u/(c;) = Eyu'(ci41) and cov(myj, dey ;) =
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0. So the price of an asset is the discounted sum of future divi-
dends

Pt = Z Et(dtJrj)v
j=1

In general, that will not be the case and the asset will be adjusted
by the premium factor. Given that ¢; = d;, it must be the case
that when there is a good shock Ady; — Acj — Vu'(cyj) —
Vi = v () /v (¢r). Then, cov(myyj, diy;) < 0 so we have

pr < ZEt(mtJrj)Et(dtJrj)

Jj=1

if we normalize E;(m,1;) = 1, we have that the price of a risky
asset should be lower than the expected discounted stream of its
dividends. That also means that the return of that asset is higher
because otherwise households will not buy this asset.

This version of the Lucas model has been used to generate al-
locations and price of assets, and compare them with the data.
These asset pricing models can be constructed as follows:

1. We describe the preferences, technology and endowments. Given a
particular market structure where agents are allowed to buy and sell
assets, we solve for the equilibrium consumption allocations.

2. Sometimes there exists a planning problem whose solution equals the
competitive equilibrium. Therefore, we can equate the consumption
that appears on the Euler equation, and compute the implied asset
price at time ¢ as a function of the state of the economy at ¢.

In our endowment economy, a benevolent social planner would
solve

max E f: Bru(c,)

{ee} t=0

s.to c < dy,
Ct 2 0
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After substituting the consumption allocations into the pricing
equations we derive the standard equation for a price of a share

ul(dt)pt = Et[ﬁul(dt—i—l)(pt-i-l + di11)]
or
Dt = Et[ﬁmtﬂl’tﬂ]

where my 1 = u/(¢i41) /v () and 41 = (py1 + dis1). Next, we
want to study some special cases

Example 1: Logarithmic utility function

Consider a utility function of the form u(c;) = In ¢;, where v/(¢;) =
c; b, If we replace this expression in the pricing equation we obtain

7j=1
rearranging terms
pe = di By Z ol
j=1
or 1
= d
Pt 1-3 t

This equation is an example of an asset-pricing function that
maps the state of the economy at t, d; into the price of a cap-
ital asset at t. In particular, the dividend at time t is all the
information required to predict the price. In this particular case
myy; = di/di+; and does not necessarily need to be one. The
price is a linear function of the aggregate state of the economy.
This is a property that we will exploit in detail in this chapter.

Example 2: Risk neutrality or perfect insurance

If the utility function is linear in consumption, u(¢;) = ¢;, then the
ratio of marginal utilities is constant. That is m;; = u/(ci4;) /v (¢;) =
1. Then, the price of a share at time ¢ is

bt = Z ﬁjEtdtJrj

=1

57
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in this case the price of the share depends on the stochastic prop-
erties of the dividend process.

e First-order autoregressive process: If we assume that dividends
follow a first-order autoregressive process

diy1 = a+ pdi + €441

where €441 is white noise, that is F(e;11) = 0. Then, the expected
value of the dividend is at t + 1 is

Eydia] = o+ pdy
Eifdio] =  Ela+ pdir + eeqo] = a+ pEldi] = a + p(a + pdy)
Et [dt+3] o+ pE[dt+2] = Oé(l +p+ ﬂZ) + pgdt

Eildii] = a(l+p+p*+ ...+ p" ") + pd,

or

pr=Y Blal+p+p+...+p ")+ d]
j=1
p=ad B> P+ (Bp)d
j=1  j=1 j=1
e L.i.d. shocks: If we assume that the process is independent and
identically distributed according to e ~ N(0,¢?), then
dy = o+ e

the price of the dividend flow is given by

«

pe = ZﬁjEt(a + Er41) = -3

j=1

In this case prices are set to the mean value of the dividend pro-
cess.
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4.6.1 Equivalent Allocations

Next, we show that the Lucas model, or asset structure yields the
same allocations that the Arrow-Debreu markets

Proposition: If {¢'}_| = {{ci(z), sii1(2) }20 }o is the solu-
tion of the Lucas model, then, the consumption and asset allo-
cation also is the solution of the Arrow-Debreu competitive equi-
librium.

Proof: We start with the sequential Lucas constraint for a par-
ticular realization of the dividend shock.

¢t — Y = Se(qs + di) — @St
we define the Arrow-Debreu prices as

Pt _ Q41 +di1
Pt+1 gt

or peqr = Pri1(qes1 + diy1). Now we multiply each sequential bud-
get constraint by is respective price p¢, pri1, Prio, ... Formally, we
have

peler — ye] = pe(@ + di) st — PequSesa
Per1Cir1 — Yir1] = P (@1 + dis1)Si1 — Det1Ges1 Set2

Dt+2 [Ct+2 - yt+2] = pt+2(‘]t+2 + dt+2>5t+2 — Pt4+24t+25t+3

If we add them up

Zpt lci—y] = pt(Qt+dt>5t—St+1[?tQt — pep1 (@1 + dt+1)/]—5t+2[§7t+1%+1 — Peyo(qra + dt+2)j+---
t=1 -0 =0

=0
Now we need to solve for po(qo + do)so
PoqoSo + Podoso
where po = p1(q1 + d1)/qo

pi(q + dy)

p doSo+podoso = p1(q1+di)so+podoso = p1giso+(p1di+podo)so
0
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that is

Z PidiSo
t=1

Combining all together we have

Zpt[ct - yt] = Zptdts()
t=1 t=1

Now, we just need to add-across states of nature

Zzpt yt St ZZpt dt St

t=1 st t=1 st

The model is equivalent to the Arrow-Debreu complete markets
model, where agents receive an endowment or initial share on the
tree, so. The price of the shares can be used to price the equivalent
state t — 0 contingent claims.

4.6.2 The Random Walk Theory of Consumption

The next two theories emerge from studying marginal conditions
for the consumer’s problem and imposing some restrictions upon
them. As we will see latter on, it is possible to describe simple
market equilibrium setups that deliver these restrictions.

First, we analyze the random walk theory of consumption formu-
lated by Hall (1978). According to Hall the evolution of future
consumption follows a random walk, and no variable in the in-
formation set can be used to predict it.! This theory is based
on the stochastic Euler equation derived in the previous section.
Formally,

u'(cr) = 6Et[u’(ct+1)Rt+1]

Hall assumes that in the economy there exists a risk-free rate
asses with constant return R, = R > 1. Under this assumption

'Put in prespectivr this theory
Cr=f(V2)

and discuss the PIH in constrast with standard Keynesian theory.
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we can rewrite the Euler equation as

u'(c;) = BEU (ci41)] R
Ey[u/(cr41)] = (BR) '/ (¢r)

This equation shows that the marginal utility of consumption
follows a univariate first-order Markov process and that no other
variables in the information set help to predict. We can rewrite
the previous expression to include an error term on it. Formally,

Eyu/ (cir1)] = (BR) "/ (¢r) + €11

We can further specialize the problem if we assume some partic-
ular preferences.

Example 1: Quadratic utility function
Consider a simple quadratic utility function given by

u(c;) = a+ bey + dc?,

where a, b, and d are constants. The first and second derivatives
are

u'(¢;) = b+ 2dey
u”"(c;) = 2d

where we need to assume that d < 0 and (777?7). Substituting the
expression in the Euler equation we have

Ey[b+ 2dciq] = (BR) (b + 2dey) + €114
Assuming that (BR)~! = 1, we obtain,
2dEy[ciy1] = 2dey + €441
where expected consumption is,

Eilcii1] = ¢ + 0

where &, = =55 If tomorrow marginal utility on consumption

ctr1 follows an stochastic process and no other variable on the

61
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information set can help to predict expected marginal utility, then
the evolution of future consumption follows a random walk.

Example 2: Constant relative risk aversion utility func-
tion

Next, we consider a constant relative risk aversion utility function,

the equation that needs to be tested is given by,
Eilc h] = (BR)e,”

using the same set of assumptions, (3R)™! = 1, we obtain a
different solution. In particular,

Ey [Ct+1] = ¢

This problem satisfies the certainty equivalence result. The solu-
tion to the problem with uncertainty is equivalent to the solution
the problem under certainty. Formally,

C1 = (BR)'¢,”
that implies a constant consumption path across time

Ct+1 = Ct

cuss the computation of the savings function assuming a con-
stant savings rule as a function of the individual state variables
¢t = g(Ay, ), or reduce it to a single state variable, that is

e = g(A).

4.6.3 The Random Walk Theory of Stock Prices

Here we interpret the asset as a share of an enterprise that sells
for price p; measured in terms of consumption goods at period t
per share during period ¢ and pays a non-negative random div-
idend of d; consumption goods to the owner of the share at the
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beginning of t. We assume that d; is governed by a time invariant
Markov process. Let s; denote the number of shares owned by
the consumer at the start of £. The implied budget constraint is

given by

Ct + DeSip1 = Yp + Se(pe + dy)
or

ct =Y + (St — Se41)pt + Seds,
where

e (s; — s441) < 0 the number of assets tomorrow is increasing therefore
¢; is decreasing. The consumer is lending resources.

e (s; — s¢11) > 0 the number of assets tomorrow is decreasing therefore
¢; is increasing. The consumer is borrowing resources.

The implied return is given by R4 = pt“Ttdt“.The Euler equa-
tion that solves the problem is

' (Crq1)
u'(ct)

For any two random variables x,y we have the formula F(zy) =
E(z)E(y) + cov(z,y) where cov(z,y) = E(z — E(z))(y — E(y))
is the conditional covariance. Applying this formula in the above
expression we have

pe= EB (P41 + dit1)]

pe = BE; [%} Ey [pes1 + diyq]+Beov, (ulf,ilji), (prs1 + dt+1))

To obtain the random walk theory of stock prices, it is necessary
to make some assumptions:

1. covy (u;ffc(’:)l)a (pe1 + dt+1>> =0

2. E, [“;(,c(’:)l)} = 1, or constant. For these statement to be true it is

sufficient that u(c;) is linear in ¢, so that u/(¢;) is independent of ¢;.
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The resulting expression implies

pe = BEpie1 + disa]

or rearranging terms
Eipiy1 + dea] = ﬁilpt

If the future price and dividends follow a first-order Markov pro-
cess, no other variable in the information set can be used to pre-
dict the future returns. Using the law of iterated expectations

pe = BEpii1 + disa]
Pir1 = BE1[piys + diso]
Prr2 = BEiio[piys + dits)

we obtain .
pe = By Z Fdyy
j=1
or ,
pry1 = B E, Z ﬁjdtﬂ'
j=2

It is direct to show that this expression satisfies the first-order
stochastic difference equation. We just need to substitute in the
above expression. Formally,

Ep Y Fldiy = BEBTE Y Fdiy + dig]
=1 =2

BEdi 1 + By Z Bldyy; = BE[BE, Z Bdyyj + dig]
=2 =2

Clearly this is a solution to the equation. The main problem is
that there exist a general class os solution that also satisfy this

equation
[e%e) ‘ 1 t
pe = Ey Z ﬁjdtﬂ‘ + &t (B)

i=1
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where ¢; denotes a random variable that satisfies Ey[e;11] = &
This expression relates the price of a share p; as the discounted
expected dividends and a bubble term not related with the funda-
mental variables of the economy. We leave to the reader to show
that the general equation also satisfied the first-order stochastic
difference equation. In the next section we will show that using
general equilibrium we will derive a transversality condition that
will rule that out.

4.6.4 Recursive Formulation of the Lucas Asset Pric-
ing Model

In more general versions of the Lucas’ model, the asset pricing
function is a key object that need to be solved for. In order to
make the conditional expectation u'(dy)p; = Ei[fu'(diy1)(pea1 +
di+1)] well defined, the representative agents needs to have a law
of motion over time that maps d; into p;. Given that the expecta-
tion is calculated using the perceived pricing function, the notion
of a rational expectation equilibrium is that the actual pricing
function equals the perceived pricing function used to form ex-
pectations. In this section we study the nature of the mapping
from perceived to actual pricing functions induced by the Euler
equations. The sequential optimization problem is given by

max FE Z Bru(cy)
=0

{Ct,3t+1}

s.to. Ct + PtSt+1 = St(pt + dt)
St+1 > —DB

In order to have a well posed problem, we must posit a law of
motion for the stock price. This step is necessary so that the con-
straints of the problem are fully spelled out, and the conditional
expectation is well defined. The pricing function is given by

bt = h(xt)a
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where h is a continuos, bounded function defined on the domain
of the current state z;. In this particular formulation, the aggre-
gate state is given by the dividend process. The transition law
F(2',x) for dividends, together with the pricing function define
the perceived law of motion for the price of trees. The recursive
formulation implies

v(s;dy) = maX}{u(st(pt +di) — piSer1) + BEw(Sey1;di1) }

{St+1

where p; = h(d;). If we use a prime to denote future values,
and substitute the perceived pricing function in the consumer
problem, we can rewrite the problem as

v(s[h(d)+d]) = II{lﬁ({U(S[h(d) +5/ h(d)+d'])dF(d',d)}.
The first-order condition associated with the problem is
—u’(s[h(d)+d]—h(d)s’)h(d)—l—ﬁ/[h(d/)+d/]v’(s/[h(d’)+d’])dF(d’,d) =0,
Using the envelope condition, we can compute the change of the

value function associated to a change on the share holdings s. We
know that

V' (s[h(d) + d]) = u'(c)[h(d) + d],

where ¢(d) = s[h(d) + d] — s'h(d). If we updated one period we
have v'(s[h(d') + d']) = «/(¢)[h(d') + d'], and we can rewrite the
Euler equations as

h(d)u'le(d)] = B / [h(d) + d'Nu'[e(d)]dF (d', d)

or
B/ h(d)d[e(d))dF(d',d +B/d” (c(d))dF(d,d).

We can define a function w(d) as
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that depends on the evolution of the dividend process,

M@zﬁ/wMMﬂ&®+ﬁ/dwd&Mﬂ&®

Now we can impose the equilibrium conditions on the Lucas tree
model.

1. There is no trade, and one tree per person s = s’ =1,

2. Households only consume the fruit of the tree, that is ¢(d) = s[h(d) +
d| — s'h(d) =d

If we substitute the equilibrium condition on the Euler equation
we have

w(d) = B / w(d)dF(d,d) + B / d/(d)dF (d, d)

This is a functional equation in the unknown function w(d) =
h(d)u'(d). Because u(d) is known, once w(d) has been determined,
we can compute the implied pricing function h(d) = w(d)/u'(d)
that is the goal of the model. The objective is to solve the func-
tional equation for w(d) that is approached by iterating on w’(d).
We ignore all the implies math that show that the functional
equation is a contraction and has a unique fixed point. We want
to focus on the computation aspects to obtain solutions.

1. We define a function that does not depend on w(d),
old) = 5 [ du(@)dF(d,d)
2. Then, the functional equation becomes
w(d) = 9(d) + 5 [ wid)aFd.d)
3. We start iterating on w’(d) as follows

w(d) = g(d) + B / w’ (d)dF(d',d)
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4. Starting from any initial continuous and bounded function w°(d), we
can compute w!(d), if we don’t have the same function we update it
with the new one, and we iterate until the functional equation satis-
fies the convergence criterion sup norm |w’*(d) — w?(d)| < . Once we
know the limiting function w(d) is known, the pricing function can be
easily calculated

We could use an alternative approach where we iterate on the
pricing function. We sketch the solution method for the alterna-
tive approach.

1. Guess a pricing function h°(d), and solve the pricing equation

2. Then, we obtain a new functional equation

B (dyd (d) = g(d) + B / ROl (d)dF (' d),

and more generally,
W (Al (d) = g(d) + B / B (Yol (&) dF (d, d)

This equation can be regarded as a mapping a perceived pricing
function //(d) into an actual pricing function h'™!(d). A rational
expectations equilibrium is a fixed point of this mapping from
perceived pricing functions to actual pricing functions

Example: Dividend growth

Next, we assume that dividends grow according to a stochastic
process, di11 = M11dy, where \; follows a Markov process with
a transition matrix F'(d'/d). If the utility function has constant
relative risk aversion, then the pricing equation satisfies

pr = Ey

3 (Ct+1)7( d ]
o Pt +diy1) |

t
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Dividing by the dividend in both sides d;,

3 cp1) | (pt+1 + dt+1>
Ct dt
knowing that the equilibrium condition implies A\;.; = <2, and

ct
_ diya
then d; = WL

Dt
24 _ R
d, "

L) [ﬁ M) 7 (L + @ﬂ
dy di 1

we can arrange the expression defining the price-dividend ratio,
w; = Z—z. If the growth rate can only take finite values j, then we
have

w; = 5 Zﬂ'ij)\;iv(l + U)j)

J

where the stochastic discount factor becomes m; = )\;77. If we
consider a two state Markov chain

T — 11 712 _ 0.25 0.75
K T91 T2 0.75 0.25

assume two different values for consumption growth \; = 1.04
and Ay = 1.02.

4.6.5 Contingent Claim Market with Continuous State
Space

We show how to use this model to price claims to virtually all
imaginable assets. We begin by pricing one-period state contin-
gent securities, and then, we will show how to derive j-step-ahead
state contingent securities. We consider the Lucas tree model to-
gether with state contingent commodities. Let x be the aggregate
state of the economy. We assume that the state evolves accord-
ing to a Markov process described by f (2, z). The representative
consumer solves

max E Z Bru(cy)
=0
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s.to. Ct+pt5t+1+/ Q( w1, )Y (Teg1) Ao = 5(pet-di) +y (),

where y(x;,1) denotes the net amount of the date ¢ 4+ 1 consump-
tion good, contingent on having the aggregate state x;.;. The
consumer pays a price q(z;11,7;) given that today’s state in the
economy is x;. As usual, we can express the price of a share as
a function of the current state of the economy p; = p(x;) and
dy = d(x;). The Bellman equation is given by

vptdsty@), & )= max fu(+AEv([p'+d]s ("), )}

Wealth Aggregate State

s.to. c+ps + /q(x’, 2 y(z")dz' = [p+d]s + y(z),

The first-order conditions of the consumer problem with respect
to the control variables {c, s, y(x’)} are given by

u'(c) = A
5 / (P + 15+ y(@), ) + d) (2, w)da = A

Bui(lp’ + ds" +y(2'), o)) f(a', ) = Aq(a', ')
using the envelope condition v;(s’, ) = u(c). Combining this ex-
pressions we have

w'(c(2'))
/ o /
Q(.’,U 7:(:) - BU,(C(.T)) f(.’,U 7'T)
using market equilibrium ¢ = d = z, where x is the level of
dividends and the state of the economy. So we have,
' (2')
!/ . /

Q<x 7'T> - ﬁu’(x) f(ilf ,5(7)
Now, we want to show how to price assets using the pricing kernel.
We study the following examples.

e Consider a function w(z’) that assigns values at state x’. The price of
a claim that pays off the state-contingent amount w(z’) in next period
state is given by

/ / o / ul<x/> / /
/ w q(z',x) dz’ = /w(x )5 (1) f(@' x)dx

State contingent payoffPricing Kernel
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e Consider a risk-less asset that always has the same payoff w(z’) = 1.

We use the pricing kernel to price the asset

e Consider a risky asset with the following payoft structure

, 1 if2' <7
wi@) =10 sz

the asset price is given by

/l<_q(az/,x)dx’ = /,<— Z/%;))f(x’, x)dx

4.7 Term Structure of Interest Rates

The term structure of interest rates or yield curve is commonly
defined as a collection of yields to maturity for bonds with differ-
ent rates of maturity. Next, we modify the Lucas model to study
the determination of the term structure of interest rate. We sup-
pose that there are markets in one- and two period perfectly safe
loans, which bear gross rates of returns Ry; and Ry, are know with
certainty and risk free from the view point of the agents. Both
prices are denominated in units of time ¢ consumption goods. The
representative agent solves

ma E tu(e
x 0 ) Blu(c)

{ctsst+1,L1e+1, —o

s.to. CrFLip1+Lopp1 D501 = Se(pe+de) + RygLipn+Rop L1,

Evidently, the solution of the consumer problem is autarky c¢; =
d;, but we cannot impose equilibrium before taking the consumer
first-order conditions. In as sense, this is a model where agents
do not trade in equilibrium. However, we want to use it to price
assets with different term structures. For this reason, we can
simplify the asset structure and only consider the riskless assets
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assuming no trade on shares (which we know will happen in equi-
librium)

max  Fjy Z Bru(cy)
=0

{ct,L1it+1,L2t41}

s.to. ¢t + Ligr1 + Lopyr = dy + Ry Ly + RopLoy—q,

The stochastic Lagrangian of the consumer problem is given by
J = EOZB u(ce)+Ae(di+ Ryt Ly +Rot Lot 1 — ¢t — Lag1— Lot )]

where {\;} is a sequence of random Lagrange multipliers. The
first-order conditions with respect to {c;, L1, Lo;} are given by
U/(Ct) — )\t =0
-\t + BE N1 Ry =0
At + B2E N2 Ray = 0

Combining the first-order conditions implies

i =

' (Coi2) _
E; [52 w(cr) th} =1

Given that both assets are riskless, we can rewrite the Euler equa-
tions. Formally,

th E,3 ((Zj)l)

u'(cii2)

u'(c)

To derive the term structure we have to manipulate these expres-
sions. Another way to represent R, is

Ry = E,f?

R;: t52u(ct+2) u'(cei1) tﬁul(ct—i—l) u'(Cry2)

wle) wem) 0 wl(e) ()
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Using the law of iterated expectations we obtain

u'(cry1) ,u'(Ceyo) _
w'(c)  u'(cer)

o) g g (cen)

RQt - EtEt+1/8 U (C ) (Ct+1)

-1
R1t+1

that is

C _
Ry = EA ((f;)Rliﬂ.

Finally, we can use the definition of conditional covariance to
obtain

u'(Cri1) ~1 w (1) o
R'=E E:R R
2t tﬁ ( t) 41441 + cov; B U/(Ct) y LV1t41 |

—1
th

So we obtain

-1 _ p-1 -1 u'(cer1) g
Ry = Ry EvRyyy + covy | f—; s Ripia
u'(cy)

This expression is a generalized version of the expectations the-
ory of the term structure of interest rates, adjusted for the risk
premium. The classical theory of the term structure of interest
rates is that the long term interest rates should be determined by
expected future short-term interest rates. For example, the pure
expectations theory states that

-1 _ p-1 -1
R2t - th Etth-i—l

According to our modified formula, the pure expectations theory
only holds in special cases.

1. The utility function is linear in consumption, u(c) = Ac, so marginal
utility is constant u/(cyy1)/u/(¢;) = 1. Therefore, R = 3! and couv;(-) =
0. Consequently, the yield curve is given by

R2t - thlthJrl - ﬁ27
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2. Another case is in the absence of uncertainty (cov,(-) = 0) in the divi-
dend. Therefore, we have the same result Ry, = 372

The general expression for the price of a time ¢ bond that yields
one unit of the consumption good at period ¢ + 7 is

i (Crvi)
w'(cr)

Next, we explore some special cases.

R;'=EB

Example 1: Zero Coupon Bond

Consider a zero coupon bond that only pays at maturity with a
coupon payment of one unit of consumption p; = 1/R;. We use
the fact that in equilibrium ¢ = d. The yield to maturity is given
by

113
m=[] -

Example 2: I.I.D. Case

Consider iid shocks. The yield to maturity between two different
bonds with expiration at time £ and j are given by

S

BB

: JJZB*@wmmwwwm*J

Ry [u/(d) Eyfu (disy)] ') -

1
J

= [/ () Ee[u ()] 7] [ (de) Efur (dogr)] ]

Ry [/ (dy) By [w (dyg )] Y

= =

because shocks are iid, we know that E;[u/(di )] = Ei[v/ (dir)] =
E(d)~!. Therefore, we have

k—j

Ry = R [ (@) Bl (@) ] 7

In this case the term structure is upward slopping when u'(d;)
is less than Eu'(d), that is when consumption is relatively high
today with low marginal utility, and agents would like to save for
the future. In equilibrium, the short-term interest rate (7).

Example 3: Persistent dividend shock and logarithmic
utility

=
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Consider a utility function of the form u(c) = In(c), and dividends
follow the stochastic process

diy1 = pdi4q

where p > 0 and 6, is a sequence of independently and identi-
cally distributed random variables that are positive with proba-
bility 1. Now, we can complete the model imposing equilibrium
conditions ¢; = d; for all t. Formally,

u'(dis1)
u'(dy)
(diy2)
u'(dy)

Ry = BB~

_ u
Ry = Ef*— -

The imply equations are given by

R' = E,3——
@ - iy dt+1
Ry = Eﬁ—t

dt+2

replacing the dividend process

B

ri = 5C)0™)
Ry = [E(%)(e*)r

where we are using the independence over time of ;. The level of
interest rate raises with the term of maturity if p/[BE(671)] > 1
and falls is p/[BE(6071)] < 1.

4.8 Pricing Functions in the Presence of Mul-
tiple Stocks

Next, we are interested on deriving the pricing function in the
presence of different type of trees that yield different quantities
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of fruits. There n kinds of trees, and each household is initially
endowed with one of each kind of tree. The aggregate dividend
is given d; = Z?Zldit. The representative consumer maximizes

ct,{sity1}

max Z Bru(cy)
=0

s.to. ct+ Y DitSitr1 = 2 pqSit(Pit + dit)
Sity1 > —DB

The Euler equation for the ith stock is given by

u'(c
pi = BEy [ (, 1) (pit1 + dit+1):| )
u'(cy)

in equilibrium the optimal plan implies ¢; = d;. The pricing equa-
tion becomes

' (diy1)
— BE , .
Dit B t [ u,(dt) (pzt+1 + dzt—l—l) )

Next we consider a specialized example that allows to characterize
the pricing equation
Example: Logarithmic utility
If the utility function is u(c) = In ¢, we have
dy
pit = BE; d_(pit+1 +diy1)|
t+1

Next, we use a guess and verify method to determine the pricing
function. We assume a time-varing linear pricing function of the
form

Pit = Qirdy,
we need to determine the coefficients of the pricing function, ¢;;

for every asset. We can compute the coefficient using the method
of undetermined coefficients.

d
Pudy = BE, l—t (Pitr1dir1 + dit+1>:| ;

diy1
dity1 ]
diy1

Gy = BE; [¢it+1 +
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or

Git = BE i + BE, lditﬂ]

dit1
iterating we obtain

o) iditJr j
¢z‘t - Etzj‘zlﬁ d Ja
t+j
that determines the pricing function in terms of the conditional
distribution of the stochastic process {d;,d;}. We consider two
examples.

e n = 1: We only have one asset, that is dy; = d; for all . We obtain the
standard pricing as a special case.
Z'dltJrj . 6

diyj  1=p

¢1t = Etzjoilﬁ

e n = 2 : Now, we have two assets. We consider a special case for the
individual process. We assume that both assets are negatively related.
In particular,

where ¢, is a random variable distributed between 0 and 1, and follows
a Markov process Eye,,; = p’e; where |p| < 1. That implies

1 — ple
Etd1t+j = %dtv

1+ ple
Etd2t+j = %du

Using this fact we obtain for asset 1,

b1t = Etz;.ilﬁi [Cfi];:j} = Etz;‘ilﬁi l(l ; Et)] = Zﬁlﬁl—ﬂ _2pj€t>
em [ - 1]
t 1-3 1-p8"

2
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where

L B pp
= — —+ €
O =5 =5 15
These are the coefficients of the time-varing pricing functions. An
alternative approach would been to assume two-state variables
xr = (€,d), and we would have a time-invariant pricing function.
We assume a quadratic pricing function of the form

Di = (CLZ' — bZE)d
where we have that E¢ = pe, and the pricing function is given
by
u'(d)
u/(d)
We use the method of undetermined coefficients to compute the

price function. If we substitute the guess function into the Euler
equation we obtain

d

(a; — bie)d = BE b((ai — bie)d + d;)] ,

d
a; — biE = BE [(CLZ — bz€> + j:|
and we know that 2—,} = % and Z—% = %, so we have

al—bl€:6E|:(a1—blﬁ)+1;€:|,

a; — b16 = 5(1/2 + CL1> — 5(b1 + 1/2>E(6)
a; —bie=p(1/2+ay) — B(by + 1/2)pe

so we obtain a; = 5/2(1 — 8) and by = Bp/(1 — Bp).

4.9 Modigliani-Miller Theorem

The Modigliani-Miller Theorem shows that under certain circum-
stances the total value of a firm is independent of the firm’s fi-
nancial structure. We study the M-M theorem in a Lucas tree
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model economy. Latter on, we will study it in an economy with
production.

Consider an agent whose only asset is a tree that yields an stochas-
tic crop y at each period. Suppose the agent want to sell the firm
to the public, and faces two different alternatives.

1. Issue a number of bonds B > 0 that pay a riskless return r or coupon
at every period. To avoid bankruptcy issues, the agent has to ensure
that the return can be repaid in all states of nature. Formally, rB < y.

2. An alternative implies issuing shares entitled to the residual crop, where
the dividend is the residual. Formally,

—rB
dt: (yt ST )7

The equilibrium prices can be easily be computed using the pric-
ing kernel used to price contingent claims. Notice that this are
not one period claims. They yield payments and infinite number
of periods, therefore they need to be computed correctly,

ptBZZE’L TQ<xt+iaxt)dxt+i

[ee) Yi+i — rB
pf = Zi:l (H—S)Q(xtﬂ‘,xt)dxtﬂ

The total value of the firm is given by

(yt-l-i - TB)
S

piB+pS = Yooy [ ra(@es, w)dres + Y00, q(Tppi, ) da s
=21 [ Yt Teriy o) Ao,

using the formula for the pricing kernel we obtain

o] 'u/(yt-‘ri)
=F . 133 i
pt tZz_l /(yt) yt

The value of the firm is independent of the financing scheme,
because the equilibrium prices of bonds and shares will adjust to
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reflect the inherent riskiness of the financial structure. Clearly,
the value of the firm is independent of the number of bonds B or
the coupon rate r.

Example 1:

Assume that preferences are u(c) = In¢; and y;; is i.i.d. shock
over time so that FE(y:y;) = E(y), and 1/y.y; is also iid. With
this preferences we know that the price of a tree is given by

Pt = g Y
t ]_—ﬁt’

and the bond price is

B [ =

or using the price of a tree y, = (1 — 3)p;/ 3, we can write is as
p = rE(y ),
where as the price of a share is

s _ s | (Yiri —1B) jul<yt+i) _ oo
v =EYE, T ] =Ey.0 [(
B

T 1-8

g yt]

Yiti

Yt
——[ —rBE(y )% 5

or

Di
pi =1 —rBE(y )% S

The value of the firm satisfies the Modigliani-Miller theorem

&S:pt

pPB+pPS =rBE(y Y)p, + [l — rBE(y™Y)] 5

the value of the firm is independent of the financial structure.
The price of an issued share depends negatively on the number
of bonds B, the coupon r, and the number of issued shares. The
price of a bond depends on the coupon yield. Now we want to
relate the expected return of the assets to the level of riskiness.



4.9. MODIGLIANI-MILLER THEOREM

First, it is direct to show that the capital gains on either bonds
or stocks is related to the expected growth of the tree E;(g;11) =
Ei(ys41/y:). Clearly all have the same expected growth,

%yt-f—l
En
-%EQJ_l)ytJrl

i %E(yfl)yt ]
(2501 - rBE(y*)]M]

Et(pt+1/pt) =k

Et(PiMPtB) = E;

Et(PS 1/PS) = E; = >
S | 51— rBE(y )%

S

Second, any difference in expected rates of return must arise from
the expected yields due to next period dividends and coupons.
Bonds are riskless, whereas shares are riskly assets. Formally,
the expected return of a bond is

r r - g
B, {_B] = —5 = {1 = B(yer) Be(yity) + Belyer) B ()} —5

by Dy by
.
=[1-E@WEyY ") +E@yE([y ) —
1_55E(y*1) a Bﬁ)p
1-EWEWy™Y) FE 1
LB _ (v) _1y ) 4 +(Ye1) _ < E, [@}
i peE(y™) e PeE (Y1) e

because of the Jensen inequality that states E(y~')
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