Chapter 6

Competitive Equilibrium with
Incomplete Markets

6.1 Environment

We consider an economy with discrete time periods t = 0,1, ....
There are two types of consumers ¢ = 1,2 and a continuum of
each type. We denote by ¢! the single consumption good con-
sumed each period, and (c}, c},...) € I1" is the infinite vector of
consumption. Individual preferences are given by

Ulch,éi, ) = (1= 5) > Blulc))

where the utility function satisfies v’ > 0, v” < 0, Inada condi-
tions and the individual discount rate is S € (0, 1).

We assume that households have two forms of income/or capital:
human (labor) and physical (trees or land). Let w; be services
of human capital, where w; € (w9, w®) good and bad endowment,
w9 > wb. We assume that productivity fluctuates according to the
transition matrix

| Tgg | |0 1
Hw Jw — |:7Tgb 7Tbb:| - |:1 O:| )

Consequently, productivity alternates, wy = w9 = w;; = W’
With respect to the other form of income, let d; be the return on
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96CHAPTER 6. COMPETITIVE EQUILIBRIUM WITH INCOMPLETE MARKETS
physical capital, where s denotes the share on the capital stock
at t. The aggregate resource constraint is

=+ +d=w

6.2 Equilibrium Prices in a Liquidity Con-
strained Economy
Next, we define the notion of market equilibrium in a liquidity
constraint economy. Then, we focus in the solution of a symmet-

ric steady state allocation. We distinct the solution where the
liquidity constraint binds, and one where it does not bind.

Definition: A market equilibrium in this economy is an alloca-
tion {{c}, 0,1} }?_1 and a sequence of prices {qi, 1}y, such
that

o Consumers solve

max(1—3) > B'u(c)

s.t. ¢ +aqsi <w+ (¢ +d)s; Yt

st >0, s given
e Goods and financial markets clear
G+ =w+w+d=w vt
sf+si<1 Wt

We focus the attention on the steady state of both economies.
We want to compute the decision rules for both shocks.

&t if wi = w9

A if wi = wb

Because ¢ + ¢ = w we can characterize the symmetric steady
state by a single number ¢9, that is ¢® = w — ¢9. The analysis uses
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the first-order conditions to compare the consumption paths is
both economies. The Euler equation of this problem is given by
u/'(ch) S ep + d

Bu'(ciy) — @

(=0if s' > 0)

The consumer with wY can by as much capital for the consumer
with «w?, that is constraint by s* > 0.

6.2.1 Liquidity Constraint does not bind

If the constraint does not bind, one possible equilibrium is a sym-
metric equilibrium. In particular a symmetric allocation need
to satisfy the aggregate resource constraint ¢* = ¢ = * =
(w9 +w®+d)/2 = w/2. The Euler equation for a symmetric equi-

librium is also satisfied. Formally,

u'(c9) _gtd u'(cb)
pu(c) ¢ Bu(e)

or
1_g+d
g q
Then, the equilibrium prices satisfies
B
* —d
p 1-3

The allocation in a symmetric equilibrium satisfy

Consumer first-order conditions,
Aggregate resource constraint,
Consumer budget constraint,

Financial markets should clear
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From the aggregate resource constraint we have
b

(9 — w9+ [ -’ =d
substituting the budget constraint for each household
(p+d)s” — ps*] + [(p+ d)s? — ps’] = d
rearranging terms we have
(p+d)(s* +s9) — p(s* + s9) = d.

When the financial markets clear s’ + s9 = 1, then, the aggregate
resource constraint as well as the consumer budget constraint are
satisfied. Now, we can compute the steady state trade associated
to the optimal consumption level. Formally,

% —w! = (p+d)s" — ps?,
W L= (p+d)s? — ps”,

2
We can solve for the optimal share distribution by solving a linear
system of equations. That is

p+d —p ][] [¢—w?
—p p+d| |s7]  |wP—%]"
Example: Consider an economy where w9 = 8 and w’ = 1,
where d = 1 and 5 = 0.9. If the utility function is u(c) = Inc.
The symmetric equilibrium allocation implies
w=w!+uw’+d=10
Then, we have ¢* = 10/2 = 5. The equilibrium prices for shares
in the tree are given by
0.9

1-0.9
Now, we can compute the portfolio holdings of each individual

1 [10 —9] 7' [-3
s [=9 10 4 |-
The asset shares for the good and bad state are s® = 0.648 and

s9 = 0.316. As we can clearly, see in the example the liquidity
constraint does not bind.

p: 1:9’
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6.2.2 Liquidity Constraint does bind

The symmetric of the shocks implies for consumer with the good

shock
u'(c¢?)  q+d

pu'(cb) g
and for consumer with the bad shock.

u'(cb) qg+d b

s9=1

> 0
pu'(ct) ~ g
Then, MRS are not equal across consumers
qg+d () _ u'(w—c9)

¢ Pulw—c) " pu(e)

The MRS are not equal across consumers. The equilibrium prices
are determined by the individual that it is not borrowing con-
straint. The first-order conditions for the constraint are not im-
portant to compute the equilibrium. In this economy, the con-
straint agent is the individual with the bad income shock that
would like to borrow to insure consumption fluctuations. Then,
from the Euler equations we obtain

59 =1and 5’ =0.
From the consumer budget constraint with the good shock
d+g=wi=qg=w —
From the consumer budget constraint with the bad shock

F=+(g+d) =z qg+d=c" -

When the borrowing constraint binds, we have to different ways
to compute the equilibrium allocation and prices in the economy.
We have to solve this functional equation

qu'(¢?) = Bu'(w — ¢?)(q + d)
together with the budget constraints.
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e Compute equilibrium allocation: We proceed by replacing the bud-
get constraint into the FOC of the unconstrained consumer
()  q+d PP
B ¢ wi—a

using feasibility ¢® + ¢ = w,

u'(c9) _ (w—c9 —wh)
Bu! (w — 9) (w9 — 9)

Rearranging terms we obtain,
FE(e9) =/ (¢?)(w? — ) — B (w — ) (w — @ —wP)

The equilibrium solve the functional equation on ¢f. Next, we
derive some properties of the equilibrium for this economy.

Proposition 1: The behavior of the economy can be charac-
terized by the sign of the FL(cf) function: 1) If the borrowing
constraint binds, F'X(¢9) = 0, then ¢ > . 2) If the borrowing
constraint does not bind, F*(c¢?) > 0, then ¢/ = cb.

e Compute equilibrium prices: We proceed in a similar fashion, but
we substitute allocations into the Euler equation to derive the equi-
librium prices. From the consumer budget constraint with the good
shock

f =w’—q,

and from the consumer budget constraint with the bad shock
=W+ (q+d)

Then,
u(w!—q)  qtd

pu'(w® + (g + d)) q

Rearranging terms we obtain,

u(w! —q) ﬁ(q +d)

PO
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The equilibrium solve the functional equation on ¢. Next, we
derive some properties of the equilibrium for this economy.

Proposition 2: The behavior of the economy can be charac-
terized by the sign of the FZ(q) function: 1) If the borrowing
constraint binds, FX(q) = 0, then ¢/ > . 2) If the borrowing
constraint does not bind, F'¥(¢q) > 0, then ¢/ = b

6.2.3 Short Sales Constrained

In the previous model we assumed, si > 0. Now, we want to relax
this assumption by setting s¢ > —A. In the borrowing constraint
case

sb=—A
s9=1+A

Substituting this decisions in the households budget constraint

we find,
W - - Ad
1= 1124
?—wl —d(1+ A)
d _
-t (11 24)
substituting into the Euler equation,
u'(c9) _q+d__w—cg—wb+Ad
Bu'(w—c9) q 9 —wI+dA

rearranging terms,
FE(e9) =/ (¢?)(cf — w? + dA) + pu' (w — ) (w — ¢ —w’ + Ad)

If d is sufficiently large, F*(£) > 0 and the symmetric first-best
is the unique steady state. When, A = 0, we obtain the same
solution as in the previous section.

Proposition 3: There exists a unique level of debt d so that
FL(c9) = 0, where ¢9 also solves FP(c?) = 0.
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We can write the equilibrium prices as follow, let Z = u/(w —
c?)/u/(¢?) > 1. Then, the implied equilibrium price in a symmet-
ric equilibrium is
p=——d
1-p

where E = Z . The implied equilibrium prices depend on on Z.
If the borrowing constraint binds Z > 1, and makes the effective
discount rate larger S > . When the borrowing constraint does
not bind Z = 1, so we have the complete markets solution. In the
next section, we explore an economy where shock are not transi-
tory.

6.3 Stochastic Liquidity Constrained Econ-
omy

We assume that shock can persist for several periods. In partic-
ular assume a symmetric shock

M, /0 = {ng 7Tbg:| _ {1 - T ] ’

Tgb  Tbb ™ 1—m

We begin by defining a competitive equilibrium in this class of
economies.

Definition: A competitive equilibrium in the stochastic economy
is an contingent consumption allocation {{ci}2,}2, a portfolio
decision {{s|.,}720}71, and state contingent prices {p:}2,, st.

o Consumers solve

max(1 — 3)Ey Z Bu(ch)
t=0

s.t. ¢+ @i, <wi+ (¢ + d)s; Vi

s; >0, 5y glven
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o Markets clear
G+ =witwt+d=w WVt

sf+st<1 Wt

Again we focus all the attention the symmetric steady state of
both economies. We want to compute the decision rules for both

shocks. ‘
cd if wy = w9

& if wi = wb

When the borrowing constraint does not bind we have a sym-
metric steady state. in the absence of aggregate uncertainty, the
equilibrium price is determined by the Euler equation of both
consumers. Formally,

u'(e9) _ptd u'(cb)

(1 —7m)u/(c9) + mu/(cb) — p (1 —m)u () + 7' (c9)’

where ¢/ = ¢ = w/2, so u/(c¢?) = u/(c®). Therefore,

p:id.

1-p
However, when the borrowing constraint binds, we have

u'(c?) (p+d)

C-mwe) rma@ 0 0T
u'(c?) (p+d) -
(1 — m)u'(cb) + mu/(c9) y =0

Then, substituting the consumer budget constraint for the agent
with the good shock

d+g=wI=qg=w! —,

and the agent with the bad shock

b

F=+g+d)=>qg+d=c" -
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we obtain,
/() B — )
(1 —m)u/(c9) + mu/(cP) wI — 9
Rearranging terms we have
F(c?, ) = /() (w? — ) — Blc® — ) (1 = m)u'(c9) + mu/ ()

if we substitute the aggregate resource constraint ¢ = w — ¢ we
have

F(c%) = /(%) (w? — ) — B(w—c? =) (1 —7)u' (F) +7u' (w—c?))

we obtain the solution without uncertainty as a special case where
m = 0. to compute the equilibrium, we only need to solve this
system with one equation and one unknown. This model implies
an stochastic discount factor different than one. Formally, the
pricing agent has

g S =mu/ () +mu () . - u'(cb)
m” = 6 ’U/(Cg) - (]' )6 + B'LL/(CQ)’
by, =mu() + 7' () . - u' (%)
m- = 6 ’U/(Cb) - (]' )6 + Bu/(cb>>

then we have that m? > m® because v/(c®) > u/(¢?). In incom-
plete markets, the pricing agent is the individual with the highest
stochastic discount factor. We can rewrite the pricing equations

as
m9 mb

p = max{ -} d

Notice that equilibrium prices depend on the consumption allo-
cations for both agents, and this depend on the source of uncer-
tainty.

1—m9y’ 1—m

The equilibrium allocations for this economy when the borrow-
ing constraint binds are given by {¢?,¢"}, the optimal portfolio
allocations 87 = 1, s = 0, and the equilibrium price. When the
borrowing constraint does not bind, & = & = w/2, and portfolio
satisfies an interior solution.

just like in the previous section, we could relax the borrowing con-
straint, and assume s > —A. Next models, considers endogenous
borrowing constraints.
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6.4 Equilibrium Prices in a Debt Constrained
Economy

Next, we explore an economy where the borrowing constraints are
endogenously determined. At any point in time, households have
an incentive to renege on their claims and walk away from the
credit market. The punishment from defaulting in credit market
is that a household is excluded from future intertemporal trade.
Formally, the individual rationality constraint implies

(1=5)> B u(d) > (1=8)) ptulwl) V1,

The value of continuing participating in the market is no less that
the value of dropping out. The credit agency will never lend so
much to the consumers so they will choose bankruptcy. Next, we
define the notion of market equilibrium. We have assumed that
the individual rationality constraint is directly imposed into the
consumer budget constraint.

Definition: A competitive equilibrium in this economy is an al-
location {c},c2}22,, and prices {p;}2,, such that.

e Consumers i solves

max(1 — ) Y _ f'u(c))

s.t. iptcf; < ipt(wi + shd) Vit
=0 =0
(L=5)Y A u(d) = (1=5)) B uluw))

o Markets clear
a+ct=w4+uwb+d=w WVt

st+s2<1 Vit
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Let A and 7, be the Lagrange multipliers of the Arrow-Debreu re-
source constraint, and the participation constraint respectively.
Then, the first-order conditions of the consumer problem are
given by

(1= B)B"/(c}) — Ape + (1 — B)u/(c}) <0,

We can consider two solutions of the consumer problem.

6.4.1 Debt constraint does not bind (y; = 0)

In this case, the friction is not operative and consumers can obtain
an equilibrium allocation with perfect smoothing, or risk sharing
in the case of uncertainty. We have the standard Euler equation

“,(CD _ P
ﬁul(@ﬂ) Pi+1’

b

In the symmetric equilibrium (¢’ = ¢f = ¢*), under

w(er) () ()

Bu'(cb) — Pu(c9)  Bu(c*)  pa’

Hence, the equilibrium prices are given by

Pi+1 = By,

or
pe = B'po,
where pg = 1. In this case, no one has an incentive to default

in their payments, even though there is no commitment on the
financial market.

6.4.2 Debt constraint does bind (v; > 0)

In some cases it might be impossible to reach a symmetric steady
state without violating the individual rationality constraint. The
consumer with a good productivity shock, w9, after having re-
ceived several bad income shock has to repay to the individual
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with a bad productivity shock. In this case, the individual ratio-
nality constraint is violated, because the consumer that receives
the good shock prefers to declare default rather than honor its
debt. Hence, the individual rationality constraint must bind ex-

actly.
In a symmetric equilibrium we can rewrite the participation con-
straint
Zﬁj u(cry) > (1= 8) Y F  ulwryy)
§=0
as follows
Zﬁ2ju(cg) + Zﬁ2j+1 Z 2gu wg + Zﬁ2j+1 )
§=0 §=0 §=0 §=0
Pu(c Su(w
(1 - gL | pute )]2(1—6)[ ) | Bulwr),
1= 1-p 1 5 1-p

so we obtain the participation constraint for the agent that re-
ceives the good shock in the existing period,

u(e?) + Bu(c”) > u(w?) + Bu(w’),

and the participation constraint for the agent that receives the
bad income shock

u(e) + ful(e?) > u(w’) + fu(w?),

When the participation constraint binds, the consumption dis-
tribution is determined by the participation and the aggregate
resource constraint. Formally,

FP(e9) = u(c?) — u(w?) + B [u(w — ¢¢) — u(w”)]

The equilibrium consumption depends on the income spread,
Aw = w9 — w®, the individual discount rate, 3, and the return
of the tree d. The equilibrium with imperfect risk sharing implies
cd > .
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We compute the equilibrium asset prices using the Euler equation
for the consumer without a binding participation constraint. In
this case the consumer with the low income shock

p+d () 1
p  Bu(e) BA

where 1/A = u/(c?)/u'(¢9), given that ¢/ > ¥ it must be the case
that u'(c?) < u'(c), hence, A < 1. The implied equilibrium prices

depend on A
__BA
p - 1 - BA 9
with complete markets A = 1, so we would obtain the same

prices. Next, we want to show that the implied equilibrium re-
turn is lower that the inverse of the discount rate. If we consider
the Euler equation of the individual with a binding participation
constraint we have

u'(c9)  p+d
> =1
pu(c) =~ p o
or .
I1+r<—
8

Proposition 4: A symmetric steady state on the debt constraint
economy is characterized by

e If the participation constraint binds, FP(c?) = 0, ¢¢ > ¢*

e If the participation constraint does not bind, FP(c?) > 0, ¢/ = ¢ =

w/2.

In the debt constrained economy changes in the discount rate in-
crease the penalty from being excluded from intertemporal trade.
However, full efficient allocations can be achieved if individuals
are sufficiently patient. Changes in the return of the tree, increase
the penalty of loosing your collateral if you default. Finally, the
implied equilibrium interest rate is lower than with complete mar-
kets or perfect risk sharing.
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6.4.3 Pareto Efficiency

We are interested in the welfare properties of the allocations in
the debt constrained economy. In a symmetric steady state, the
set of Pareto efficient allocations is characterized by solving

max Au(c?) + (1 — Nu(c?)

s.t. A+ =w=w+uw"+d,
u(c?) + Bu(c’) > u(w?) + pu(w’),
u(c”) + Bu(c?) > u(w’) + Bu(w?),

Notice that we have included the participation constraints as part
of the feasible set of the social planner problem. Given that agents
trade is voluntarily, they should obtain gains from trade. If we
substitute the aggregate resource constraint and rewrite the prob-
lem as

max Au(c?) + (1 — Nu(w — ¢9)

s.t. u(c?) + pu(w — @) > u(w?) + Bu(w?),
u(w = ¢) + Bu(e?) = u(w’) + Pu(w?),

Let v} and +? be the Lagrange multiplier of the participation
constraint of both agents. The first-order conditions of the social
planner problem are given by

A () = (1=A)u (w—c) g [/ (¢7) = Bu (w—c?) | =7 [u (w—c?) = Bu ()] = O
We can rearrange terms

A+ + B () = L= A+ + 7 B (w — ),

Notice that in this problem the planning weights are endoge-
nous to the problem. When the participation constraint binds
for one agent. The social planner needs to assign him more con-
sumption today to keep him in the trading arrangement. When
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v = ~2 = 0, the optimal allocation implies perfect intertem-
poral smoothing, or perfect risk sharing with symmetric weights
(A =1/2). Formally,

W(d) =1 (w—c9)=>cd=c" ==,

| &

However, when the participation constraint binds for the agent
that had the good shock today ' > 0, then the constrained
efficient allocation implies imperfect smoothing, or risk sharing.
Formally,

A+ () = (1= A+ B)u/(w — )

that is
u(e?) A+
w(w—c9) 1—A+n1

when we consider symmetric weights

<1

u' () <u'(w—¢7) = >,

Finally, we explore the welfare properties of Pareto efficient allo-
cations. In particular, we prove the fist-welfare theorem.

Proposition: An equilibrium allocation in the debt constraint
economy {c},c2}:2, is Pareto efficient.

Proof: Suppose the contrary, then there exists a Pareto su-
perior allocation {c},¢?}2°,, that satisfies the participation con-
straints. At the equilibrium prices {p;}$2,, this allocation has to
cost strictly more than the endowment for the individual that is
better of (suppose agent 1), otherwise this agent is not maximiz-
ing his utility. That is,

Zp{cfgl > Zpt(w,-;l + 0y d)
=0 =0

Using the same argument for the other consumer (agent 2), this
allocation needs to be at least as expensive as the endowment.
Formally,

ZptE? > Zpt(w? +05d)
t=0 t=0
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If we add up both constraints we find,

-~

domle +E1 > plw) +wi + (05 + 63)d)
= t=0

using market clearing condition in the asset market 65 + 63 = 1,
and substituting each period resource constraint w = w; +w? +d.

Zpt[gi —l-gf] > Zptw
t=0 t=0

This alternative allocation {¢},¢?}9°, costs more than the endow-
ment. Then, the allocation cannot be feasible, which contradicts
the assumption of Pareto superior allocation.

Now we turn the attention to economies with uncertainty, as in
the previous sections. In this environment, the value associated
to walk away is given by

= Ei 4 Zﬁtu(wt)
t=0

The financial contracts that satisfy the endogenous debt con-
straint are given by

u(cr) + BE; Z B u(cry) > u(wy) + BotVT
j=1
using the previous notation, or

] 126] Ct—f—] Z ] 125] wt—f—] Vit

6.5 Stochastic Debt Constrained Economy

We assume that shock can persist for several periods. In partic-
ular assume a symmetric shock

M., — |Teg Teg| _ | 7 1—m
w'fw Tgb T l—7 =« |’
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We begin by defining a competitive equilibrium in this class of
economies.

Definition: A competitive equilibrium in the stochastic economy
is an contingent consumption allocation {{ci}°,}?_, and state
contingent prices {p:}2,, st.

o Consumers solve

max(1 — 3)Ey Z Bru(c)

t=0

s.t. Ey Zptcf; < E Zpt(wf; + 6id) Vit

t=0 t=0

(1-PB)E; Zﬁjflu(ctﬂ) > (1= P)E; Zﬁjflu(wtﬂ) vt >0
j=0 Jj=0

o Markets clear
G+ =wtwtd=w Wt

As in the previous case, we want to focus the attention on the
steady state of both economies. We want to compute the decision
rules for both shocks. Now its agent is going to face the good
shock with a certain probability. For simplicity we drop the time
index and all the notation is contingent the shock. In a symmetric
steady state

d if wi(s) = w9

c'(s) =

 if wi(s) =’
The stochastic steady state is like the deterministic case. We
lower ¢ from the individual with the good productivity shock
until,either the symmetric first-best ¢ = w/2 is achieved or the
participation constraint binds. For the stochastic case, we can
also compute the expected utility associated to the symmetric
steady state, where 7 denotes the probability of continue in the
same state, and 1 — 7 denotes the probability of reversal.

E S B u(cess) = ule®) + Blru(e?) + (1 — m)u()] + .

Bm?u(e?) + m(1 = mu(e?) + m(1 = wu(e?) + (1 = m)u(c)] + ..
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rearranging terms
u(e?) + Blru(e?) + (1 = m)u(c’)] + F[ru(e?) + (1 = mu(c)] + ...

that is

u(cg)+z B [ru(e?) + (1 = m)u(e’)] = u(c)+ 1-83

We have a similar expression with respect to income shocks.
Combing all terms we have

(1-B)u(c?)+8 [mu(c?) + (1 — m)u()] > (1-B)u(w?)+8 [ru(w?) + (1 — m)u(w’)]
and as before define F'(¢9) as
F(e) = (1= B(1 = m))[u(e?) — u(w)] + Brlulw — ) — u(w”)]

Proposition: A symmetric stochastic steady state ¢ on the debt
constraint economy s characterized by

e If the participation constraint binds, FP(c9) =0, ¢9 > ¢

e If the participation constraint does not bind, FP(c9) > 0, ¢9 = & =
w/2.

When 7 = 1 the function F'? is concave and satisfies F'P(w9) > 0,
so the symmetric steady state existed and is unique. For 7 &
(0,1) this is still true and we reach the same conclusions.

Now we want to explore the effect on the equilibrium allocations
depends on the parameter 1 — 7w that measures the persistence of
the shock. From the implicit function theorem we can compute
99 /A(1 — 7). A useful way is to rewrite the function F'P as a
function of 7.

FP(e%) = (1-8)[u(c) —u(w?)]+Brlu(w—c) —u(w’) +u(c’) —u(w’)]

when the participation constraint binds, F'”(c9) = 0. The first
term is always negative (u(c?) —u(w?9) < 0), and the second term
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is always positive, u(w — ¢?) — u(w®) > 0 and u(c?) — u(w®) > 0.
Since 0¢9 /0 is proportional to the second term,

9c9
8—; = Blu(w — ) — u(w’) +u(c?) —u(w’)] >0
to show that d¢9/0(1 — 7) > 0, we have to redefine the function

FP.

F(e?) = (1= B(1—m))[u(c?) —u(w)] - frlu(w’) —u(w—c)] = ...

F(e?) = (1= B(1 = m))u(c?) — u(w)] — Brlu(w’) — u(w — )] = Blu(w’) — u(w — )]
+ Bluw’) — uw — )]

rearranging terms

F(c?) = (1=B(1—m))[u(c”) —u(w)] = B(1-m) [u(w’) —u(w—c")]+Blu(w’) —u(w—c’)]

F(e?) = [u(e!)—u(w)]+Blu(w’) —u(w—c)]=B(1-7) [u(c?) — u(w’) + u(w") — ulw - ¢)]

F(e%) = [u(c?) —u(w)]+Bu(w?) —u(w—c)+B(1—m) [u(w?) — u(c?) +u(w — ) — u(wh)]
where
acd . , , i ;
8(1 — W) =f y(w ); U(C )j+y(w — Cl— u(w ), >

>0 >0

This result implies that a more persistent shock results in greater
consumption by the individual with the high productivity shock,
or equivalently less trade between two consumers. So in this econ-
omy, when consumption is stochastic the amount of consumption
smoothing is reduced.

Although this decentralization works without problems, it con-
flicts with the spirit that at every time and contingency, house-
holds should be able to walk away from the contract. In this
environment, all decisions are made at ¢ = 0, so households can-
not choose to renege on the time 0 contingent contracts because
they confront no choices from period 0 onwards. This critique
has been addressed by Alvarez and Jermann (2000), that solve
the decentralization in terms of sequential trading.
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6.6 Financial Intermediation without Com-
mitment

e Discrete time periods t = 0,1, ...

e Large number of ex-ante identical households
e Single consumption good ¢;.

e Infinite vector of consumption (cg, ¢1,...) € [LF.

e Preferences
o0

U(cy,c1,...) =FE Z Bru(cy)
=0
e u' >0, u” <0, Inada conditions and 5 € (0, 1).

e Each household receives an stochastic endowment {y; }72, where y, 4.i.d.

e Denote 7(s) = Prob(y; = y,), with finite support s € {1,2,...,.S} and
strl > gs

e History of endowments is given by h* = (v, yi—1, .-, Yo)

e Moneylender or financial intermediary has access to an storage tech-
nology and can borrow or lend at a risk free rate R = 87! > 1

e Consumers can only deal with the financial intermediary, they cannot
trade among themselves.

e The moneylender designs a contract,
Ct = ft(ht> t Z 0
that specifies a sequence of functions that assign history dependent

consumption. Therefore, consumers give the endowment to the mon-
eylender and then they receive some consumption in exchange. The
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purpose of the contract is to smooth consumption over time. The rev-
enues and the utility associated to a particular contract are given by

P:EZﬁt[yt—ct :EZ% yt—Ct

v—EZﬁt u(cr) Zﬁ ul fu(h))

where P denotes the associated profits and v denotes the utility asso-
ciated to the moneylender contract.

oo
=0

6.6.1 Risk Sharing with Full Commitment

In this section we study risk sharing contracts with two-sided
commitment, that means both agents are obliged to satisfy the
contract after it has been signed. Alternatively, we can think of
an infinite penalty for breaking the relationship at some point in
the event tree. The optimal risk sharing contract solves

max P =F ty, — ¢
PN z:; B [yt t]

s.t. E Z Bru(cy) = v
=0

CtZO

or developing the expectation operator

max P
{ee(st)}
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The constraint set is convex and the objective function is con-
cave. Hence, the optimization problems is well-defined, so we can
characterize the optimal contract using the first-order conditions.

—7(s)B" + A (s) B [cr(s")] = 0
—r(3)B + Am(3)Fu (3] = 0

Rearranging terms

| W)

- we(3Y)]

this expression equates the marginal rate of transformation of the
moneylender to the marginal rate of substitution of the consumer.
In an interior solution the promise-keeping constraint will be
binding. This arrangement implies that the marginal utility of the
consumer is constant across states, u'[ci(s')] = u'[¢,(8")], which
implies that consumption should be constant too, ¢;(s")] = ¢;(5).
Therefore, the moneylender perfectly insures the consumer across
time and states of the nature.

6.6.2 Risk Sharing with One-sided Commitment

Now we assume that the financial intermediary is committed to
honor the promises but the consumers can walk away from the
contract at any time, this is called one-sided commitment con-
tracts. Therefore, the contract the planner (moneylender) offers
must be “self-enforcing” in the face of lack of commitment.

T = E Z Bu(ye)
t=0

denote the expected utility associated to receive the endowment.
Then, at any point in time consumers can receive

u(y:) + 5UAUT

If the financial intermediary wants to induce the households to
trade it has to offer him a better contract. Formally,

u(cr) + BED B ulcryy) = ulys) + V"

=1
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or using the definition of a contract, ¢; = f;(h')
ulfi(A)] + BE Y B ul fuyy ()] > ) + VT
j=1

This is the participation constraint and make a contract sustain-
able, in the sense that the individual does not have an incentive
to walk away from the contract. The problem with this constraint
is that depends on the history A’ and that grows rapidly overtime
t. Now the optimal contract has to solve

max P = EY By —cl

t=0

u(e) + BE Y 3 ulcryy) > uly) + pott"

Jj=1

CtZO

6.6.3 Promised Utility Formulation

To make this problem simple we will use a recursive formulation
of history dependent contract that implies enlarge the state space
by redefining a new variable v;, that represents the promised dis-
counted future value or utility. Define the optimal contract (i.e.
the policy functions) associate to this problem as

G = g(yuvt)

Vt+1 = l(yt, Ut)

where the optimal contract depend on the current endowment
and the history of shock summarized by v;. Iterating on v; we
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can back up the history of shocks,

U1 = l(y(])'UO)
Vo = l(ybvl) l(yla?JOa'UO)
U3 = l(y2 ) l(y27y17y0,7)0>

Uy = l(yt—lavt—l) = l(yt—layt—2> - Y1, y()?'UO)

The planner gives to the household a particular utility level v by
delivering state contingent consumption assigned by the contract
and promises some utility tomorrow, defined by v = w,. The
state variable in the optimal contract problem is the promised
level of utility. The money lender problem has to be a strictly
decreasing function of v. The higher this value the smaller the
profits that the planner will receive by trading. Using recursive
notation we can redefine the optimal contract problem,

P(v) = max Elly, — ] + SP(w,)]

s.t. Elu(ey) 4+ Pwg) = v
u(c) + Pw, > u(y,) + BuiUT Vs
Ct Z 0

or

RO ws}zﬁs S

S

s.t. Z mslu(cs) + Pws) = v

s=1

u(cs) + Bw, > u(y,) + fuAT Vs

Cs € [Cmina Cmax]

w, € AT 7]
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Again, the constraint set is convex and the return function is
concave, therefore the value function P(v) is concave. The La-
grangian of the recursive contract can be written as follows.

S S
L= mllys — s + BP(wy)] + p | Y mfules) + Bug —v| +
S
D A [ules) + B, — [u(g,) + Bo*"]

the first order conditions with respect to {cs, w,} are given by
—7ts + s (cs) + At (cs) = 0

T3P (ws) + pmsf + Asfws =0

and using the envelope theorem we can compute the change in
the profit function associated to a change in the period promised
value v,

TGP (v) + pmyf =0

Rearranging terms

(ums + As)u' (cs) = T
(ums + As) = —m P (wy)
P'(v) = —p

Given that the profit function is decreasing in v. Then P'(v) < 0,
which means that the Lagrange multiplier of the promise-keeping
constraint has to be positive p1 > 0. Given that (ums + As) has
to be positive and my > 0, then it must be the case that A\, > 0.
Combing both expressions we have

1
P'(w,)

U (cs) =

This expression equates the marginal rates of substitution be-
tween contingent consumption today and promised utility to the
marginal rate of transformation for the planner of tomorrows util-
ity. This equation has a positive slope in ¢, and w;. It is important
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to not, that P’ < 0 is decreasing in w,, but the inverse must be
increasing, and the negative in front of it changes the sign of the
expression. The dynamic equation is given by a trade of between
promised value today and tomorrow,

P'(ws) = P'(v) = —

What will happens to the promised value utility depends on the
Lagrange multiplier of the participation constraint.

e Participation constraint binds (\; > 0)

121

If the participation constraint binds, this is because the consumer has
received a good income shock and has to return an important part of
the endowment to the financial intermediary in exchange. It is impor-
tant to remark that previous to this event, the consumer had received
bad income shocks. The one-side commitment problem introduces in-
centives to walk away from the contract. To prevent that the planner
has to promise higher expected utility in the future. That should be

more clear from the above equations,

P'(ws) < P'(v) = ws > v

this is true because of the concavity of the function P, that implies ¢, <
y,. The planner induces the household to consume less by promising
more utility tomorrow, that is w,. The optimal level of consumption c,

and w, can be determined
UI(CS) = _P,(WS)_l

u(cs) + fwg = u(g,) + fot

These equations are independent of v. Part of the optimal contract
implies the existence of amnesia. After receiving a good shock the
planner changes the promise utility from that period onwards, so the
new consumption will be a function of w, not a function of v. The

solution of the optimal contract is given by

Cs = gl(?s)
Ws = ll(gs)
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the good shock induces a higher continuation value, therefore from this
point onwards history does not matter and the new continuation value
defines future expected utility.

e Participation constraint does not binds (\; = 0)

If the participation constraint does not binds, this is because the con-
sumer has received a bad income shock. In this particular case, the
consumer does not have any incentive to walk away, because the con-
tract is going to provide consumption insurance. Hence, the planner
does not need to provide incentives, because for this particular shock
there is no treat to break the contract, it is not on the individuals best
interest. Formally,

P'(ws) = P'(v) = ws =
In this case, contingent consumption is determined using
W(e) = —P/(w) ™ = ~P(o)”

the optimal level of consumption depends on the promised value w, = v
not on a particular realization of the shock 7,. The solution of the
optimal contract is then given by

Cs = 92(U>
W =V
and

u'lg2(vs)] = —P'(v)™!

The “optimal contract” implied by

€= max{gl(gs)v gg(’l}>}
ws = max{h(y,), v}
For the interval of promised utilities v € (v4U7, %) there exists a
cutoff point in terms of endowment shock, 7(v) such that:

o If y < 7(v), the planner offer the contract ¢ = go(v) and leaves the
promised utility unaltered, ws; = v. Thus, the planner is insuring in the
states with low income shocks.
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o If y > 7(v), the participation constrain is binding, so the planner in-
duces the consumer to surrender part of its endowment in exchange of
a higher promised utility, ws; > v.

It is important to mention that promise utility values never de-
crease, stay constant if y < 7(v) or increase if y > 7(v) where the
participation constraint is threaten to be violated. This is also
called the Rachet effect, and is implied by consumption smooth-
ing. Consumption is constant in periods where the participation
constraint is not binding, because v does not change and increases
in periods were it threatens to bind.

The planner has to ways to give incentives, increase present con-
sumption and promised utility. The concave scheme on the util-
ity function implies that the planner will have to use both if the
participation constraint binds. Promising more utility in the fu-
ture is not enough to prevent consumers from not walking away.
Thus, the household with the high endowment, 7 is permanently
awarded with the highest consumption level associated with v,
that is ¢ = g»(0),

u(g2(7)) + B = u(ys) + fv7"

where ¢ < 7jg but ¥ > v4UT. On the other hand, the household
with the lower endowment, 7, is expecting to receive more utility
in the future because u(y;) < Eu(y), adding in both sides the
continuation value of autarchy we have

u(gl) ‘I‘B'UAUT < E[u(y) —FBUAUT] _ UAUT

For this individual with the lowest shock, y = 7, the participa-
tion constraint is not binding

u(c) + fw = u(y,) + frVT < VT

The optimal contract trades off consumption against continua-
tion value only for sufficiently high values of the realization of
the shock y.
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6.6.4 The Dual Approach

The dual approach of contracting theory can be applied when
the principal or the planner is risk-neutral. Using this particular
approach, the planner wants to minimize the cost of giving the
right incentives to consumers, in this particular case preventing
them from walking away from the optimal contract.

s
C(v) = min s [cs + BC(wy)]
fe(s) w5} =
s
s.t. Z mslu(cs) + fws] = v
s=1

u(cs) + Bw, > u(gy,) + BuAUT Vs

Cs € [Cminu Cmax]

w, € AT 7]

Let ¢ and n, the Lagrange multipliers of the promise-keeping
and participation constraint respectively. Then, the first order
conditions with respect to {cs, w;} are given by

s + ¢msu (cs) + nsu'(cs) = 0
7-‘-sﬁcﬂ(wS) + gbﬂ-s& + 7753 =0
—C'(v)—¢=0

Combing both expressions we have,

(P75 +ms)u'(¢5) = — s
(¢pms + 1) = —mC" (wy)

C'(v) = —¢
Given that the marginal cost is positive, C’'(v) > 0, then it must

be the case that the Lagrange multiplier of the promise-keeping
constraint is negative, ¢ < 0. By the same argument, (¢, +



6.6. FINANCIAL INTERMEDIATION WITHOUT COMMITMENT 125

ns) < 0, given that m; > 0, it also must be the case that 7, < 0.
Rearranging terms we have

1
C"(ws)

u'(cs) =

C'(w,) = C'(v) = =
s
What will happens to the promised value utility depends on the
Lagrange multiplier of the participation constraint.

e Participation constraint binds (7, > 0)

Given that the Lagrange multiplier is 7, < 0, in the cost minimization
problem, it must the case that C'(ws) > C’(v), so the convex cost
function implies ws > v. The planner increases the cost of keeping
the agents with a binding participation constraint by increasing the
promised utility w,. From the other first-order condition we can back-
out the consumption behavior and the participation constraint

C'(ws)u'(cs) =1

u(cs) + ws = u(y,) + fo'"

If the marginal cost is increasing, then the marginal utility must be
decreasing to keep the ratio constant, which implies that consumption
is increasing c,. As in the previous case, these equations are independent
of v. The optimal contract implies the existence of amnesia.

e Participation constraint does not binds (7, = 0)

C'(ws) = C"(v) = ws = v. The individual does not have any incentive
to leave the contractual risk sharing arrangement. Therefore, the cost
for the planner has not changed, because it promises the same lifetime
utility v. Consumption is determined using the first-order conditions
of the optimal contract

C'(v)u(cs) = 1.

The optimal consumption depends on the promised value w; = v not
on a particular realization of the shock ..
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6.6.5 Recursive Contracts Approach

Marcet and Marimon (1992, 1999) have proposed a method that
applies for most of the contracting problems studied. They forms
a Lagrangian and use the Lagrange multipliers on the incentive
constraint to keep track of promises. In this section we show how-
to extend this method to the one-sided commitment contracting
problem. The idea behind this method is to convert the optimal
contract into a social planner problem where the relative weight
is endogenous and changes if the participation constraint of one
agent binds or not.

A contract specifies a stochastic process for consumption that
needs to satisfy

n{ﬂach =E.1 ) Bly—dl

t=0

s.t. E 4 Z Blu(cy) = v

u(cy) + BE, Z B (e ) > u(yy) + BT v >0
=1

CtEO

where E_;(-) denotes the conditional expectation before y, has
been realized and v denotes the promised value to be delivered
to the consumer in the initial period 0. The Lagrangian of the
financial intermediary is given by

L=F_, Zﬁt(yt —c) + Z&t
t=0 t=0

E Z Blu(c;) — v]

where {a;}9°, is a stochastic process of non-negative Lagrange
multipliers of the participation constraint and ¢ denotes a strictly

By Bulcrs) — [uly) + Bot7]
§=0

+¢
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positive Lagrange multiplier on the initial promise-keeping con-
straint. We can multiply the Lagrange multiplier of the partici-
pation constraint by /3" and redefine it ay, = &;/(*. Then, the new
Lagrangian is given by

L=FE, Z ﬁt(yt—ct)+z Blay | E, Z Bju(ctﬂ-) — [uye) + ﬁUAUT] +¢ | B Z Btu(ct) - U]
t=0 =0 j=0 t=0
rearranging terms we obtain
L=E, Zﬁ [ y— ) o |y Fuleny) = [uly) + B0 ]| 46 | By Bluler) - U]
j=0 t=0

It is useful to transform the Lagrangian using a version of the
partial summation for the participation constraint

Z Bray [Z Fulcer) — [uly) + BUAUT]]

developing this term

t=0 B0 ) BFule;) =B a0lBu(co) + Bulcr) + Boulcz) + BPulcs) + ..
=0

t=1 poy Z Bu(cryy) = Braq[Boulcr) + Brulcs) + Bulces) + BPulcs) + ...

t=2 OzQZﬁJ u(cay;) = Pag[Boulcs) + Brules) + B2ulcs) + ulcs) + ...]

adding up for all periods we find,

OéoU(C()) + (Oéo + Oél>ﬁu<C1) + (CY() + o + 042>52U(C2) + (CY() +oq + g+ ag)ﬁ3u(03)+
ot (o + ag + o+ ag) Bulcy)
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we want to summarize the sequence of Lagrange multipliers using
a recursive variable, so

> Bluu(c)
t=0

where p; = py—1 + oy and p_y = 0. Developing this expression we
find

t=20 o= p—1+ap =0+ ay=
t=1 1 = o+ a1 = a1+

t=2 Mo = 1 + e = o + 1 +
t=3 3 = o + a3 = az + as + a1 + g

with respect to the second term we have
Z Btat ‘I‘ BUAUT]

define z; = [u(y;) + vAYT], then developing the sum we obtain
Boaozo + Blalxl + 620@932 + ...+ ﬁtatxt + ...

substituting the definition of the new Lagrange multipliers we
derive

B2(po—p—1)zo+5" (1 —p0) w1+ 8% (po—pi1) wat .. +B" (e — prr—1) 4+ ..
finally,

o0

Z — pu—1)[u(ys) + Bo77]

=0

Substituting the partial summation formula on the original La-
grangian we have

L= E_lzﬁt e = i) + peuler) = (e = o) () + Bo7]]

+¢ E_lzﬁtu@t) -
t=0




6.6. FINANCIAL INTERMEDIATION WITHOUT COMMITMENT 129

L=F_, Zﬁt [(yt —cp) + (e + d)ulcr) — (pe — pre—1) [ulye) + 5UAUTH — U

For a given value of v, we seek a saddle point : a maximum with
respect to {¢;} and a minimum with respect to u; and ¢. The
first-order conditions with respect to {c, i, ¢} are given by:

BH=14 (e + @)u'(er)] = 0

and the complementary slackness conditions

E_ Z Bu(c) —v =0
=0

u(cy) + BE; Zﬁj_lu(ctﬂ‘) — [u(ye) + V"] > 0
=1

=0  if >0

With these equations we can characterize the optimal contract.
From the first-order conditions with respect to consumption we

have:
1

u'(c) =
(ct) )
Combining this formulation for two given periods we find

u'(cy) (-1 + @)

w(cer)  (e+9)

The first order conditions of this problem are very similar to the
ones obtained in the model with perfect insurance. The main
difference is that u; can increase overtime if the participation
constraint binds a; > 0. But pu; can be interpret as the endoge-
nous weight that the planner assigns to each generation. As in
the previous cases we have to separated cases (the participation
constraint does bind or not). We consider a particular period
t > 0 when (y, pie—1, @) are known.
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e Participation constraint does not binds (a; = 0)

The from the recursive formulation of the Lagrange multiplier we find
that u; = py—1. That means the planner leaves unchanged the relative
weight of the individual. Then, from the first-order conditions we find

' (c1) = u'(¢y)

so consumption is constant ¢;_; = ¢; and there exists perfect insurance.

e Participation constraint binds (o; > 0)

If the participation constraint binds, we find that p; > u; 1 because
a; > 0. The agent has an incentive to walk away, because the consump-
tion associated to his relative weight is small compared with the value
of autarchy. Then, the planner has to increase its relative weight today,
also in the future because p; is a non-decreasing function of oy, which
implies higher levels of consumption. The optimal level of consumption
can be founded from the first-order conditions of the optimal contract

u'(ci1) > u'(cy)
and that implies ¢;_1 < ¢;.
It is useful to compare the solution obtained using the recursive

contracts methodology and the promised utility approach. In the
latter the solution to the optimal contract is given by,

, B 1
)= Py
P(w,) = P(v) - j—

the first expression equates the marginal benefit for the consumer
of the current consumption allocation to the marginal profit of
changing the promised utility of the consumer (changing the rela-
tive weight in the objective function,using the recursive contracts
language). The second expression describes the law of motion of
the promised utility. If the participation constraint binds, then
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the planner changes the promise utility otherwise it remains con-
stant.

In the latter approach, the solution of the optimal contract im-

plies
1
u'(c) =
(c) e + @
e = phe—1 +

Now the marginal cost of providing more consumption depends
wheatear the participation constraint binds or not. Its Lagrange
multiplier is given by a; and p; only keeps track of the history
of multipliers. As the participation constraint binds, the cost of
providing incentives to not walk away increases the cost of the
planner, that has to offer a lower marginal utility, which implies
a higher consumption level

6.7 Risk Sharing with Two-sided Commitment

In this section we want to study contractual relationships without
two-sided commitment. We consider an economy with no mon-
eylenders (risk neutral agents) and only two risk averse types of
households. The endowment of the households are perfectly nega-
tively correlated. When a household of type 1 receives a shock v,
a household of type 2 receives 1 — 7,. We assume that 7, € [0, 1]
and the distribution of y; is i.i.d. over time, and the distribution
of 1 — 7, is identical to 7/,. This is equivalent to assume that the
aggregate endowment is normalized to 1 and the resource con-
straint implies ¢! + ¢? = 1. Therefore, we can define consumption
of agent 2 as a function of the agent 1 consumption and drop the
individual variables. Now the planner does not have funds out-
side the village, so its needs to reallocate the current aggregate
endowment between consumption goods between the two types of
households. If at time ¢, the type 1 receives y;, and consumption
ct, then type 2 receives 1 — y; and consumes 1 — ¢.

Definition (Feasible allocation): An allocation {c},c?}2, is
said to be feasible for all t > 0 and for all possible histories ht if
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it satisfies

¢ +c <1
ci >0
Definition (Sustainable or constrained feasible allocation):

An allocation is said to be sustainable or constrained feasible for
all t > 0 and for all possible histories h' if it satisfies

ﬁEZﬁJ ulerry) > uly) + Bot"

u(l —c) + ﬁEZ B (1 — cppy) > u(l — ;) + oVt

i=1

Notice that we have already substituted in the economy resource
constraint. An allocation or a contract is said to be sustainable
if it is feasible and satisfies the participation constraints of both
agents, so none has an incentive to walk away.

The set of sustainable allocations, or the optimal risk sharing
contract with two sided commitment can be derived by solving

P =max FE_ u(l —¢)
(v) = may 126 )

s.t. E_4 i Blu(c;) =
=0
u(cr) + ﬁEZﬁjflu(CHj) > u(y,) + T

u(l — ¢) —I—ﬁEZ@J u(l —cry) > u(l —y )+6UAUT

where the function P(u) defines a constrained Pareto frontier. So
the planner is maximizing the utility of individual 2, subject to
a minimum level of utility for household of type 1 and the con-
sumption contract needs to be sustainable or “subgame perfect”.
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6.7.1 Promised Utility Formulation

Using the promise utility we can use the recursive formulation
to solve this problem. In this particular case, the utility of the
planner is a strictly concave function (risk aversion) and we have
to take care of some additional constraints. Let P(v) be the
expected discounted utility of a type 2 agent when type 1 agent
promised utility is given by v. The optimal contract with two-
sided commitment problems solves

P(v) = max g [u(1 — ¢5) + BP(wy)]

{els)ws} =

s
s.t. Z ms[u(cs) + Pws) = v
s=1

u(cs) + Bw, > u(y,) + BuAUT Vs
u(l — ¢;) + fP(ws) > u(l —7,) + pvYT Vs

¢s € [0,1]

wg € [,UAUT’

ol

The type 1 agent cannot be awarded a promise utility below the
autarchy level v4UT, and the upper bound is given by the value
that would make type 2 agent not to participate in the risk shar-
ing arrangement. Let p, As and 65 be the associated Lagrange
multipliers of the promise-keeping constraints and the participa-
tion constraints of both type agents respectively. If the objective
function P(v) is differentiable, the first-order conditions of an
interior solution with respect to cs, ws and v are given by

—mst' (1 — ¢5) + pmsu (c5) + At/ (cs) + 0,0’ (1 — ¢5)(—1) =0

TsBP (ws) + pmsf + A8+ 058P (ws) =0

and the envelope theorem

P'(v) = —p
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rearranging terms we can obtain
— (s + 05)u' (1 — ¢s) + (ums + As)u'(cs) = 0

(ms + 05) P'(ws) + (pms + As) =0

this two equations implies

—u'(1 — ¢s)

u'(cs)

This condition characterizes the efficient trade-off between the
marginal effect of consumption and the cost in terms of higher
expected utility tomorrow. If the planner gives more marginal
utility to one agent today, it has to provide to the other a higher
expected utility with respect to v. The concavity of P and u
means that the first-order condition traces out a positively slope
curve in the ¢, w plane. The optimal contract in terms of promised
utility is characterized by

= P'(w,)

(75 + 05) P'(ws) = P'(v)ms — A

or

e + 0

Ts
Plu) = = P'()

For a given v, at the most one of the participation constraints
can bind at any state. There are three interesting regions that
we want to characterize.

e Neither participation constraint binds (A, = 65 = 0)

In this particular case, neither consumer has an incentive to walk away
from the risk sharing arrangement. The optimal pair (cs, w,) are de-
termined as a solution of

P'(ws) = P'(v) = —p

uw'(1 —cs)
/ =
u'(cs)
consumption is independent of the endowment, and the promises do not
change for either consumer, w; = v. The marginal rate of substitution
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is constant across states, s. The Lagrange multiplier of the promise-
keeping constraint serves as a temporary relative Pareto weight, that
in a sense is obtained by solving a weighted planner problem without
enforcement constraints

max AE_ Z Bu(cy) —ANE_ Z Bru(c?)
it t=0
s.t. ¢ +ci=1
>0

or

max E_ Z B () + (1= Nu(l - c)]

developing the expectation operator we find,

o S

foax ; ;ﬂsﬁt [Aule(s")] + (1 = Nu[l = c(s")]]
where the first order conditions with respect to ¢(s') are given by
' [ [efs')] + (1= A1 — e(s)](~1)] =0

given that m,/3" # 0, it must be the case that

M [e(sY)] — (1 = N[l —¢(s")] =0
rearranging terms we have

u'[c(s)] _1- A
W[l — c(st)] A

where (1 — \)/A = p.

This equation has two important properties. First, it poses a very
strong condition on the equilibrium allocations, that is the ratio of
marginal utilities is constant across all periods and states of the na-
ture. This fact allows to drop the whole history arguments of the
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consumption choices because only the current state affects consump-
tion allocations. This result is true for all possible weight that the
planner might use. Second, theory itself does not predict any specific
allocation, but in large economies, where the competitive equilibrium
is a good representation there are important restrictions in the set of
weights that can be implemented.

e The participation constraint of type 1 person binds (A, > 0,
0;, =0)

In this particular case, type 1 consumers have an incentive to walk
away from the trading arrangement. From the first-order condition for

the promised utility
Pluy) = P(v) = 22
7T8
given that P'(ws) < P'(v) < 0, it follows that the type 1 agent’s
promised utility has to satisfy w, > v. This is implied by the concavity
of the value function of agent 1. The contract raises ¢, and w; to induce
the type 1 agent to surrender some of his endowment to the planner,
who transfers it to type two agent. Since P(w;) is decreasing in wy, the
planner reduces consumption and the promised utility of agent 2. It is
important to remark that the promise utility of agent two appears on
the objective function, is not part of the promise keeping constraint.
Even though it appears on the participation constraint we do not have
to worry because for agent two this constraint is not binding. Agent
2 accepts this reduction because his endowment today is low. The
optimal pair (¢, w;) are determined as a solution of

—u/(1 — ¢)

u'(cs) = Plw)

u(cs) + fws = u(y,) + ot

As in the previous section the contract displays amnesia when the agent
1’s participation constraint is binding, the previous promised values
become irrelevant

e The participation constraint of type 2 person binds (0, > 0,
As =0)
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Now consumer 2 has an incentive to walk away from the trading ar-
rangement. The promised utility needs to satisfy,

Ts

P(w,) = —=— P’
(1) = = P'()
where 7, /75 + 05 < 1, that implies
/
P (wy) Ty
P(v) 75+ 6

since the P'(+) < 0, the negative sign implies P'(w;) > P’(v). Then, the
promised utility for type 1 agent decreases w, < v. In this particular
case, the planner lower both, ¢, and w; of type 1 agent, by raising this
pair of consumer type 2 in order to keep in participating in the market.
The optimal (cs, ws) is determined by

—u'(1 — ¢y)

u'(cs)

u(l = ¢,) + BP(w,) = u(y,) + fo'7"

= P'(w,)

This contract also exhibits amnesia.. Given that agent 2 has received
a high shock, the previous continuation value v is not determining his
consumption.

Now we want to study the asymptotic properties of this model.
One particular feature of this model is that breaks down the
monotonicity properties of the continuation values displayed in
the model with one-side lack of commitment. This opens the
possibility that the pair of continuation utilities (v, P(v)) could
converge to some unique invariant distribution that is indepen-
dent of the initial values (vg, P(vp)). If this distribution is at-
tained, then the continuation utilities (v, P(v)) would perfectly
fluctuate, reflecting imperfect risk sharing due to the existence of
two-side lack of commitment problems. The convergence two an
invariant distribution can be divided in two cases:

. First-best is sustainable (Perfect risk sharing)

For the existence of a first-best the continuation values for each con-
sumer type need to satisfy, v = ws and P(v) = P(w;) for all t. From the
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previous equations then we know that, P'(v) = P'(ws) = —p, which
implies
W(1—c;) = pu'(c)

That implies that the consumption assigned to each agent is constant
over time, so there is completely risk sharing. Suppose that the first-
best sustainable allocation exists, an let (777, vf"B) be the highest and
the lowest utility that agent 1 can receive on a first-best. In the same
fashion we can define, (P(v"?), P(v!P)). Kocherlakota (1996) proves

o vy < 0B then lim; oo vy = 0P

o vy > 7B, then limy_,o v, = 0P

This two facts follow from the monotonicity properties of v and P(v).
The existence of a first-best sustainable allocation depends of the value
B and the distribution 7 of y;. For high values of the discount factor,
[, and sufficient great endowment risk, there will exists a sustainable
allocations.

2. First-best is not sustainable (Imperfect risk sharing)

If the first-best is not sustainable, the distribution of continuation val-
ues v for agent of type 1 converges to a unique invariant distribution
within the set [vAYT 7). If vy ¢ [vAUT, 7], utilities are bound to converge
to it because of the monotonicity of the continuation values for agent
1 when the participation of agent 2 does not bind. In the invariant

distribution, the participation constraints of both agents occasionally
bind.



