
Dynamic Economics

Quantitative Methods and

Applications to Macro and Micro

Jérôme Adda and Nicola Pavoni

MACT1 2003-2004. I

Overview

• Dynamic Programming Theory

– Contraction mapping theorem.

– Euler equation

• Numerical Methods

• Econometric Methods

• Applications

MACT1 2003-2004. I

Numerical Methods

Examples: Cake Eating

• Deterministic Cake eating:

V (K) = max
c
u(c) + βV (K − c)

with – K: size of cake. K ≥ 0

– c: amount of cake consumed. c ≥ 0

• Stochastic Cake eating:

V (K, y) = max
c
u(c) + βEy′V (K ′, y′)

K ′ = K − c+ y

• Discrete Cake eating:

V (K, ε) = max[u(K, ε), βEε′V (ρK, ε′)] ρ ∈ [0, 1]

MACT1 2003-2004. I

How do we Solve These Models?

• Not necessarily a closed form solution for V (.).

• Numerical approximations.

MACT1 2003-2004. I

Solution Methods

• Value function iterations. (Contraction Mapping Th.)

• Policy function iterations. (Contraction Mapping Th.)

• Projection methods. (Euler equation)

MACT1 2003-2004. I

Value Function Iterations

Value Function Iterations

Vn(S) = max
action

u(action, S) + βEVn−1(S
′)

Vn(.) = TVn−1(.)

• Take advantage of the Contraction Mapping Theorem. If T is
the contraction operator, we use the fact that

d(Vn, Vn−1) ≤ βd(Vn−1, Vn−2)

Vn(.) = T nV0(.)

• This guarantee that:

1. successive iterations will converge to the (unique) fixed
point.

2. starting guess for V0 can be arbitrary.

• Successive iterations:

– Start with a given V0(.). Usually V0(.) = 0.

– Compute V1(.) = TV0(.)

– Iterate Vn(.) = TVn−1(.)

– Stop when d(Vn, Vn−1) < ε.

MACT1 2003-2004. I

Value Function Iterations:

Deterministic Cake Eating

• Model:
V (K) = max

c
u(c) + βV (K − c)

• Can be rewritten as:

V (K) = max
K ′

u(K −K ′) + βV (K ′)

• The iterations will be on

Vn(K) = max
K ′

u(K −K ′) + βVn−1(K
′)

• example: take u(c) = ln(c).

– we need a grid for the cake size. {K0, . . . , KN}
– we need to store the successive values of Vn: N x 1 vector.

– search on the {K} grid, the value K ′ which gives the high-
est utility flow.

6

-

K

Vn−1(K)

K1 K2 K3 K4

MACT1 2003-2004. I

Computer Code for Deterministic Cake Eating Problem

clear % clear workspace memory

dimIter=30; % number of iterations

beta=0.9; % discount factor

K=0:0.005:1; % grid over cake size, from 0 to 1

dimK=length(K); % numbers of rows (size of grid)

V=zeros(dimK,dimIter); % initialize matrix for value function

for iter=1:dimIter % start iteration loop

aux=zeros(dimK,dimK)+NaN;

for ik=1:dimK % loop on all sizes for cake

for ik2=1:(ik-1) % loop on all future sizes of cake

aux(ik,ik2)=log(K(ik)-K(ik2))+beta*V(ik2,iter);

end

end

V(:,iter+1)=max(aux’)’; % computes the maximum over all future sizes

end

plot(K,V); % plots all the successive values against size of cake

Discrete Cake Eating Model

• Model:

V (K, ε) = max[u(K, ε), βEε′V (ρK, ε′)] ρ ∈ [0, 1]

• Grid for the size of the cake: {K0, ρK0, ρ
2K0, . . . , ρ

NK0}

• Markov process for the taste shock: ε ∈ {ε, ε̄}

π =

[

πLL πLH
πHL πHH

]

• We construct V as aNx2 matrix, containing the value function.

• Let ik denote an index for the cake size, ik ∈ {1, . . . , N}, and
iε an index for the taste shock.

– for a given ik and iε, we compute:

∗ the value of eating the cake now: u(K[ik], ε[iε]))

∗ the value of waiting:
∑2

i=1 πiε,iV (ρK[iK], ε[i])

– we then compute the max of these two values.

MACT1 2003-2004. I

Code for Discrete Cake Eating Problem

%%%%%%%%%%%%%%% Initialisation of parameters %%%%%%%%%%%%%%%%%%%%%%%%%%

itermax=60; % number of iterations

dimK=100; % size of grid for cake size

dimEps=2; % size of grid for taste shocks

K0=2; % initial cake size

ro=0.95; % shrink factor

beta=0.95; % discount factor

K=0:1:(dimK-1);

K=K0*ro.^K’; % Grid for cake size 1 ro ro^2...

eps=[.8,1.2]; % taste shocks

pi=[.6 .4;.2 .8]; % transition matrix for taste shocks

V=zeros(dimK,dimEps); % Stores the value function.

% Rows are cake size and columns are shocks

auxV=zeros(dimK,dimEps);

%%%%%%%%%%%%%%% End Initialisation of parameters %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% Start of Iterations %%%%%%%%%%%%%%%%%%%%%%%%%%

for iter=1:itermax; % loop for iterations

for ik=1:dimK-1; % loop over size of cake

for ieps=1:dimEps; % loop over taste shocks

Vnow=sqrt(K(ik))*eps(ieps); % utility of eating the cake now

Vwait=pi(ieps,1)*V(ik+1,1)+pi(ieps,2)*V(ik+1,2);

auxV(ik,ieps)=max(Vnow,beta*Vwait);

end % end loop over taste shock

end % end loop over size of cake V=auxV;

end

plot(K,V) % graph the value function

% as a function of cake size

Continuous Cake Eating Problem

• Program of the agent:

V (W, y) = max
0≤c≤W+y

u(c) + βEy′|yV (W ′, y′) for all (W, y)

with W ′ = R(W − c+ y) and y is iid
(1)

• We can rewrite this Bellman equation by defining:

X = W + y

the total amount of cake available at the beginning of the pe-
riod.

V (X) = max
0≤c≤X

u(c) + βEy′V (X ′) for all X

with X ′ = R(X − c) + y′
(2)

• The operator is defined as:

T (V (X)) = max
c∈[0,X]

u(c) + βEy′V (X ′). (3)

MACT1 2003-2004. I

Value Function Iterations

• First, we need to discretize the state variableX: {X1, . . . , XnS}

• Second, we discretize the choice variable c: {c1, . . . , cnc}

• Suppose we know Vn−1(X i), i ∈ {1, . . . , ns}.

• For any values on the grid X i, and cj, we evaluate:

vij = u(cj) + β
K
∑

k=1

πkVn−1(R(X
i − cj) + yk)

• then
Vn(X

i) = max
j
vij

• We stop when |Vn(X
i)− Vn−1(X i)| < ε, ∀X i

MACT1 2003-2004. I

Approximating Value in Next Period

vij = u(cj) + β
K
∑

k=1

πkVn−1(R(X
i − cj) + yk)

6

-

X

Vn−1(X)

X1 X2 X3 X4

to calculate Vn−1(R(X i − cj) + yk), they are several options:

• we find i′ such that X i′ is closest to R(X i − cj) + yk

Vn−1(R(X
i − cj) + yk) ' Vn−1(X

i′)

• find i′ such that X i′ < R(X i − cj) + yk < X i′+1, then perform
linear interpolation:

Vn−1(R(X
i − cj) + yk) ' λVn−1(X

i′) + (1− λ)Vn−1(X
i′+1)

MACT1 2003-2004. I

Policy Function Iterations

Policy Function Iteration

• Improvement over value function iterations.

• faster method for small problems.

• Implementation:

– guess c0(X).

– evaluate:

V0(X) = u(c0(X)) + β
∑

i=L,H

πiV0(R(X − c0(X)) + yi)

this requires solving a system of linear equations.

– policy improvement step:

c1(X) = argmax
c

[u(c) + β
∑

i=L,H

πiV0(R(X − c) + yi)]

– continue until convergence.

MACT1 2003-2004. I

Projection Methods

Projection Methods

• Example: Continuous cake eating: Euler equation:






u′(ct) = βEtu
′(ct+1) if ct < Xt

ct = Xt if corner solution

• This can be rewritten as:

u′(ct) = max[Xt, βEtu
′(ct+1)]

ct+1 = Xt − c(Xt) + yt+1

• The solution to this equation is a function: c(Xt)

u′(c(Xt))−max [Xt, βEy′u
′ (Xt − c(Xt) + y′)] = 0

F (c(Xt)) = 0

• Goal: Find a function ĉ(X) which satisfies the above equation.
Find the zero of the functional equation.

MACT1 2003-2004. I

Approximating the Policy Function

• Define ĉ(X,Ψ) be an approximation to the real c(X).

ĉ(X,Ψ) =
n
∑

i=1

ψipi(X)

where {pi(X)} is a base of the space of continuous functions.
Examples:

– {1, X,X2, . . .}
– Chebyshev polynomials:






pi(X) = cos(i arccos(X)) X ∈ [0, 1], i = 0, 1, 2, . . .

pi(X) = 2Xpi−1(X)− pi−2(X) i ≥ 2, with p0(0) = 1, p1(X) = X

– Legendre or Hermite polynomials.

• For instance, the policy function can be approximated by:

ĉ(X,Ψ) = ψ0 + ψ1X + ψ2X
2

ĉ(X,Ψ) = ψ0 + ψ1X + ψ2(2X
2 − 1) + ...

MACT1 2003-2004. I

Defining a Metric

• We want to bring F (ĉ(X,ψ) as “close as possible” to zero.

• How do we define “close to zero”?

• For any weighting function g(x), the inner product of two in-
tegrable functions f1 and f2 on a space A is defined as:

〈f1, f2〉 =
∫

A

f1(x)f2(x)g(x)dx (4)

• Two functions f1 and f2 are said to be orthogonal, conditional
on a weighting function g(x), if

〈f1, f2〉 = 0

The weighting function indicates where the researcher wants
the approximation to be good.

• In our problem, we want

〈F (ĉ(X,Ψ)), f(X)〉 = 0

where f(X) is a given function. The choice of the f function
will give different projection methods.

MACT1 2003-2004. I

Different Projection Methods

• Least square method:

min
Ψ
〈F (ĉ(X,Ψ)), F (ĉ(X,Ψ))〉

• Collocation method:

min
Ψ
〈F (ĉ(X,Ψ)), δ(X −Xi)〉 i = 1, . . . , n

where δ(X −Xi) is the mass point function at point Xi:

δ(X) = 1 if X = Xi

δ(X) = 0 elsewhere

• Galerkin method:

min
Ψ
〈F (ĉ(X,Ψ)), pi(X)〉 i = 1, . . . , n

where pi(X) is a base of the function space.

MACT1 2003-2004. I

Collocation Methods

• We find Ψ by minimizing:

〈F (ĉ(X,Ψ)), δ(X −Xi)〉 i = 1, . . . n

where δ() is the mass point function.

• The method requires that F (ĉ(X,Ψ)) is zero at some particular
points Xi and not over the whole range [X̄L, X̄H].

• The method is more efficient if these points are chosen to be
the zeros of the basis elements pi(X), here Xi = cos(π/2i).
(orthogonal collocation method).

• Ψ is the solution to a system of nonlinear equations:

F (ĉ(Xi,Ψ)) = 0 i = 1, . . . n

• Note:

– This method is good at approximating policy functions
which are relatively smooth.

– Chebyshev polynomials tends to display oscillations at higher
orders.

MACT1 2003-2004. I

Computer Code for Projection Method

procedure c(x) * Here we define an approximation for

cc=psi_0+psi_1*x+psi_2*x*x the consumption function based on

return(cc) a second order polynomial *

endprocedure

i_s=1

do until i_s>n_s * Loop over all sizes of the total

amount of cake *

utoday=U’(c(X[i_s])) * marginal utility of consuming *

ucorner=U’(X[i_s]) * marginal utility if corner solution *

i_y=1

do until i_y>n_y * Loop over all possible realizations

of the future endowment *

nextX=R(X[i_s]-c(X[i_s]))+Y[i_y] * next amount of cake *

nextU=U’(C(nextX)) * next marginal utility of consumption *

EnextU=EnextU+nextU*Pi[i_y] * here we compute the expected future

marginal utility of consumption using

the transition matrix Pi *

i_y=i_y+1

endo * end of loop over endowment *

F[i_s]=utoday-max(ucorner,beta*EnextU)

i_s=i_s+1

endo * end of loop over size of cake *

Programming Languages

• C++, FORTRAN, PASCAL...

– the real stuff. Very quick.

– not very user friendly.

– no graphic packages, no predefined commands.

• GAUSS, MATLAB

– more user friendly.

– matrix oriented.

– graphic packages.

– quick, except when doing loops.

MACT1 2003-2004. I

Some Elements of Programming

• Structure of a program:

– start with definition and initialisation of variables.

– main code.

– display results.

• A few tips:

– create variables with meaningful names.
(prefer ’beta’ to ’x1’).

– break down complex calculations into smaller and under-
standable units.

– create procedures (subroutines) which will do more com-
plex calculations. For the main program, these procedures
are just black boxes which transform some inputs into out-
puts:
e.g.:

– put comments into your program which state what the line
is doing

MACT1 2003-2004. I

Econometric Methods

Overview

• Dynamic Programming Theory

– Contraction mapping theorem.

– Euler equation

• Numerical Methods

• Econometric Methods

• Applications

MACT1 2003-2004. I

Aim

• Estimate the ”structural” parameters of a DP model.

– parameters describing the utility function.

– technology parameters.

– discount factor.

• from observed data.

• Example:

– Discrete cake eating problem:

V (K, ε) = max[u(K, ε), βEε′V (ρK, ε′)] ρ ∈ [0, 1]

– Data on cake sizes and periods in which they are eaten:

Period Cake Size obs 1 obs 2 . . . obs N

1 1 0 0 . . . 0
2 0.8 0 1 . . . 0
3 0.64 1 1 . . . 0
4 0.51 1 1 . . . 0
5 0.41 1 1 . . . 1

– Infer, β, utility function and distribution of taste shocks.

MACT1 2003-2004. I

Estimation Methods

• maximum likelihood.

• method of moments.

• simulated maximum likelihood.

• simulated method of moments.

• simulated non linear least squares.

• indirect inference.

MACT1 2003-2004. I

A Simple Example: Coin Flipping

• Probability of head/tail {P1, P2} ∈ [0, 1]x[0, 1].

• N draws: H,H, T,H, T

• Random variable Xt.

• Draws {x1, x2, . . . , xN}

• Denote Ni the number of observation that falls into category
i = 1, 2.

Model: P = P (θ)

Example 1:







P1 = θ

θ ∈ [0, 1]
P2 = 1− θ

Example 2:







P1 = Φ(θ)
θ ∈]−∞,+∞[

P2 = 1− Φ(θ)

Note: This is in fact a probit model:

X∗
t = ut

Xt = 1 if X∗
t < θ

Xt = 2 if X∗
t ≥ θ

MACT1 2003-2004. I

Coin Flipping: Maximum Likelihood

• Likelihood function: (simple as i.i.d. draws)

£ = P (X1 = x1, X2 = x2, . . . , XN = xN)

= P1(θ)
N1(1− P1(θ))

N2

– with sequence: H,H, T,H, T

£ = P1 ∗ P1 ∗ P2 ∗ P1 ∗ P2 = P 31 ∗ P 22 = P 31 (1− P1)
2

• Maximum Likelihood Estimator: Pi(θ
∗) = Ni

N

– example 1: θ∗ = N1/N

– example 2: θ∗i = Φ−1(Ni

N)

MACT1 2003-2004. I

Coin Flipping: Method of Moments

• Moment from data: µ. (mean, variance, covariance...)

• Moment from model: µ(θ).

• Parameter estimate is the solution of:

min
θ

(µ(θ)− µ)2

• With coin flipping:

– µ = N1/N : observed fraction of heads.

– µ(θ) = P1(θ), predicted fraction of heads by model.

– which trivially leads to P1(θ
∗) = N1/N

More generally:

min
θ

(µ(θ)− µ)′Ω−1(µ(θ)− µ)

Ω is a weighting matrix.

MACT1 2003-2004. I

Coin Flipping: Simulated Methods

Simulating the model (example 2):

• Guess θ.

• Draw S shocks {us} from a standard normal density.

• Create {x̃s} such that

x̃s = head if us < θ
x̃s = tail if us ≥ θ

• Example: θ = 0

Draw us Outcome

1 0.518 T
2 1.611 T
3 -0.89 H
4 1.223 T
...

...
...

S 0.393 T

• we get S1(θ) heads and S2(θ) tails. (S1(θ) + S2(θ) = S)

MACT1 2003-2004. I

Coin Flipping: Simulated Maximum Likelihood

• Compute the frequency of each outcome using the simulated
data.

P S
i (θ) =

1

S

S
∑

s=1

I(Xs = i) =
S1(θ)

S

• θ∗S solution to:

max
θ

∏

i

P S
i (θ)

Ni = max
θ

(

S1(θ)

S

)N1

.

(

S2(θ)

S

)N2

• Optimal parameter:
S1(θ

∗)

S
=
N1
N

MACT1 2003-2004. I

Likelihood Function

Figure 1: Log Likelihood, True θ0 = 0

MACT1 2003-2004. I

Coin Flipping: Simulated Method of Moments

• Compute the vector of moments from the observed data: µ.

• Compute the vector of moments from the simulated data: µS(θ).

• The optimal parameter θ∗S is the solution of:

min
θ

(µS(θ)− µ)′W−1(µS(θ)− µ)

• In our coin flipping example:

– observed moment: fraction of heads: N1/N

– simulated moment: S1(θ)/S

– optimal parameter:

S1(θ
∗)

S
=
N1
N

MACT1 2003-2004. I

Objective Function

Figure 2: Objective Function

MACT1 2003-2004. I

Indirect Inference

Guess θ

Simulate dataset

Estimate auxiliary model

Observed dataset

Estimate auxiliary model

Estimated auxiliary
parameters

Estimated auxiliary
parameters

®

­

©

ª
Match ?

µ¾

Yes θ∗No

µ

?

?

?

?

?

¾ - -

MACT1 2003-2004. I

Coin Flipping: Indirect Inference

• Auxiliary model. M̃(β)

• Auxiliary parameters β

• Estimate the auxiliary model on observed data: βN

• Estimate the auxiliary model on simulated data: βS(θ)

• The optimal parameter estimates are:

θ∗S = argmin
θ

(βS(θ)− βT)
2

Example:

Auxiliary model (logit): P (Xt = 1) =
exp(β)

1 + exp(β)

Log-Likelihood of auxiliary model for observed data:

l = N1 ln
exp(β)

1 + exp(β)
+N2 ln

1

1 + exp(β)
= N1β −N ln(1 + exp(β))

ML estimator for the auxiliary model:

β∗ = ln
N1
N2

θ∗S = argmin
θ

(ln
S1(θ)

S2
− ln

N1
N2

)2

MACT1 2003-2004. I

Cake Eating Problem:

Maximum Likelihood

• Bellman Equation:

V (K, ε) = max[u(K, ε), βEε′/εV (ρK, ε′)]

• Define the threshold ε∗(K, θ) such as:

u(K, ε∗(K, θ)) = βEV (ρK, ε′)

the agent is indifferent between eating and waiting.

• The probability of waiting is:

P (wait|K) = P (ε < ε∗(K, θ)) = F (ε∗(K, θ))

• Likelihood of observing a cake eaten after ti periods for agent i:

li(ti, θ) = P (εi1 < ε∗(Ki1), . . . , εi,ti−1 < ε∗(Ki,ti−1), εiti > ε∗(Kiti))

If the ε are iid, then:

li(ti, θ) =

ti−1
∏

l=1

P (εil < ε∗(Kil)) . P (εiti > ε∗(Kiti))

=

ti−1
∏

l=1

F (ε∗(Kil, θ)) . (1− F (ε∗(Kiti, θ)))

• Likelihood of entire sample:

L(θ) =
N
∏

i=1

li(ti, θ)

MACT1 2003-2004. I

Properties of ML

Asymptotically normal and unbiased estimates:

√
N(θ̂N − θ0)

L−→ N(0, I−1)

I = − 1

N

N
∑

i=1

∂2 log l(ti, θ)

∂θ∂θ′

MACT1 2003-2004. I

Cake Eating Problem:

Serially Correlated Shocks

• If ε is not iid, then the likelihood is complicated

li(ti, θ) = P (εi1 < ε∗(Ki1), . . . , εi,ti−1 < ε∗(Ki,ti−1), εiti > ε∗(Kiti))

• Example: ti = 2

li(2) = P (ε1 < ε∗(K1), ε2 > ε∗(K2))

= P (ε2 > ε∗(K2)|ε1 < ε∗(K1)) P (ε1 < ε∗(K1))

=
1√
2πσ

∫ +∞

ε∗
2

∫ ε∗1

−∞
exp(− 1

2σ2
(u− ρv)2)dudv Φ

(

ε∗1(K1)

σ/
√

1− ρ2

)

=⇒ for any agent i we have to solve ti integrals: INTRACTABLE.

• use simulation based methods.

MACT1 2003-2004. I

Simulation of Cake Eating Model

• Given vector θ: compute ε∗(K, θ).

• Fix S the size of the simulated dataset.

• For each agent s,

– draw T serially correlated taste shocks.

– Compute the date of consumption, ts, as first taste shock
exceeding the threshold.

• This gives a set of S stopping times.

• Simplified example:

S=1000;

T=100;

ro=0.5;

sig=0.1;

eps=zeros(T,S);

dateconso=zeros(S,1);

for s=1:S

t=1;

do while eps(t,s)<threshold;

eps(t+1,s)=ro*eps(t,s)+rand*sig;

t=t+1;

dateconso(s)=t;

end

end

MACT1 2003-2004. I

Simulated Method of Moments

• From observed data: construct a moment µ(ti):

– µ(ti) = ti/N , mean.

– µ(ti) = (ti − t̄)2/N , variance.

• From simulated data, construct the same moment µ(ti(θ)).

• The estimator for the SMM is defined as:

θ̂S,N(Ω) = argmin
θ

[

N
∑

i=1

(

µ(ti)−
1

S

S
∑

s=1

µ(ti(θ))

)]′

Ω−1N

[

N
∑

i=1

(

µ(ti)−
1

S

S
∑

s=1

µ(tsi (θ))

)]

MACT1 2003-2004. I

Properties

• When the number of simulation S is fixed and N −→∞,

– θ̂SN(Ω) is consistent.

–
√
N(θ̂SN − θ0) −→ N(0, QS(Ω))

where

QS(Ω) = (1+
1

S
)

[

E0
∂µ′

∂θ
Ω−1N

∂µ

∂θ′

]−1
E0
∂µ′

∂θ
Ω−1N Σ(θ0)Ω

−1
N

∂µ

∂θ′

[

E0
∂µ′

∂θ
Ω−1N

∂µ

∂θ′

]−1

where Σ(θ0) is the covariance matrix of 1/
√
N(1N

∑N
i=1(µ(ti)−

E0µ(t
s
i (θ))).

• The optimal SMM is obtained when Ω̂N = Σ̂N . In this case,

QS(Ω
∗) = (1 +

1

S
)

[

E0
∂µ′

∂θ
Ω−1N

∂µ

∂θ′

]−1

MACT1 2003-2004. I

Indirect Inference

Use auxiliary model (misspecified) such that auxiliary parameters
on observed and simulated data are similar.

• Auxiliary model: likelihood φ̃(ti, β).

• Auxiliary parameters from observed data:

β̂N = argmax
β

N
∏

i=1

φ̃(ti, β)

• Auxiliary parameters from simulated data:

β̂sN(θ) = argmax
β

N
∏

i=1

φ̃(tsi (θ), β)

• Average value of auxiliary parameters from simulated data :

β̂SN =
1

S

S
∑

s=1

β̂sN(θ)

The indirect inference estimator θ̂SN is the solution to:

θ̂SN = argmin
θ

[β̂N − β̂SN(θ)]
′ΩN [β̂N − β̂SN(θ)]

where ΩN is a positive definite weight matrix which converges
to a deterministic positive definite matrix Ω.

Properties: For a fixed number of simulations S, when N goes
to infinity the indirect inference estimator is consistent and
normally distributed.

√
N(θ̂SN − θ0) −→ N(0, QS(Ω))

Denote ψN(θ, β) =
∑N

i=1 log φ̃(t
s
i (θ), β).

QS(Ω
∗) = (1+

1

S
)

(

∂2ψ∞(θ0, b(θ0))

∂θ∂β ′
(I0 −K0)

−1∂
2ψ∞(θ0, b(θ0))

∂β∂θ′

)−1

(̂I0 −K0) =
N

S

S
∑

s=1

(Ws − W̄)(Ws − W̄)′

with

Ws =
∂ψN(θ̂, β̂)

∂β

W̄ = 1
S
∑S

s=1Ws

MACT1 2003-2004. I

Indirect Inference and Cakes

Auxiliary model: exponential duration model:

P (ti = t) = β exp(−βt)

Log-Likelihood of observed sample:

lnL =
N
∑

i=1

ln(β exp(−βti))

which has a maximum at:

β̂N = 1/N
N
∑

i=1

ti

From simulated data:

β̂sN(θ) = 1/N
N
∑

i=1

tsi (θ)

so that

β̂SN =
1

NS

S
∑

s=1

N
∑

i=1

tsi (θ)

θ̂SN is the solution of:

min
θ

(
1

N

N
∑

i=1

ti −
1

NS

S
∑

s=1

N
∑

i=1

tsi (θ))
2

MACT1 2003-2004. I

Simulated Non Linear Least Squares

A ”natural” way to proceed would be to look at a criterion such
that:

min
1

N

N
∑

i=1

(ti − t̄Si (θ))
2

where t̄Si = 1/S
∑S

s=1 t
s
i (θ)

Problem: Not a consistent estimator of θ0.

Laffont et al. (1995) proposes a criterion such that:

min
θ

1

N

N
∑

i=1

[

(ti − t̄Si (θ))
2 − 1

S(S − 1)

S
∑

s=1

(tsi (θ)− t̄Si (θ))
2

]

Asymptotic Properties: For any fixed number of simulation S,

• θ̂SN is consistent.

•
√
N(θ̂SN − θ0)

d−→ N(0,ΣS,N)

A consistent estimate of the covariance matrix ΣS,N can be obtained
by computing:

Σ̂S,N = Â−1S,N B̂S,N Â
−1
S,N

where ÂS,N and B̂S,N are defined below. To this end, denote ∇tsi =
∂tsi (θ)/∂θ, the gradient of the variable with respect to the vector
of parameters, and ∇ti = 1

S

∑S
s=1∇tsi , its average across all simula-

tions.

ÂS,N =
1

N

N
∑

i=1

[

∇ti∇t
′
i −

1

S(S − 1)

S
∑

s=1

(

∇tsi −∇ti
) (

∇tsi −∇ti
)′
]

B̂S,N =
1

N

N
∑

i=1

dS,i(θ)dS,i(θ)
′

with dS,i a k dimensional vector:

dS,i(θ) = (ti − t̄i(θ))∇ti(θ) +
1

S(S − 1)

S
∑

s=1

[tsi (θ)− t̄(θ)]∇tsi (θ)

MACT1 2003-2004. I

