Dynamic Economics
Quantitative Methods and
Applications to Macro and Micro

Jérome Adda and Nicola Pavoni

MACT1 2003-2004. I

Overview I

e Dynamic Programming Theory

— Contraction mapping theorem.

— Euler equation
e Numerical Methods
e Econometric Methods

e Applications

MACT1 2003-2004. I

Numerical Methods

Examples: Cake Eating I

e Deterministic Cake eating:
V(K)=maxu(c) + V(K —¢)
with — K size of cake. K >0

— ¢: amount of cake consumed. ¢ > 0

e Stochastic Cake eating:
V(K,y) = maxu(c) + SE,V(K',y)

K=K—-c+uy

e Discrete Cake eating:

V(K,e) = max[u(K,e¢), BE.V (pK,&')] p € [0,1]

MACT1 2003-2004. I

How do we Solve These Models? I

e Not necessarily a closed form solution for V(.).

e Numerical approximations.

MACT1 2003-2004. I

Solution Methods I

e Value function iterations. (Contraction Mapping Th.)
e Policy function iterations. (Contraction Mapping Th.)

e Projection methods. (Euler equation)

MACT1 2003-2004. I

Value Function Iterations

Value Function Iterations I

V,(S) = max u(action, S) + BEV,_1(S")
action

e Take advantage of the Contraction Mapping Theorem. If T' is
the contraction operator, we use the fact that

d(Vn7 Vn—l) < ﬁd(Vn—la Vn—2)
Va() =T"Vo(.)
e This guarantee that:

1. successive iterations will converge to the (unique) fixed
point.

2. starting guess for Vj can be arbitrary.
e Successive iterations:

— Start with a given Vp(.). Usually Vj(.) = 0.

(-
— Compute Vi(.) = TV(.
— Tterate V,,(.) = TV, _1(.

)-
)
)
<

— Stop when d(V,,,V,,_1) < .

MACT1 2003-2004. I

Value Function Iterations:

Deterministic Cake Eating

e Model:
V(K) = m;axu(c) + BV (K —¢)

e Can be rewritten as:

V(K) = m}gxu(K — K"+ BV(K")

e The iterations will be on

Vo(K) = mfgxu(K — K"+ V(K"

e example: take u(c) = In(c).
— we need a grid for the cake size. {Ky,..., Ky}

— we need to store the successive values of V,,: N x 1 vector.

— search on the { K} grid, the value K’ which gives the high-
est utility flow.

Vn—l(K)

MACT1 2003-2004. I

Computer Code for Deterministic Cake Eating Problem

clear % clear workspace memory

dimIter=30; % number of iterations

beta=0.9; % discount factor

K=0:0.005:1; % grid over cake size, from 0 to 1
dimK=length(X) ; ’» numbers of rows (size of grid)
V=zeros(dimK,dimIter); % initialize matrix for value function
for iter=1:dimlter % start iteration loop

aux=zeros(dimK,dimK)+NaN;

for ik=1:dimK % loop on all sizes for cake
for ik2=1:(ik-1) % loop on all future sizes of cake
aux (ik,ik2)=1log(K(ik)-K(ik2))+betaxV(ik2,iter);
end
end
V(:,iter+1)=max(aux’)’; % computes the maximum over all future sizes
end

plot(K,V); % plots all the successive values against size of cake

Discrete Cake Eating Model I

e Model:

V(K,¢e) = max[u(K,¢), BE-V (pK,)] p € 10,1]

e Grid for the size of the cake: {Ky, pKy, p?Ky, ..., p" Ky}

e Markov process for the taste shock: ¢ € {g, &}

- — | TLL TLH
THL THH

e We construct V' as a Nx2 matrix, containing the value function.

e Let i, denote an index for the cake size, iy, € {1,..., N}, and
7. an index for the taste shock.

— for a given 7 and 7., we compute:
« the value of eating the cake now: u(KTix,e[ic]))
% the value of waiting: Y7, m;;V (0K [ix], €[i])

— we then compute the max of these two values.

MACT1 2003-2004. I

Code for Discrete Cake Eating Problem

Tl lotoho ol totololohototsts Initialisation of parameters Vlhlhtlslsllololslslololsdslslololsdslstolodstos

itermax=60; pA
dimK=100; %
dimEps=2; yA
K0=2; %
ro=0.95; yA
beta=0.95; yA

K=0:1:(dimK-1);

K=KO*ro. K’; b
eps=[.8,1.2]; b
pi=[.6 .4;.2 .81; b
V=zeros(dimK,dimEps) ; %

b

auxV=zeros (dimK,dimEps) ;

number of iterations

size of grid for cake size
size of grid for taste shocks
initial cake size

shrink factor

discount factor

Grid for cake size 1 ro ro~2...

taste shocks
transition matrix for taste shocks

Stores the value function.
Rows are cake size and columns are shocks

Il hhlhhhhhh’h End Initialisation of parameters — %hhhlolshllololshhlololsdshlololsds s lotolsths

Tl lololototololelololotode ~ Start of Iterations Yool ToTo oo o o o o JoToTo oo o o o o ToTo oo o

for iter=1:itermax;
for ik=1:dimK-1;
for ieps=1:dimEps;

% loop for iterations
% loop over size of cake
% loop over taste shocks

Vnow=sqrt (K(ik)) *eps(ieps); % utility of eating the cake now
Vwait=pi(ieps,1)*V(ik+1,1)+pi(ieps,2)*V(ik+1,2);
auxV(ik,ieps)=max(Vnow,beta*Vwait) ;

end
end
end

plot (K,V)

% end loop over taste shock
% end loop over size of cake V=auxV;

% graph the value function
% as a function of cake size

Continuous Cake Eating Problem I

e Program of the agent:

— / /
VIW,y) = OSICI%%CWU(C) + BE,,V(W',y') for all (W,y)

with W' = R(W —c+y) and yisiid
(1)
e We can rewrite this Bellman equation by defining:

X=W+y

the total amount of cake available at the beginning of the pe-
riod.

V(X) = max u(c)+ BE,V(X') forall X

0<e<X
(2)
with X' =R(X —c¢)+ ¢

e The operator is defined as:

T(V(X)) = max u(e) + BB,V (X)) (3)

MACT1 2003-2004. I

Value Function Iterations I

e First, we need to discretize the state variable X: {X*1 ... X"s}
e Second, we discretize the choice variable c: {c!,... "}
e Suppose we know V,,_1(X?), i € {1,...,n,}.

e For any values on the grid X, and ¢/, we evaluate:
K
Vij = U(C]) + Bzﬂk;vnfl(R(Xl - Cj) + yk>
k=1

e then _
Va(X") = maxvy;

J

e We stop when |V,,(X") =V, 1(X")| < &, VX"

MACT1 2003-2004. I

Approximating Value in Next Period I

K
k=1

Vi-1(X)

X! X? X x+ X

to calculate V,_1(R(X" — ¢/) + y*), they are several options:

e we find 7/ such that X is closest to R(X"—) +oF
Vit (R(XT = o)+ %) = V1 (X7)

e find i’ such that X* < R(X’ — ¢/) +y* < X"*!, then perform
linear interpolation:

Vi 1 (R(XT = &) + %) o AVt (X7) + (1 = A Vg (X

MACT1 2003-2004. I

Policy Function Iterations

Policy Function Iteration I

e Improvement over value function iterations.
e faster method for small problems.
e Implementation:

— guess ¢o(X).

— evaluate:

Vo(X) = u(co(X)) + 8 > mVo(R(X — co(X)) + ui)
i=L,H

this requires solving a system of linear equations.

— policy improvement step:

c1(X) = argmax[u + 0 Z miVo(R(X —¢) + yi)]
1=L,H

— continue until convergence.

MACT1 2003-2004. I

Projection Methods

Projection Methods I

e Example: Continuous cake eating: Euler equation:

U/(Ct) = ﬁEtu’(ctH) if G < Xt
c = Xy if corner solution

e This can be rewritten as:
u'(c;) = max[Xy, BEw (cpq1)]
cry1 = X — o(Xy) + Y
e The solution to this equation is a function: ¢(X;)

u'(e(Xy)) — max [Xy, BE u' (Xp — o(Xy) +4)] =0

Fle(X)) =0

e Goal: Find a function ¢(X') which satisfies the above equation.
Find the zero of the functional equation.

MACT1 2003-2004. I

Approximating the Policy Function I

e Define ¢(X, ¥) be an approximation to the real ¢(X).
e(X, V) = Z%‘Z%(X)
i=1

where {p;(X)} is a base of the space of continuous functions.
Examples:

—{1,X, X2 ..}
— Chebyshev polynomials:

pi(X) = cos(i arccos(X)) X e€[0,1],i=0,1,2,...

pi(X) = 2Xp;i1(X) — pi2(X) @ >2, withpy(0) =1, pi(X)=X
— Legendre or Hermite polynomials.

e For instance, the policy function can be approximated by:

G(X,0) =g + 1 X + 1 X?

S(X,0) = o+ 1 X + 1 (2X2 — 1) + ...

MACT1 2003-2004. I

Defining a Metric I

e We want to bring F'(¢(X, 1) as “close as possible” to zero.
e How do we define “close to zero”?

e For any weighting function g(z), the inner product of two in-
tegrable functions f; and f5 on a space A is defined as:

i, fo) = / f1(2) fa()g () (4)

e Two functions f; and f5 are said to be orthogonal, conditional
on a weighting function g(z), if

(fi, f2) =0

The weighting function indicates where the researcher wants
the approximation to be good.

e In our problem, we want
(F((X, D)), (X)) =0

where f(X) is a given function. The choice of the f function
will give different projection methods.

MACT1 2003-2004. I

Different Projection Methods I

e Least square method:
min(F(¢(X, V), F(e(X, P)))
e Collocation method:
ngn(F(é(X, U),0(X —X;)) i=1,...,n
where §(X — X;) is the mass point function at point X;:

J(X)=1if X =X,
0(X) =0 -elsewhere

e Galerkin method:

mq}n(F(é(X, U)),pi(X)) i=1,....,n

where p;(X) is a base of the function space.

MACT1 2003-2004. I

Collocation Methods I

e We find ¥ by minimizing:

(F(e(X,0)),6(X — X)) i=1,...n

where §() is the mass point function.

e The method requires that F'(¢(X, V)) is zero at some particular
points X; and not over the whole range [X, Xp].

e The method is more efficient if these points are chosen to be
the zeros of the basis elements p;(X), here X; = cos(mw/2i).
(orthogonal collocation method).

e U is the solution to a system of nonlinear equations:

FE(X:,0)=0 i=1,...n

e Note:

— This method is good at approximating policy functions
which are relatively smooth.

— Chebyshev polynomials tends to display oscillations at higher
orders.

MACT1 2003-2004. I

Computer Code for Projection Method

procedure c(x) * Here we define an approximation for
cc=psi_0O+psi_1*x+psi_2*x*x the consumption function based on
return(cc) a second order polynomial *
endprocedure
i_s=1

do until i_s>n_s * Loop over all sizes of the total

amount of cake *

utoday=U’ (c(X[i_s])) * marginal utility of consuming *

ucorner=U’ (X[i_s]) * marginal utility if corner solution *

i_y=1

do until i_y>n_y * Loop over all possible realizations

of the future endowment *
nextX=R(X[i_s]-c(X[i_s]))+Y[i_y] * next amount of cake *
nextU=U’ (C(nextX)) * next marginal utility of consumption *

*

EnextU=EnextU+nextU*Pi [i_y] * here we compute the expected future
marginal utility of consumption using
the transition matrix Pi *
i_y=i_y+1
endo * end of loop over endowment *
F[i_s]=utoday-max(ucorner,beta*EnextU)
i_s=i_s+1

endo * end of loop over size of cake *

Programming Languages I

e C++, FORTRAN, PASCAL...

— the real stuff. Very quick.

— not very user friendly.

— no graphic packages, no predefined commands.
e GAUSS, MATLAB

— more user friendly.

— matrix oriented.

— graphic packages.

— quick, except when doing loops.

MACT1 2003-2004. I

Some Elements of Programming I

e Structure of a program:

— start with definition and initialisation of variables.
— main code.

— display results.
o A few tips:

— create variables with meaningful names.
(prefer 'beta’ to 'x17).

— break down complex calculations into smaller and under-
standable units.

— create procedures (subroutines) which will do more com-
plex calculations. For the main program, these procedures
are just black boxes which transform some inputs into out-
puts:

e.g.:

— put comments into your program which state what the line
is doing

MACT1 2003-2004. I

Econometric Methods

Overview I

e Dynamic Programming Theory

— Contraction mapping theorem.

— Euler equation
e Numerical Methods
e Fconometric Methods

e Applications

MACT1 2003-2004. I

Aim

e Estimate the "structural” parameters of a DP model.

— parameters describing the utility function.
— technology parameters.

— discount factor.
e from observed data.
e Example:
— Discrete cake eating problem:

V(K,e) = max[u(K,e), BE.V (pK, &) p € 10,1]

— Data on cake sizes and periods in which they are eaten:

Period | Cake Size | obs 1 |obs 2| ... | obs N
1 1 0 0 . 0
2 0.8 0 1 0
3 0.64 1 1 0
4 0.51 1 1 0
5) 0.41 1 1 1

— Infer, 3, utility function and distribution of taste shocks.

MACT1 2003-2004. I

Estimation Methods I

e maximum likelihood.

e method of moments.

e simulated maximum likelihood.

e simulated method of moments.

e simulated non linear least squares.

e indirect inference.

MACT1 2003-2004. I

A Simple Example: Coin Flipping I

e Probability of head/tail { Py, P»} € [0, 1]x][0, 1].
e Ndraws: H, H, T, H,T

e Random variable X;.

e Draws {x1,z9,..., 2N}

e Denote N; the number of observation that falls into category
1 =1,2.

Model: P = P(0)

Example 1:
P =4
6 € [0,1]
Po=1-6
Example 2:
P = ®(0)
6 €] — 0o, +00|
P,=1—®(0)

Note: This is in fact a probit model:
X;k = Ut

X,=1 if X;<40
X, =2 if X;>0

MACT1 2003-2004. I

Coin Flipping: Maximum Likelihood I

e Likelihood function: (simple as i.i.d. draws)
£ = PXi=21,X0=29,...., Xy =2p)
= P(0)M(1 - Pi(9))™
— with sequence: H, H, T, H,T
£=P xP *Pyx P xP,= P}« P} = P}(1 - P)*

e Maximum Likelihood Estimator: Pi(0") = %

— example 1: §* = Ny /N

¥

— example 2: 0f = O (3

MACT1 2003-2004. I

Coin Flipping: Method of Moments I

e Moment from data: p. (mean, variance, covariance...)
e Moment from model: p(6).

e Parameter estimate is the solution of:

min((0) — pp)*

e With coin flipping:
— 1= N1/N: observed fraction of heads.
— u(6) = P1(0), predicted fraction of heads by model.
— which trivially leads to P(60*) = Ny/N

More generally:

min(p(0) — 1)/ 2 (1) — o)

() is a weighting matrix.

MACT1 2003-2004. I

Coin Flipping: Simulated Methods I

Simulating the model (example 2):

o Guess 6.
e Draw S shocks {u,} from a standard normal density.
e Create {Z;} such that

Ts = head if u, <6
T, = tail if ug>0

e Example: 6§ =0

Draw | wug | Outcome

1 0.518 T
2 1.611 T
3 -0.89 H
4 T

1.223

S 0.393 T

e we get S1(f) heads and Ss(6) tails. (51(0) + S2(0) = S)

MACT1 2003-2004. I

Coin Flipping: Simulated Maximum Likelihood I

e Compute the frequency of each outcome using the simulated
data.

pS(e)—liJ(x — i) =
i _Ss:l YIS

e 03 solution to:
| SO\ S0\
Sio\Ni _ 1 2
meaXIiIPi(Q) —mgxx< 3 > (S

e Optimal parameter:

MACT1 2003-2004. I

Likelihood Function

Figure 1: Log Likelihood, True 6, = 0

Log Likelihood

—220

—1.6 —-1.2 —0.8 —-0.4 —0.0 0.4 0.8 1.2 1.6
Theta

2.0

MACT1 2003-2004. I

Coin Flipping: Simulated Method of Moments I

e Compute the vector of moments from the observed data: pu.
e Compute the vector of moments from the simulated data: 1 (6).

e The optimal parameter 0% is the solution of:

win (% (6) —) W (1 (0) =)

e In our coin flipping example:

— observed moment: fraction of heads: N;/N
— simulated moment: S1(0)/S

— optimal parameter:

S0 N
S N

MACT1 2003-2004. I

Objective Function

Figure 2: Objective Function

0.28 0.32

0.24

0.20

Objective Function

0.08

0.04

0.00

MACT1 2003-2004. I

Guess 60

Simulate dataset

Y

Indirect Inference

Estimate auxiliary model

l

Estimated auxiliary
parameters

MACT1 2003-2004. I

Observed dataset

Estimate auxiliary model

l

Estimated auxiliary

parameters
b.4

Match ?] - " Yes —

9*

Coin Flipping: Indirect Inference I

e Auxiliary model. M ()

e Auxiliary parameters (3

e Estimate the auxiliary model on observed data: Gy

e Estimate the auxiliary model on simulated data: (3g(6)

e The optimal parameter estimates are:

0 = arg;nin(ﬁg(e) — ﬁT)2

Example:
Auxiliary model (logit): PX;=1)= %
Log-Likelihood of auxiliary model for observed data:
=N, m% + N, 1n1+e;w = N3 — Nln(1 + exp(B))
ML estimator for the auxiliary model:
6" =1In %
05 = arg;nin(ln ng) —1In %)2

MACT1 2003-2004. I

Cake Eating Problem:
Maximum Likelihood

e Bellman Equation:

V(K,e) = max[u(K,e), BE.,.V(pK,e")]

e Define the threshold &*(K,#) such as:
u(K,e*(K,0)) = BEV (pK, &)
the agent is indifferent between eating and waiting.
e The probability of waiting is:
P(wait|K) = P(e < £*(K,0)) = F(e" (K, 0))

e Likelihood of observing a cake eaten after ¢; periods for agent i:

li(ti, (9) = P(5i1 < 8*(KZ'1), ey Eiti—1 < 5*(Ki,ti—1); Eit; > 5*(Kztl))

If the ¢ are iid, then:

Li(ti,0) = [] Plea << (Ka)) . Plew, > " (Ky,))

MACT1 2003-2004. I

Properties of ML I

Asymptotically normal and unbiased estimates:

VN Oy — 6) - N(0,171)

N 42
1 0~ logl(t;,0)
I'= _N; 0000’

MACT1 2003-2004. I

Cake Eating Problem:

Serially Correlated Shocks

e [f ¢ is not iid, then the likelihood is complicated
l@'(ti, 0) = P(é‘il < 8*(KZ’1), ces i1 < 8*(Ki,ti—1)7 Eit; > 5*(Kiti))
e Example: t; = 2

li(2) = P(e1 <" (Ky),e9 > e"(Ky))
= P(ey> e"(Ky)|er < £¥(Ky)) P(er < (K1)

= L e ex —Lu— v)?)dudv —gi(Kl)
- \/%/52 /_Oo (=53 (u = pv)7)dud @(U/ 1p2>

—> for any agent ¢ we have to solve t; integrals: INTRACTABLE.

e use simulation based methods.

MACT1 2003-2004. I

Simulation of Cake Eating Model I

e Given vector 0: compute £*(K,).
e Fix S the size of the simulated dataset.
e For each agent s,

— draw 7' serially correlated taste shocks.

— Compute the date of consumption, t,, as first taste shock
exceeding the threshold.

e This gives a set of .S stopping times.

e Simplified example:

S=1000;

T=100;

ro=0.5;

sig=0.1;

eps=zeros(T,S);
dateconso=zeros(S,1);

for s=1:S

t=1;

do while eps(t,s)<threshold;
eps(t+l,s)=ro*eps(t,s)+rand*sig;
t=t+1;

dateconso(s)=t;

end

end

MACT1 2003-2004. I

Simulated Method of Moments I

e From observed data: construct a moment pu(t;):
— u(t;) = t;/N, mean.
— u(t;) = (t; — t)*/N, variance.
e From simulated data, construct the same moment p(t;(9)).

e The estimator for the SMM is defined as:

/

N s
Osn(Q) = arg min [Z (M(ti) - ;ZM(E(@)) Q'

N S
[Z (mm - u(tf(9))>]

1=1

MACT1 2003-2004. I

Properties I

e When the number of simulation S is fixed and N — o0,
— Ogn () is consistent.
— VN (s — 0)) — N(0,Qs())

where

_ 1 op' (1 0p B o' 1 1 0u op' 1 0p B
Qs(§) = (1+3) [EO o0 aef] Eog v B0y 50 | Eoag i g

where () is the covariance matrix of 1/\/N(% Zf\;l(u(ti) -
Eop(t;(0))).

e The optimal SMM is obtained when Q N =)y ~. In this case,

ST PR TPNST I
Qs = (1+ 3) | By o8

MACT1 2003-2004. I

Indirect Inference I

Use auxiliary model (misspecified) such that auxiliary parameters
on observed and simulated data are similar.

e Auxiliary model: likelihood é(t;, 3).

e Auxiliary parameters from observed data:
N
fn = arg max H o(ti, B)
b g
e Auxiliary parameters from simulated data:
N ~
Buv(6) = argmax [6(420). 9
i=1
e Average value of auxiliary parameters from simulated data :

) 1.
Bsy =5 D B (0)
s=1

The indirect inference estimator égN is the solution to:
Osn = arg mein[BN — Ban (0)) Qv [Bx — Bsn ()]

where {2y is a positive definite weight matrix which converges
to a deterministic positive definite matrix €.

Properties: For a fixed number of simulations S, when N goes
to infinity the indirect inference estimator is consistent and
normally distributed.

\/N(éSN — 90) - N(07 QS(Q))

Denote ¥y (6, 3) = Zf\il log é(tf(9)7 B3).

82woo (907 b(eo))

L P (B0, b(00)
Qs(Q") = (1+§> (9007 (Lo — Ko) ' 0300)
N _ .
(Io = Ko) = = > (We = W)(W, = W)
s=1
with
YN (0, 5
W, = Na(ﬁ)
W=g LW,

MACT1 2003-2004. I

Indirect Inference and Cakes I

Auxiliary model: exponential duration model:

P(t; = t) = Bexp(—ft)
Log-Likelihood of observed sample:

N
InL = In(Bexp(—pt;))
1=1

which has a maximum at:
N
By =1/N Z t
i=1

From simulated data:

so that
o = 575 20 2400

éSN is the solution of:

LN | SN ,
mm NZ: N—ZZQ(@))

MACT1 2003-2004. I

Simulated Non Linear Least Squares I

A "natural” way to proceed would be to look at a criterion such
that:

where 5 = 1/5 5% #5(6)

s=1"

Problem: Not a consistent estimator of 6.

Laffont et al. (1995) proposes a criterion such that:

1 N

S
min - | (i — 17 (0))* - ﬁ > (E(0) — E(9))°

0 ,
=1 s=1

Asymptotic Properties: For any fixed number of simulation S,

) éSN 1s consistent.
o VN(fsy —) -5 N(0,Zgn)

A consistent estimate of the covariance matrix X g y can be obtained
by computing:

Yon = AgnBsnAgy
where 1215, N and 397 ~ are defined below. To this end, denote Vt; =
0t?(0)/06, the gradient of the variable with respect to the vector

of parameters, and Vt; = % Zle Vt?, its average across all simula-
tions.

N S
; 1 S 1 R
N

with dg; a k dimensional vector:

S
ds.(0) = (t: — £(0))VE.(6) + ﬁ S8 (0) — HO)VE(6)

MACT1 2003-2004. I

