32

CHAPTER 3. ASSET PRICES AND CONSUMPTION

Chapter 4

General Equilibrium under
Uncertainty

4.1 Environment

4.2 Arrow-Debreu Markets

Definition: A market equilibrium is a state contingent consumption plan
= {2}, = {c}, {ci(s)}5_,}]_, and state contingent prices p = {po, {p1(s)}5_,}
such that

1. Consumer 7 takes prices p as given and chooses the allocation z* that
solves

max_ U(ch) + A5 mU((s)),

{ehsei(9)}y

st poch+ e pi(s)h(s) < poyh + o ipa(s)yi(s),
>0

chci(s)
2. Markets clear

MUMHHQMV < MUMHZ\W =Y,
SLd(s) < S i(s) = Y(s), Vs,
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Example 1 (Equilibrium prices): Consider a two-state economy where
consumers have preferences of the form u(c) = Inc. The consumer problem
becomes

m v
max o_ymslog(ci(s)),
o, et '

st DL m(s)e(s) < T p(s)wi(s),

d(s)>0

The first-order conditions of the consumer problem are given by

that implies an equal expected consumption expenditure across states. For-
mally,

mp1()ei () = mipr(s)ci (s)
Summing across all agents we have
Tspr()le1 () + -+ e ()] = mpa(s)lei(s) + -+ ei(5)]

or

Tp1()Y (5) = mipa(s)Y (s)

Rearranging terms
nG) _mY(s)
p1 va Ts M\CV
Example 2 (Idiosyncratic Uncertainty): Assume that the aggregate
endowments are constant across states, formally, Y'(s) = Y(j) for s and j.
Then, the equilibrium prices are given by

pi(s) =7
Substituting in the consumers FOC we obtain perfect risk-sharing
ci(s) = ci(4)

for all i and s. From the households budget constraint we can compute the
equilibrium consumption given by

ci(s) = ol mai(s),
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Example 3 (Aggregate Uncertainty): Assume that the aggregate endow-
ments fluctuate across states. In particular, consider an stochastic growth
rate of the form Y(s) = ¢(s)Y (1), where g(s) > 0. Then, the relative prices
between a given state s and the normalized state 1 is

m() _ mg(s)Y (1)

m(l) m Y(1)

or

4.3 Sequential Markets

Definition: A market equilibrium is a state contingent consumption plan
r = {2}, = {c,{ci(s),bi(s)}5_,}}_, and state contingent prices ¢ =
{q:(s)}5_, such that

1. Consumer i takes prices ¢ as given and chooses the allocation 2 that
solves

max Uley) + 8 wu 7, U(c4(s)),
gy U@+ Premlla

2. Markets clear

SLbi(s) <0, Vs,
MUMH?.MV < MUMHHR.H = Yo,
Sici(s) ST i(s) =Y(s), Vs,

Example 4 (Equilibrium prices): Consider the same example of the
previous section where we ignore time 0 consumption, but not the asset
markets. The consumer problem becomes

S i
X > em17slog(ci(s)),
c108),01(8) 551




36 CHAPTER 4. GENERAL EQUILIBRIUM UNDER UNCERTAINTY
st X5 q(s)bi(s) = v
A(s) Syh+bi(s) Vs,

Let A and pu(s) denote the Lagrange multipliers of the budget constraints.
The first-order conditions of the consumer problem are given by
Ts

TR i(s),
a(s)X' = 1 (s)

Rearranging terms we obtain an equal expected consumption expenditure
across states. Formally,

N

701(5)ck(5)

T (f)er ()

Summing across all agents we have

mar(DNle1 () + -+ (D] = maa(s)[ei(s) + .. + c(s)]

or
@lf) _ mY(s)

auls) T Y())
Substituting into the FOC we obtain

ym o _Y()

a@ (s

According to this expression, individual consumption is perfectly correlated
with output, and aggregate consumption. In particular, if AY (s) then Adi(s)
changes in the same magnitude, but is imperfectly correlated with individual
income. The expected individual income determines the levels, but not the
ratios across states of nature.

Example 5 (Idiosyncratic Uncertainty): We can use the previous exam-
ple to compute the implied portfolios. Consider a specialized example with
only two shocks. In the second period,

(1) =ci(2)

Now, we can compute the demand for Arrow securities combining time 0 and
time 1 budget constraints,

a(1)bi(1) + @ (2)5;(2) =
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(1) +61(1) = 51(2) +bi(2)
Rearranging terms we obtain,

Bi(1) = 1-m(2) - y'(1)]
b(2) = 7y’ (1) - ¥ (2)]

4.4 Financial Markets

Ummzmiosu A market m@:EUE:E is a state contingent consumption plan
x = {a'} ) = {c, {4 (s)}5 . {al;}]_,}L, and state contingent prices @ =
{Qu}, ‘such that

1. Consumer i takes prices @ as given and chooses the allocation 2’ that
solves

max U(cy) + B, mU (€ (s),

s.t. ch
ci(s) —yils) <
v

0OQ:A

f\ MU«H_QGQMQQ
ri(s)ay,(s) + ... + ry(s)ai (s), Vs,
0

2. Markets clear

Sal(s) <0, V)
S <Yy =Y,
Yld(s) ST Lwi(s) =Y(s), Vs,

It is direct to show that all these economies are equivalent with complete
markets. In particular, the sequential market structure is a special case of
the financial markets economy, where the return of the asset in all the states
but one are zero. The equilibrium prices have to satisfy the no-arbitrage
property, so we can use the equilibrium allocations from the other economies
to compute the price of any asset.
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4.5 Pareto Efficiency

The social planner problem is the easiest way to find the optimal consumption
allocations. Then, we can use the second welfare theorem to compute the
implied equilibrium prices. Formally, the social planner solves

max 3\ [U(eh) + B mU (e ()]

MWHH@NH = M\Mr
I
Siail(s) =Y (s), Vs
where MMHH?. = 1. Let o be the Lagrange multiplier of the time 0 resource

constraint, and p(s) the multiplier of the resource constraint at time 1 in
state s. The optimal allocation satisfies

ANU'() = a
BT U’ (c(s)) = p(s)

together with the s 4+ 1 resource constraints. Combining time 0 first-order
conditions we have

MU' () = ... = MU'(ch)
In a symmetric equilibrium, individual consumption is a constant fraction of
aggregate output. At time 1 we have a similar result.
MBmU'(el(8)) = ... = A B U’ (ch(s)),

or
U'(ei(s)) = ... = U'(e1(s))
The optimal allocation implies perfect insurance within the state. Individual
consumption is only correlated with aggregate consumption, but not individ-
ual income shocks. That is
;1
cy = =Yo,
0 7 0
i 1
Gs) = T1i(5)
Higher aggregate shocks lead to higher individual consumption levels, but
the distribution does not matter. The determinate for asset market prices
are not consumption levels, but ratios. Therefore, the ratio of consumption
or marginal utility does not usually depend on the relative weight that the
planner assigns.

Chapter 5

Competitive Equilibrium with
Complete Markets

5.1 Environment

e Finite number of states s € S

o 7(s'/s) = prob(sy1 = s'/s; = s) is a first-order Markov chain
mo(s) = prob(sp = ) is the initial distribution
7(s') is a sequence of probability measures to achieve a particular his-
tory

st = (8¢5 811, 8t-25 -5 51, 50)

This probability can be computed via recursion
7 (s') = m(se/si-1)m(se-1/51—2).--7(51/50)7(50)

This is the unconditional probability when sy has not been observed yet.
When sg has been observed, we then have the conditional probability

7(s'/50) = m(8¢/8-1)7(8t-1/81—2)-..7(51/50)
S0)

Finite number of agents i € T

where 7(s'/so) = m(s')mw

e Endowment for each household yi = y'(s;) is a time-invariant function
that only depends on the the shock at time t.

39
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e Endowments are publicly observable
e An allocation for agent i is defined as state contingent function ¢ =
{a(s)}2

e Preferences are represented by
U(e) = By pulc)
=0

or

U(e) = S5 8(s! fso)ulci(s1)
=05t
where the utility function u(-) satisfies v’ > 0, " < 0, C? and the
Inada conditions lim; o u'(c) = +o0.

L]

An allocation is a list of sequence of functions ¢! = {c}(s")}2, for all 4.
An allocation is said to be feasible if it satisfies

MZ - mg@v —¥(s,)

Notice that consumption can depend on history, but the period income
only depends on the realization of the shock.

5.2 Arrow-Debreu Markets

Household trade dated state-contingent claims to consumption. There is a
complete set of claims. Trade takes place at t = 0 after the shock has been
realized. The price of a claim on time ¢ consumption contingent on history
st is denoted by p(s?). The superscript 0 refers to the date at which trades
occur, while the time subscript ¢ refers to the date that deliveries are to be
made. A price system is a sequence of functions {p(s')}2,.

A given household i solves

U(c¢') = max WWMQHi%\m&ﬁ?W?Jv

t=0 st

sto YN = ST p( )y (s0)

t=0 st t=0 st
it
c(s') >0
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The single budget constraint implicitly assumes complete markets because it
allows un restricted trade in all states of nature.

Definition (Competitive Equilibrium): A competitive equilibrium is a
feasible allocation {c'}/_, = {{ci(s")}°,}/_; and a price system {p)(s')}2,
such that the allocation solves each household problem.

Proposition: The competitive equilibrium allocation is not history depen-
dent.

é(s) = ()

Proof: The first-order conditions of the consumer problem are given by
Bra(st /ol (ch(s1)) = 7'p0(s")
For two different consumers that face the same prices we have

LCIEE
W) P
The ratios of marginal utilities between pairs of agents is constant across time
and states. In general, that will not imply constant consumption levels, but
proportional. Latter we will show that in absence of aggregate uncertainty,
consumption will be constant across time and states of nature.

The relative consumption is given by

-1

s = (%)
This fact comes from combining the first-order of the consumer problem with
the resource constraint

I

= MUW\?V =Y(s)

i=1

If the right-hand side does not depend on history, it only depends on the
existing shock s;. Therefore, the left-hand side does not depend on history
either.l

The equilibrium price function is derived from the consumer first-order

conditions .
w'(cy(sY))
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At t = 0, we also have

or

o G
) = (s o) S

where pJ(s”) = 1. The ratio of expected marginal utilities gives the stochastic
discount factor, and the return of the state-contingent claim is one unit of
consumption. Therefore, the price has to be lower than one. Once we deter-
mine the consumption allocation, we can compute the equilibrium prices.

5.2.1 Risk Sharing

Economist are interested on the insurance properties of financial markets,
and increase welfare. Consider a utility function of the form

QH\Q

u(e) =

1—-0

where ¢ > 0. The optimality condition of the market equilibrium implies

vt

. S\ 3
a=c A)ﬂv vt

Complete markets assumption implies that consumption allocations to dis-
tinct agents are constant fractions of another. With this preferences, in-
dividual consumption is perfectly correlated with aggregate output or con-
sumption, but is not correlated with individual income y'(s;). The fraction of
consumption that each agent receives is independent of s'. Hence, the model
exhibits an extensive cross-state and cross-time consumption smoothing,.

or

5.2.2 No Aggregate Uncertainty

We consider an economy with two types of consumers, and a continuum
of each type. The Markov process s; takes place on the unit interval s; €
[0,1], such that y'(s;) = s and y*(s;) = 1 — 5. In the absence of aggregate
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uncertainty, we know that the optimal choice implies perfect insurance &. =
€0,

t Q\A&Am“d _ 7 st/s
s gy — ) = B0

That is in equilibrium, we have

W(el(sh) _ ud(el(s")
1)~ @A)

From the first-order conditions of the consumer problem, we have

Oﬁmwvv

o'
s = (st o) = E
Substituting the first-order condition into the rcamg constraint

S5 Bl (s /o) i@ [}

aom_

—y(s)] =0

n\g:& =y (s)] =0

t=0 st

given that :Am@\{, # 0, then it must be the case that

oS8t (s fso)lch — y(s1)] = 0

t=0 st

or

GE TR ) = ST (s 50}y ()

t=0 st

where > 7(s'/sg) = 1, so we have
st

o )3T A' (s fs0)y ()

t=0 st

Finally, we check feasibility

= (1= B S8 (s /5oy (s0) + (1 — B) S8 (s" /o)y (s1)

= (1= AE A o)) + (5] = (1= H)SHS(s o) =1
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Using the optimal consumption levels, we can compute the implicit asset

prices. )
W(ci(s")
i
with constant marginal utility, and using the usual normalization % = /(ci(s))
and p(s°) = 1. We obtain

p(s") = B'a(s'/s0)

pi(s") = B'7(s"/50)

where remember that m(s'/so) is the conditional probability for this partic-
ular history when sy has been observed. An important feature is that prices
do not depend on the idiosyncratic income shock. It only depends on the
particular realization of a given history.

We can further specialize the example assuming a particular endowment
process for both consumers. Formally, assume that y* = (1,0,1,0,...) and

=(0,1,0,1,...). In this case p(s*) = 8*. The implied consumption alloca-
tions for both consumers are given by

b= (1= B) S8 (s' fso)y'(se) = Tsmmﬁ

t=0 st

or
2= (0=p _ 1

T T U-pI+h 1-5
and for the other consumer we have,

The first-consumer is relatively wealthier because it receives the high shock
on the first-period. That allows high to consume more because the present
value of his/her future income is higher.

5.3 Contingent Claims or Sequential Markets
Structure

In a seminal paper Arrow (1964) showed that one-period securities are enough
to implement complete markets, as long as a new one-period market re-opens
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for trading next period. In this economy, trade takes place at each date and
state t > 0 using a set of contingent claims to one-period ahead state con-
sumption. We prove that with a full array of these one period set of claims,
the sequential market structure attains the same consumption allocation as
the competitive equilibrium with Arrow-Debreu market structure.

In this economy, the sequential budget constraint is given by

ci(se) + ,Mm_@?t\m; 11 (Sea1) = yi(se) + 0y(se) Vs

where Q(s;+1/5:) denotes the price of one unit of consumption t time ¢ + 1
contingent on state s;4; given that today is state s;. We assume that this
function does not depend on ¢. Notice that consumption only depends on
the existing shock s;, and does not depend on history. All the history for
household i is summarized by its present wealth given by bi(s;).

A given household 7 solves

Definition: A sequential equilibrium is an allocation {¢'}_; = {{c{(s;), b, (s41) 20 ey

and a price system {Q(s¢11/5¢)}i2, such that
i) the allocation solves each household problem, and

U(c') = max WJ\MJ\QH s'/so)ulci(s))

t=0 st

sto ci(s) + 2 Q(ser1/s)biyy (s141) = yi(s) +bi(se) Vs

s+l

() 20 biyy(sen) = —B(s) Vs

ii) Markets clear

MUFJL 5i41) =0

Proposition: If {¢'}/_, = {{ci(s")},}._, is the solution of the Arrow-
Debreu competitive equilibrium, this allocation also is the solution of the
sequential equilibrium.

Proof: From the first-order conditions of the sequential problem we have

Qﬁwui\mb = Qim“\m“vi
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together with a transversality condition

lim 37 Q(sr41/50)b41(5041) = 0

t—=00 G

That implies b{_; (s,41) > 0if Q(s¢1/5¢) = 0, 0r bl (s"71) = 0if Q(s441/5¢) >
0. The first-order conditions of the Arrow-Debreu equilibrium are

20, (sM0) (el (™))
e =Sy
That implies 0 i1
Q(s141/51) = %

Finally, we need to show that the Arrow-Debreu consumption allocation
satisfies the sequential budget constraint. In this case, we choose the initial
level of wealth so the allocations are tha same bj) = 0 for all i. Then, the
porfolio decisions should be the same in both economies. To show it we need
to add up all the budget constraints across states of nature s and across time
t, basically across all histories s'. We start at time ¢ = 0

1 Po(D)eo(1) = yo(1)] = po(1)BH(1) — 2ph(1)Q(s1/1)bi (1)

-~
Il

o
w
Il

t=1 s=5 PUS)[E(S) — 5 (9)] = p(S) Muc Q(s1/9)bi(S)
If we add them up we have

2or6(s”)[ea(s°) = ya(s0)] = pg(s°)b(s0) — 2pb(s')Q(s1/50)bi (51)
. . T

For the next periods we have

MUF u ﬁ v S?Hv_ HMHN%?H : s1) MU@N Q (s2)

MU%MVLA%LVTMLA%\J - N\MLA&\HV_ = MUF Ca D) 1(se-1) — MUFA Q?L

st—1 ﬂl st

MEWA Nﬂmﬁv - @va“v_ MU.ETL TLV TLAMILV

st st+l

I
™M
Z?
E
5[
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If we add them all up,

—3o(s0) ]+ 2P (") €l (s")=pi(s0)] = E P (s b (s14)

st+l

if we take the limit in both sides de have

ST () — (0] = lim gl (551 (s00) = 0

t=0 st t—00 11

5.4 Pareto Efficient Allocations

It is useful to have a welfare measure to compare the outcomes of different
trading mechanism. We focus on Pareto efficient.

Definition (Pareto Efficiency): An allocation {c'}/_, = {{ci(s/)}20},

is said to be Pareto efficient, if there not exists m:oﬁrmﬂ feasible m:oom:o:
{¢@}L_, such that

U(ch) Vi
> U(d) some i

The set of Pareto efficient allocation can be calculated by computing
the so calles social planner problem. Consider a social planner that has to
allocate resources among a large number of households. We assume that each
consumer receives a time invariant discount rate A’ € (0,1), and 31 M = 1.
The benevolent planner maximizes

= ,mdmx MU\/ MUMUEHw s'/so)u(ci(s"))

{ci 1i=1 t=0st
I , I
sto Yoc(sh) =2 y'(se) =Y(se)
i=1 i=1
;?J >0

Let p denote the Lagrange multiplier of the resource constraint. The first-
order conditions for a given consumer i with respect to ci(s!) are

N Bt (st /so)u'(
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Notice that marginal utility of consumption only depends on the aggregate
variables, not on the individual income shock y*(s;). Formally,

1)) — H
W) = STy
or
] I -1
0 —
s = Aﬁ@ia\év .
For two different consumers i and j we have
NGt (s'fso)u(ch(s") _
N Bim(st/so)u'(c] (s'))
or

w(ci(sh) _ N

w(c(st) N

Clearly, the allocation of consumption across households depends on the rel-
ative weight that the social planner assigns to each household. In particular,
if A > M then u/(ci(s")) < /(c/(s")), and ci(s') > c/(s'). The agent with
higher weight receives more consumption. In a symmetric allocation A’ = M
all agents receive the same allocation, ci(s') = aY (s;), where a = 1/1. Indi-
vidual consumption only depends on the aggregate shock, not on the idiosyn-
cratic labor income shock. Finally, we can replace the optima consumption
levels on the first-order conditions

:\Al?“vv o' (@Y (sy)) N

w(d(s))  w(aY(s)) N

and obtain A = X\’ that both agents need to have the same initial wealth
to achieve the symmetric allocation. If all agents do not have the same
initial wealth, it is necessary to implement lump-sum taxes to achieve this
allocation.

5.5 First and Second Welfare Theorems

First, we want to prove the so called first-welfare theorem. The theorem
highlights some of the nice welfare properties of complete markets economies.
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I

Proposition (First-welfare theorem): An equilibrium allocation {c¢'}/_, =

{{ci(s")}20}_, in the market economy is Pareto efficient.

Proof: Suppose the contrary, then there exists another feasible allocation
{@}L_, that Pareto dominates the equilibrium allocation. At the equilibrium
prices {pY(s')}2,, this allocation has to cost strictly more than the endow-
ment for the individual that can be improved. Otherwise this agent is not
maximizing utility. That is

0 X 00
S (s)E(s!) > oS w(s)y (se)
t=0 st t=0 st
for the other consumers this constraint is satisfied with equality. If we add
up all the constraints we find

S SR > ST ()

t=0 st t=0 st i=

S5t () - Vi) >0

t=0 st

given that p?(s') > 0 for all ¢ and s, the alternative allocation {¢'}/_; is
not feasible. That contradicts the assumption of Pareto efficient allocations.
Clearly, there exists better allocations but there are not feasible.ll
Proposition (Second-welfare theorem): An allocation {c¢'}_, =
{{ci(s")}32,}_, is Pareto efficient, there exists a price system that supports
this allocation as a market equilibrium.
Proof: If we compare the first-order conditions of the social planner

N BT (s o) (ci(s")) = p
with the competitive equilibrium from the previous section
B (s /so)u/(ci(s")) = 7'pi(s")
It is clear, that both economies will deliver the same allocations if p/A\' =
7'pY(s'). There exist a vector of relative weight {\'}_,, such that the solution
of both economies is the same given the initial distribution of entitlements.

In particular, we can use the social planner allocations two compute the
optimal consumption, and the implied equilibrium price system.
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For the symmetric case, that is A\ = ... = M, where c{(s) = aY(s,) for
all ¢ and o = 1/I represents the individual share on aggregate output.

W (aY (s1))

p(sh) = Qni%\gvg

The price of state-contingent claims depends on the comovements of output.ll

Assume that the changes in aggregate output across time and states is
given by Y (s;) = g(s:)Y (so), where you can think of Y(sq) as the average
level of output. We can rewrite this equation as

0/t at. (ot w'(ag(s)Y (s0))
-8 ——t 0
) = B! fs0) g
In the absence of aggregate uncertainty g(s;) = 1 for all s and ¢. Then, the
equilibrium prices are given by

p(s") = B (s'/50)

We obtain the same pricing that with risk-neutral preferences u(c) = ¢. In
the presence of aggregate uncertainty and isolastic preferences u/(c) = ¢77,

(ag(s:)Y (s0)) "

O(st) = Atr(st/s0
) = (s o)

or
p(s") = Bim(s'/s0)g(s0) 7"

The price of consumption goods is lower in states with high output growth,

and higher in states with low ouput growth. Agents with high endowments

in periods with low output are relatively wealthier.

One way to test the model is to use estimate a process for consump-
tion growth, and see whether the implied equilibrium prices satisfy the some
properties observed in the data.

The advantatge of the second welfare theorem, is that we can use the
social planner problem to compute the optimal allocations, and the used
them to derive the equilibrium prices. Notice that the equilibrium prices do
not depend on the social planner weight, because they depend on the ratio of
marginal utilities, and this ratio is unaffected by the weight. We will exploit
this result to solve Lucas model of asset prices.
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5.6 Lucas Model of Asset Prices

The two previous specifications do not specify the market structure that
yields a constant interest rate for example. Lucas asset pricing model uses
a simple exchange economy to determine the pricing function. The economy
considers a large number of identical agents which receive no labor income.
We consider and economy populated by a large number of identical house-
holds solving

o]
max E M Brulcer)

=0

{ct:se41}

s.a. 4 piseer = s(pr + dy)
Si41 > —B

where B is a large positive constant that never binds but prevents Ponzi
schemes. Notice that we have set y; = 0 in all ¢. The only durable good is
a set of "trees" which are equal in number to the number of people in the
economy. At each period ¢, each tree yiels a fruit or dividend in the amout
d, to its owner. We assume that the dividend is nonstorable, but the tree is
perfectly durable. The solution of this problem yields

pe = @E%@r& +di1)]

together with a transversality condition lim; . 374 (Ct1;)pr+; = 0. This con-
dition says that in the limit consumer will not hold assets if the price is
positive, or will hold positive amounts if the price is zero.

The competitve equilibrium consumption allocation of this economy can
be readily be computed once we notice that the economy can be treated as
autarkic. Because preference and endowment patterns are the same across
individuals, there can be no gains from trade. In equilibrium it must be the
case that ¢; = d; because the utility function u(-) is strictly increasing (that
means no satiation), and the dividend is the only source of consumption
goods. We can deal with a representative consumer directly.

In equilibrium, prices have to be such that markets clear. That means
that the total amout of borrowing in the economy is zero, and the share
holdings has to be one, s; = 1. Sustituting the equilibrium conditions in the
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Euler equation, and using the law of iterated expectations we conclude that
the price of a share must satisfy

u'(d,
= E; MUQx Afwwv&?{ + E; erﬁowo Q\ A&T{ VFI

The transversality condition of the consumer problem rules out solutions that
include a bubble term. If the last term where positive E; im;_.oo 870/ (dysj)pry; >
0, the marginal utility of selling shares excess the marginal utility of hold-
ing assets and consume the expected flow p,u/(d;) > E; MMM~ B (dysj)dis -
Consequently, all households would sell share to increase their consumption,
and as a result the price of a share will fall. We have a similar argument

if the additional term is negative. There in equilibrium it must be the case
that

u'(d,
pe = E; M Q\ IJ &?&

u'(dy)
or .
pe=E; MQ?{.&TL
=1
where myy; = [u/(dyy;)/w (de) represents the stochastic discount factor.

This equation is a generalization of the random walk theory of stock prices,
in which the share price is an expected discounted stream of dividends but
with a time-varing and stochastic discount rate m,; that is different from
one as in the previous case. We can decompose the price of the asset in
two terms: the discounted value of the consumption flow and the correcttion
term for risk. Formally,

e = (Ee(muy ) Ey(diyg) + cov(mysj, diyg))

™

<.
Il
-

with risk neutral preferences we have that m;.; = %, and with perfect insur-
ance we have that u'(¢;) = Ey/(ciq1) and cov(myyj, digj) = 0. So the price
of an asset is the discounted sum of future dividends

e = M Ey(diy),
j=1
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In general, that will not be the case and the asset will be adjusted by the
premium factor. Given that ¢; = dy, it must be the case that when there is
a good shock Adyi; — Acy; — V' (¢rq5) = Vg = v/ (cip) /0 (¢e). Then,
cov(myyj, diyj) < 0 so we have

De < MU Ey(misj) Ey(di;)
Jj=1

if we normalize E;(m,;) = 1, we have that the price of a risky asset should
be lower than the expected discountes stream of its dividends. That also
means that the return of that asset is higher because otherwise households
will not buy this asset.

This version of the Lucas model has been used to generate allocations
and price of assets, and compare them with the data. These asset pricing
models can be constructed as follows:

1. We describe the preferences, technology and endowments. Given a
particular market structure where agents are allowed to buy and sell
assets, we solve for the equilibrium consumption allocations.

2. Sometimes there exists a planning problem whose solution equals the
competitive equilibrium. Therefore, we can equate the consumption
that appears on the Euler equation, and compute the implied asset
price at time ¢ as a function of the state of the economy at ¢.

In our endowment economy, a benevolent social planner would solve

max Ey MU Brule)

{ee} purs
s.to o < dy,
¢ >0

After substituting the consumption allocations into the priceing equations
we derive the standad equation for a price of a share

u'(de)pe = E[Bu' (de1) (Per1 + i)
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or
o= ByBmiami]
where my1 = u/(c1) /W (¢r) and @1 = (pr1 + dig1). Next, we want to
study some special cases
Example 1: Logarithmic utility function
Consider a utility function of the form u(c;) = Inc;, where u/(¢;) = ¢; *.
If we replace this expression in the pricing equation we obtain

divj

N oy
bt = @MQ\L&T&
j=1

rearranging terms
o0

P = d M ,,,%.
j=1

or
1

1-p

This equation is an example of an asset-pricing function that maps the
state of the economy at ¢, d; into the priceof a capital asset at ¢. In particular,
the dividend at time ¢ is all the information requiered to predict the price. In
this particular case my; = d;/d;;; and does not necessarily need to be one.
The price is a linear function of the aggregate state of the economy. This is
a property that we will exploid in detail in this chapter.

Example 2: Risk neutrality or perfect insurance

If the utility function is linear in consumption, u(c¢;) = ¢, then the ratio
of marginal utilities is constant. That is my; = u'(c4;)/w'(¢;) = 1. Then,
the price of a share at time ¢ is

Pt dy

oo

P = MU B Eidy

j=1

in this case the price of the share depends on the stochastic properties of the
dividend process.

e First-order autoregressive process: If we assume that dividends
follow a first-order autoregressive process

diy1 = a+ pdy + €41
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where €4, is white noise, that is E(g;11) = 0. Then, the expected
value of the dividend is at t + 1 is
Ey[dy11] a+ pdy

Edio) = Ela+ pdip1 + €p40) = a + pEldi1] = a + p(a+ pdy)
Eildia] = a+ pEldis] = a(1+ p+ p*) + pd,

Eldyi] = a(l+p+p*+...+ 0"+ prd,

or
p=> Flal+p+p +...+p ") +7d]
j=1
p=aY B 0+ (Be)d,
j=1 j=1 j=1

e Li.d. shocks: If we assume that the process is independent and
identically distributed according to ¢ ~ N(0,0?), then

dy = a+ €441

the price of the dividend flow is given by

e}

p=Y FE(a+en)=

=1

«
1—

In this case prices are set to the mean value of the dividend process.

5.6.1 Equivalent Allocations

Next, we show that the Lucas model, or asset structure yields the same
allocations that the Arro-Debreu markets

Proposition: If {¢'}_; = {{ci(z), sl 1(2)}2}, is the solution of the
Lucas model, then, the consumption and asset allocation also is the solution
of the Arrow-Debreu competitive equilibrium.

Proof: We start with the sequential Lucas constraint for a particular real-
ization of the dividend shock.

e — Y = Se(qe + di) — @usepa
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we define the Arrow-Debreu prices as
Pt _ Gt [
Pt+1 qt
or 0y = pr1(qrr1+dis1). Now we multiply each sequential budget constraint
by is respective price py, pri1, Pri2, ... Formally, we have
piler =yl = pe(@r + di)se — Pe@esia
PesrfCrer — Ye1] = Proa(Qers + di1) s — PraadesrSeya
Pryalcira — Yera] = Prro(Gere + di2)Stra — PryaliraSirs

If we add them up

Mu? [co—ye) = pe(qitde)se—se41[peqe — Per1(esr + dea)|=Seralperr@een — Peva(Gere + digo) 4.
t=1

=0 =0

Now we need to solve for po(qo + do)so

PogoSo + Po
where po = pi(q1 +d1)/q

pi(q +di)
qo
that is

Goso + podoso = p1(q1 + di)so + podoso = prq15o + (p1di + podo)so

M PediSo
t=1

Combining all together we have

=)

o0
M? lee =yl = MP%.@O
=1

=1

Now, we just need to add-across states of nature

fe ] o0

M Mww?h:ﬂmo —y(sy)] = M Mﬁm?“v&%&vmo

t=1 g t=1 g
The model is equivalent to the Arrow-Debreu complete markets model, where
agents receive an endowment or initial share on the tree, sg. The price of the
shares can be used to price the equivalent state t — 0 contingent claims.
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5.6.2 The Random Walk Theory of Consumption

The next two theories emerge from studying marginal conditions for the
consumer’s problem and imposing some restrictions upon them. As we will
see latter on, it is possible to describe simple market equilibrium setups that
deliver these restrictions.

First, we analyze the randome walk theory of consumption formulated by
Hall (1978). According to Hall the evolution of future consumption follows a
random walk, and no variable in the information set can be used to predict
it.! This theory is based on the stochastic Euler equation derived in the
previous section. Formally,

u'(c;) = BE U (craa) Ry

Hall assumes that in the economy there exists a risk-free rate asses with
constant return R, = R > 1. Under this assumption we can rewrite the Euler
equation as

() = BEW (ci41)| R

or
Efu'(cen)] = (BR) ' ()

This equation shows that the marginal utility of consumption follows a uni-
variate first-order Markov process and that no other variables in the infor-
mation set help to predict. We can rewrite the previous expression to include
an error term on it. Formally,

Eyfu/ (cin)] = (BR) ™" (cr) + €01

We can further specialize the problem if we assume some particular prefer-
ences.

Example 1: Quadratic utility function

Cosnider a simple quadratic utility function given by

u(cr) = a + bey + de?,

'Put in prespectivr this theory
Cy=f(Y1)

and discuss the PIH in constrast with standard Keynesian theory.




