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CHAPTER 6. DYNAMIC FIRMS: THEORY OF INVESTMENT

Chapter 7

Competitive Equilibrium with
Incomplete Markets

7.1 Environment

We consider an economy with discrete time periods ¢ = 0, 1,.... There are
two types of consumers ¢ = 1,2 and a continuum of each type. We denote by
¢! the single consumption good consumed each period, and (cj, ci,...) € I+
is the infinite vector of consumption. Individual preferences are given by

Ulch ey ) = (1= B) > Bulc))
t=0

where the utility function satisfies v’ > 0, v” < 0, Inada conditions and the
individual discount rate is 8 € (0, 1).

We assume that households have two forms of income/or capital: human
(labor) and physical (trees or land). Let w; be services of human capital,
where w; € (w?,w’) good and bad endowment, w? > w’. We assume that
productivity fluctuates according to the transition matrix

_ |Teg mg| _ |0 1
CEET
Consequently, productivity alternates, w; = w9 = w;,1 = w’. With respect
to the other form of income, let d; be the return on physical capital, where s}
denotes the share on the capital stock at t. The aggregate resource constraint
is
&+an€.¢+€@+&“€
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92CHAPTER 7. COMPETITIVE EQUILIBRIUM WITH INCOMPLETE MARKETS

7.2 Equilibrium Prices in a Liquidity Con-
strained Economy

Next, we define the notion of market equilibrium in a liquidity constraint

economy. Then, we focus in the solution of a symmetric steady state alloca-

tion. We distinct the solution where the liquidity constraint binds, and one
where it does not bind.

Definition: A market equilibrium in this economy is an alloca-
tion {{c},01,1}20} 21 and a sequence of prices {q;,r:}2y, such
that

e Consumers solve

max(1 — ) MUQSA@U

=0
st it qsiy Swl (g +d)s;
5i>0, sb given
e Goods and financial markets clear
gt =w+u’+d=w WVt
si+si<1 Vit

We focus the attention on the steady state of both economies. We want
to compute the decision rules for both shocks.
o9 if wi = w9
& if wi = wb
Because ¢/ + ¢ = w we can characterize the symmetric steady state by
a single number ¢¢, that is ¢ = w — ¢9. The analysis uses the first-order
conditions to compare the consumption paths is both economies. The Euler
equation of this problem is given by
u'(ch +d -
#WF (=0if 5" > 0)
Bu'(ci11) qt

The consumer with w9 can by as much capital for the consumer with w®,
that is constraint by s* > 0.
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7.2.1 Liquidity Constraint does not bind

If the constraint does not bind, one possible equilibrium is a symmetric equi-
librium. In particular a symmetric allocation need to satisfy the aggregate
resource constraint ¢* = ¢ = ¢ = (w¥+w’+d)/2 = w/2. The Euler equation
for a symmetric equilibrium is also satisfied. Formally,

V() q+d  u(P)

Bu’(cb) q  Bu(c)

or
1 q+d

B q
Then, the equilibrium prices satisfies

"oT55

The allocation in a symmetric equilibrium satisfy

e Consumer first-order conditions,

e Aggregate resource constraint,

o Consumer budget constraint,

e Financial markets should clear

From the aggregate resource constraint we have

[ —w)+ [ —w]=d
substituting the budget constraint for each household
[(p+d)s" —ps] +[(p+ d)s* —ps’] =d
rearranging terms we have
(p+d)(s" + %) —p(s" +57) = d.

When the financial markets clear s® 4+ s = 1, then, the aggregate resource
constraint as well as the consumer budget constraint are satisfied. Now, we
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can compute the steady state trade associated to the optimal consumption
level. Formally,

| €

— (p+d)s" — ps”,

= (p+d)s? — ps’,

IS )

W
W
2

We can solve for the optimal share distribution by solving a linear system of

equations. That is
p+d —p|[s"] _[¢—wf
-p p+d| |5 |4

Example: Consider an economy where w? = 8 and w® = 1, where d = 1
and = 0.9. If the utility function is u(c) = Inc. The symmetric equilibrium
allocation implies

w=w!+w+d=10
Then, we have ¢* = 10/2 = 5. The equilibrium prices for shares in the tree

are given by
0.9

1=
1-0.9
Now, we can compute the portfolio holdings of each individual

#1100 -9 7' [-3

s |-9 10 4|
The asset shares for the good and bad state are s’ = 0.648 and s? = 0.316.
As we can clearly, see in the example the liquidity constraint does not bind.

p= 9,

7.2.2 Liquidity Constraint does bind
The symmetric of the shocks implies for consumer with the good shock

\Q &
tﬁmvHQLﬂ 91

pu' () q
and for consumer with the bad shock.

W) ard
m:\?@ Q
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Then, MRS are not equal across consumers

q+d /() u'(w— )
¢ Buw-o) = Bl

The MRS are not equal across consumers. The equilibrium prices are de-
termined by the individual that it is not borrowing constraint. The first-order
conditions for the constraint are not important to compute the equilibrium.
In this economy, the constraint agent is the individual with the bad income
shock that would like to borrow to insure consumption fluctuations. Then,
from the Euler equations we obtain

¥ =1lands"=0.
From the consumer budget constraint with the good shock
d+qg=wI=>q=wl -
From the consumer budget constraint with the bad shock
=t (g+d)=qgrd=c"—ub

When the borrowing constraint binds, we have to different ways to com-
pute the equilibrium allocation and prices in the economy. We have to solve
this functional equation

qu' (") = Bu/(w — ') (g + d)
together with the budget constraints.

o Compute equilibrium allocation: We proceed by replacing the bud-
get constraint into the FOC of the unconstrained consumer

W(d)  q+d -

Bu! () q wI — 9

using feasibility ¢® + ¢* = w,
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Rearranging terms we obtain,
FE(e) = /() (w? — ) — B/ (w — ) (w — ¢ —w")

The equilibrium solve the functional equation on ¢?. Next, we derive some
properties of the equilibrium for this economy.

Proposition 1: The behavior of the economy can be charac-
terized by the sign of the F(c?) function: 1) If the borrowing
constraint binds, F¥(c?) = 0, then ¢ > ¢. 2) If the borrowing
constraint does not bind, F*(c?) > 0, then ¢/ = c’.

e Compute equilibrium prices: We proceed in a similar fashion, but
we substitute allocations into the Euler equation to derive the equi-
librium prices. From the consumer budget constraint with the good
shock

¢ =w—q,

and from the consumer budget constraint with the bad shock
d=wt+(g+d)

Then,
w'(w? —q) q+d

B+ @+ D) d
Rearranging terms we obtain,

m,hAQV _ E\AE.Q — Qv _ ,Q AQ + &V

u'(wb+ (¢ +d)) q

The equilibrium solve the functional equation on g. Next, we derive some
properties of the equilibrium for this economy.

Proposition 2: The behavior of the economy can be charac-
terized by the sign of the F*(q) function: 1) If the borrowing
constraint binds, F*(q) = 0, then ¢ > c’. 2) If the borrowing
constraint does not bind, F¥(q) > 0, then ¢? = c®.
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7.2.3 Short Sales Constrained

In the previous model we assumed, s; > 0. Now, we want to relax this
assumption by setting si > —A. In the borrowing constraint case

st=—A
sT=1+A
Substituting this decisions in the households budget constraint we find,
wI — 9 — Ad
(=——F
(1+24)
& —wb—d(1+ A)

1+d=—1a

substituting into the Euler equation,

:\Aamv\e+&\ﬁl%lsw+>&

B/ (w — c9) q 9 —wI +dA
rearranging terms,
FE(e) =/ (9)(¢f — w? + dA) + Bu(w — ) (w — ¢ — w’ + Ad)

If d is sufficiently large, I hmwv > 0 and the symmetric first-best is the unique
steady state. When, A = 0, we obtain the same solution as in the previous
section.

Proposition 3: There exists a unique level of debt d so that
FE(c9) = 0, where ¢? also solves FP(c¢?) = 0.

We can write the equilibrium prices as follow, let Z = u'(w —¢9)/u/(¢?) >
1. Then, the implied equilibrium price in a symmetric equilibrium is
3
p=—=d
1-p

where m = Z. The implied equilibrium prices depend on on Z. If the bor-
rowing constraint binds Z > 1, and makes the effective discount rate larger
B > . When the borrowing constraint does not bind Z = 1, so we have
the complete markets solution. In the next section, we explore an economy
where shock are not transitory.
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7.3 Stochastic Liquidity Constrained Econ-
omy

We assume that shock can persist for several periods. In particular assume
a symmetric shock

Tgg Tog| _ 1—7m T

Tgh o T 1—m|’

We begin by defining a competitive equilibrium in this class of economies.

T o

Definition: A competitive equilibrium in the stochastic economy
is an contingent consumption allocation {{ci}2}2, a portfolio
decision {{s},1}:20}2_,, and state contingent prices {p:}i2,, st.

e Consumers solve

max(1 — 3)E, MU Blu(cl)

=0
s.t. G+ @Sy Swp+ (g +d)sy Yt
si >0, sb given
o Markets clear
a+d =+t +d=w WVt
sirsi< vt

Again we focus all the attention the symmetric steady state of both
economies. We want to compute the decision rules for both shocks.

o9 if wi = w9

nm.c.
Il

& if wi = wb
When the borrowing costraint does not bind we have a symmetric steady
state. in the absence of aggregate uncertainty, the equilibrium price is deter-
mined by the Euler equation of both consumers. Formally,
u'(c9) _ptd u'(c)

(1 —mw(c9) + mu'(cb) P (1 —mw'(cb) + mu'(c9)’
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where ¢/ = ¢® = w/2, so v/(c?) = u/(c®). Therefore,

3
P=1- m&.

However, when the borrowing constraint binds, we have

u'(c) _ Lpt+a) §9 —
(1 —m)w/(co) + mu/(ch) g P - b
u'(ch) 2p+d) =
(1 —m)u(cb) + mu/(c9) ># p =0

Then, substituting the consumer budget constraint for the agent with the
good shock
dtqg=w=qg=wl—d,

and the agent with the bad shock

=t (g+d)=>q+d=c" -
we obtain,
() Bl — o)

(1 =m)w'(c9) + mu! (cP) wI — 9
Rearranging terms we have
F(ef, ) = (¢9)(w? — c9) — Bcb — wb) (1 — m)u' () + ' (?))

if we substitute the aggregate resource constraint ¢® = w — ¢ we have

— ) = Blw - — ) (1 =7 () + 7 (w — 7))

we obtain the solution without uncertainty as a special case where 7 = 0. to
compute the equilibrium, we only need to solve this system with one equation
and one unknown. This model implies an stochastic discount factor different
than one. Formally, the pricing agent has

md — | (1 =)/ (cf) + mu' () C-x . w/(ch)
- ) = (L=mB+
— ' () + (¢ w(c9

mb = ,,,\.wﬁ ) &MAWJ.T ) =1-mps+ ﬁm:\vaw,
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then we have that m? > m® because u'(c*) > u'(c?). In incomplete markets,
the pricing agent is the individual with the highest stochastic discount factor.
We can rewrite the pricing equations as

md mb

@HBQ&H\SQ, 1—mb

}-d

Notice that equilibrium prices depend on the consumption allocations for
both agents, and this depend on the source of uncertainty.

The equilibrium allocations for this economy when the borrowing con-
straint binds are given by {¢?,¢"}, the optimal portfolio allocations 37 = 1,
5% = 0, and the equilibrium price. When the borrowing constraint does not
bind, & = @ = w/2, and portfolio satisfies an interior solution.

just like in the previous section, we could relax the borrowing constraint,
and assume s > —A. Next models, considers endogenous borrowing con-
straints.

7.4 Equilibrium Prices in a Debt Constrained
Economy

Next, we explore an economy where the borrowing constraints are endoge-
nously determined. At any point in time, households have an incentive to
renege on their claims and walk away from the credit market. The punish-
ment from defaulting in credit market is that a household is excluded from
future intertemporal trade. Formally, the individual rationality constraint
implies

=AY 5 ulc) > (1= A I ue) W
T=t T=t

The value of continuing participating in the market is no less that the
value of dropping out. The credit agency will never lend so much to the con-
sumers so they will choose bankruptcy. Next, we define the notion of market
equilibrium. We have assumed that the individual rationality constraint is
directly imposed into the consumer budget constraint.

Definition: A competitive equilibrium in this economy is an al-
location {c},c?}32,, and prices {p;}32,, such that.
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e Consumers i solves

max(1 — f3) MU Blu(cl)
=0
s.t. Mu?aw < M%NA:_M + syd) it
=0 =0
(1=8)D>_ B ulcd) > (1= B8) Y B u(ur)
T=t T=t

o Markets clear
a+cd=wtwrd=w Wt
si+s7<1 vt
Let A and ~; be the Lagrange multipliers of the Arrow-Debreu resource

constraint, and the participation constraint respectively. Then, the first-
order conditions of the consumer problem are given by

(1= B)B" (ci) = Ape + % (1 = B)u/(c}) <0,

We can consider two solutions of the consumer problem.

7.4.1 Debt constraint does not bind (v, = 0)

In this case, the friction is not operative and consumers can obtain an equi-
librium allocation with perfect smoothing, or risk sharing in the case of un-
certainty. We have the standard Euler equation

u'(cl) D

Bu(ciy)  pent

In the symmetric equilibrium (¢® = ¢ = ¢*), under

o/ (c9) u'(c?) u'(e)  p

By~ Bu(c)  Bulc)  pia

Hence, the equilibrium prices are given by

prr1 = Bpe,
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or

e = B'po,
where py = 1. In this case, no one has an incentive to default in their pay-
ments, even though there is no commitment on the financial market.

7.4.2 Debt constraint does bind (y; > 0)

In some cases it might be impossible to reach a symmetric steady state with-
out violating the individual rationality constraint. The consumer with a
good productivity shock, w9, after having received several bad income shock
has to repay to the individual with a bad productivity shock. In this case,
the individual rationality constraint is violated, because the consumer that
receives the good shock prefers to declare default rather than honor its debt.
Hence, the individual rationality constraint must bind exactly.
In a symmetric equilibrium we can rewrite the participation constraint

(1-5) MUQ.N.L:ASI.V >(1-7) MU,,@Q.\:A::I.V
=0 =0
as follows
M&U B%u(c?) + M.ou B () > M&u B¥u(w?) + Moou BHH y(wb)
=0 =0 =0 =0
ale?) | Bul) ay(w?) | Bu(w’)
Gl,&f\m+ﬂg Wﬁluvfwm +3_

so we obtain the participation constraint for the agent that receives the good
shock in the existing period,

u(e) + Bule”) > u(w?) + Bu(w’),

and the participation constraint for the agent that receives the bad income
shock
u(c®) + Bu(c?) > u(w®) + Su(w?),

When the participation constraint binds, the consumption distribution
is determined by the participation and the aggregate resource constraint.
Formally,

FP(e%) = u(ef) — u(w?) + B [u(w — ¢?) — u(w")]
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The equilibrium consumption depends on the income spread, Aw = w9 — w?,

the individual discount rate, 3, and the return of the tree d. The equilibrium
with imperfect risk sharing implies ¢? > ¢’

We compute the equilibrium asset prices using the Euler equation for
the consumer without a binding participation constraint. In this case the
consumer with the low income shock

p+d W) 1
p Bu(e)  BA
where 1/A = u/(c")/u'(c%), given that ¢ > ¢ it must be the case that
u'(c9) < u/(c?), hence, A < 1. The implied equilibrium prices depend on A

__b4
E|g“

with complete markets A = 1, so we would obtain the same prices. Next, we
want to show that the implied equilibrium return is lower that the inverse of
the discount rate. If we consider the Euler equation of the individual with a
binding participation constraint we have

u' ()  p+d
— S ET
pu(e) = p o
or 1
1+r<—
Jij

Proposition 4: A symmetric steady state on the debt constraint
economy is characterized by

e If the participation constraint binds, FP(¢?) =0, ¢/ > c*

e If the participation constraint does not bind, FP(c?) > 0, ¢ = ¢* =

w/2.

In the debt constrained economy changes in the discount rate increase the
penalty from being excluded from intertemporal trade. However, full efficient
allocations can be achieved if individuals are sufficiently patient. Changes
in the return of the tree, increase the penalty of loosing your collateral if
you default. Finally, the implied equilibrium interest rate is lower than with
complete markets or perfect risk sharing.
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7.4.3 Pareto Efficiency

We are interested in the welfare properties of the allocations in the debt
constrained economy. In a symmetric steady state, the set of Pareto efficient
allocations is characterized by solving

max Au(c?) + (1 — Au(c®)

s.t. I+ =w=w 4w +d,

u(c?) + Bu(c?) > u(w?) + Bu(w®),

() + Bu(c?) > u(w®) + Bu(w?),
Notice that we have included the participation constraints as part of the fea-
sible set of the social planner problem. Given that agents trade is voluntarily,
they should obtain gains from trade. If we substitute the aggregate resource
constraint and rewrite the problem as

max Au(c?) + (1 — MNu(w — %)

s.t. u(e?) + u(w — 7) = u(w?) + Bu(w’),
ulw = &) + Bu(e?) > u(w®) + fu(w?),

Let v} and 72 be the Lagrange multiplier of the participation constraint
of both agents. The first-order conditions of the social planner problem are
given by

M () = (L= A (w =) 4 [/ () = B (w—)] =} [/ (w—¢?) = Bu' ()] = 0
We can rearrange terms
A+ + 83U () = (L= A+ 77 + 7B (w — &),

Notice that in this problem the planning weights are endogenous to the
problem. When the participation constraint binds for one agent. The social
planner needs to assign him more consumption today to keep him in the
trading arrangement. When 7} = 42 = 0, the optimal allocation implies per-
fect intertemporal smoothing, or perfect risk sharing with symmetric weights
(A =1/2). Formally,

W) =d(lw-c)=>d ==

wlE
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However, when the participation constraint binds for the agent that had
the good shock today 7' > 0, then the constrained efficient allocation implies
imperfect smoothing, or risk sharing. Formally,

(4 7)) = (1= A+ 7B (w = )
that is
W(f) A +4'8
wW(w—c9)  1—A+Aqt
when we consider symmetric weights

<1

() <d(w—c7) = >

Finally, we explore the welfare properties of Pareto efficient allocations.
In particular, we prove the fist-welfare theorem.

Proposition: An equilibrium allocation in the debt constraint economy
122, is Pareto efficient.

Proof: Suppose the contrary, then there exists a Pareto superior alloca-
tion {cF,c2}3°, that satisfies the participation constraints. At the equilib-
rium prices {p;}$2,, this allocation has to cost strictly more than the endow-
ment for the individual that is better of (suppose agent 1), otherwise this
agent is not maximizing his utility. That is,

MU?NW > MU? (w} + 03d)
=0

t=0

Using the same argument for the other consumer (agent 2), this allocation
needs to be at least as expensive as the endowment. Formally,

fe ] fe ]
S = piw} + 62d)
=0 t=0

If we add up both constraints we find,

S onle +3 > plw! +wi + (05 + 63)d)
t=0 t=0

using market clearing condition in the asset market 6} + 62 = 1, and substi-
tuting each period resource constraint w = w; + w? + d.

oo o0
Muﬁ;mw +3] > M?E
t=0 t=0
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This alternative allocation {¢f, ¢2}£°, costs more than the endowment. Then,
the allocation cannot be feasible, which contradicts the assumption of Pareto
superior allocation.

Now we turn the attention to economies with uncertainty, as in the previ-
ous sections. In this environment, the value associated to walk away is given
by

@}:\H =FE,_, MUQNETSV

t=0

The financial contracts that satisfy the endogenous debt constraint are given
by

o0
u(e,) + BE; 1 MU B uleryy) > ulw) + BotT
=1

using the previous notation, or

o0

(1-8)E;—1 MQ.TH@ASI.V >(1-B)Ej— MQ.TH:?SI.V Vi
Jj=0

j=0

7.5 Stochastic Debt Constrained Economy

We assume that shock can persist for several periods. In particular assume
a symmetric shock

E:\\ﬁ_ = _Hqﬂ,g ﬂ.gu— = _H " ! \ﬁ% s

Tgb  Tbh 1—7 s
We begin by defining a competitive equilibrium in this class of economies.

Definition: A competitive equilibrium in the stochastic economy
is an contingent consumption allocation {{ci}*,}2, and state
contingent prices {p;};°, st.

e Consumers solve

max(1 — 3)E, MU Blu(ch)

t=0
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s.t. Ey ME& < E M pir(wi + 05d) vt
t=0 t=0
(1-P)E, MU B u(ery) > (1 - B)E; MU,QTH:AETJV Vi =0
i=0 =0

o Markets clear
d+d=w+d+d=w vt

As in the previous case, we want to focus the attention on the steady state
of both economies. We want to compute the decision rules for both shocks.
Now its agent is going to face the good shock with a certain probability.
For simplicity we drop the time index and all the notation is contingent the
shock. In a symmetric steady state

o9 if wi(s) = w9

d(s) =

& if wi(s) = w®

The stochastic steady state is like the deterministic case. We lower ¢¢ from
the individual with the good productivity shock until,either the symmetric
first-best ¢¢ = w/2 is achieved or the participation constraint binds. For the
stochastic case, we can also compute the expected utility associated to the
symmetric steady state, where 7 denotes the probability of continue in the
same state, and 1 — 7 denotes the probability of reversal.

u(ery) = w(c) + Blru(c?) + (1 — m)u(c)] + ...

Bru(ed) + (1 — m)u(e?) + m(1 — m)u(c?) + (1 — 7)%u(c’)] + ..
rearranging terms
u(c?) + Blru(e?) + (1 — m)u(c”)] + B2rulc?) + (1 — m)u(c)] + ..

that is

[ru(c?) + (1 — m)u(P)] .

u(c?) + MU,@w [ru(c?) + (1 — m)u(c’)] = u(c?) + -7

t=1
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We have a similar expression with respect to income shocks. Combing all
terms we have

(1=B)u(e)+8 [mu(c?) + (1 — Mu(c)] > (1=B)u(w?)+8 [ru(w?) + (1 — m)u(w’)]
and as before define F(¢9) as

F(7) = (1- 61 —m))u(c?) — u(w?)] + Brlu(w — ) — u(

Proposition: A symmetric stochastic steady state ¢ on the debt constraint
economy is characterized by

o If the participation constraint binds, FP(c?) =0, ¢ > c®

o If the participation constraint does not bind, FP(c9) > 0, ¢9 = ¢* =

w/2.

When 7 = 1 the function F? is concave and satisfies F”(w?) > 0, so the
symmetric steady state existed and is unique. For 7 € (0, 1) this is still true
and we reach the same conclusions.

Now we want to explore the effect on the equilibrium allocations depends
on the parameter 1 — 7 that measures the persistence of the shock. From the
implicit function theorem we can compute dc?/9(1 — 7). A useful way is to
rewrite the function F as a function of .

FP(e9) = (1= B)[u(e?) — u(w?)] + Brfu(w — ) — u(w?) + u(c?) — u(w®)]

when the participation constraint binds, F'”(c?) = 0. The first term is always
negative (u(c?) — u(w?) < 0), and the second term is always positive, u(w —
9) — u(w®) > 0 and u(c?) — u(wb) > 0. Since e /O is proportional to the
second term,

m%\ m\ \h\\
e Blu(w — ) — u(w) +u(c?) —u(w?)] >0

to show that 9c?/9(1 — w) > 0, we have to redefine the function FP.

() = (1= B(1L = M)u(e) - u(w?)] - frfu(’) - ulw - )] =

F(cf) = (1-B(1—7)) [u(c?) —u(w?)]—Br[u(w) —u(w—c?)] —Blu(w?) —u(w—c?)]+Blu(w’) —u(w—c
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rearranging terms

(1= B(L=m) (") u(w?)]~BL—m) ()~ )+ Blu) ~u(eo—c)]
F(e?) = [u(e®) =uw”) -+ Blu(w) —u(w—e?)|=B(1-) [u(e?) = u(w?) + u(w’) - ulw = )]
or

F(e)

F(9)

[u(e?) —u(w?)]+Blu(w) —u(w—c)|+B(1—n) ?ASQV —u(?) +u(lw—¢’) — iEvL

where
loled

a0-m =B |u(w?) — u(c?) + u(w — ) —u(W’)| >0

>0 >0

This result implies that a more persistent shock results in greater consump-
tion by the individual with the high productivity shock, or equivalently less
trade between two consumers. So in this economy, when consumption is
stochastic the amount of consumption smoothing is reduced.

Although this decentralization works without problems, it conflicts with
the spirit that at every time and contingency, households should be able to
walk away from the contract. In this environment, all decisions are made
at ¢ = 0, so households cannot choose to renege on the time 0 contingent
contracts because they confront no choices from period 0 onwards. This
critique has been addressed by Alvarez and Jermann (2000), that solve the
decentralization in terms of sequential trading.

7.6 Financial Intermediation without Com-
mitment
e Discrete time periods ¢t = 0,1, ...
e Large number of ex-ante identical households
e Single consumption good ¢;.
e Infinite vector of consumption (cg, c1,...) € 15,

e Preferences

Ulco,c1,.) = B Blulcy)
t=0
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e u' >0, u” <0, Inada conditions and 8 € (0,1).

o Each household receives an stochastic endowment {y; }¢2, where y, i.i.d.

Denote 7(s) = Prob(y; = 7,), with finite support s € {1,2,...,5} and
@,fr_ > ﬂm

History of endowments is given by h' = (y;, Y41, ..., Yo)

e Moneylender or financial intermediary has access to an storage tech-
nology and can borrow or lend at a risk free rate R = 87! > 1

e Consumers can only deal with the financial intermediary, they cannot
trade among themselves.

e The moneylender designs a contract,

¢ = fu(h?) t>0
that specifies a sequence of functions that assign history dependent
consumption. Therefore, consumers give the endowment to the mon-
eylender and then they receive some consumption in exchange. The
purpose of the contract is to smooth consumption over time. The rev-
enues and the utility associated to a particular contract are given by

o0 o0 H
P= MMU,QJ,S —ol= NMMFN —al

t=0 t=0
=B Blulc) =EY_ Bulfi(h"))
t=0 t=0

where P denotes the associated profits and v denotes the utility asso-
ciated to the moneylender contract.

7.6.1 Risk Sharing with Full Commitment

In this section we study risk sharing contracts with two-sided commitment,
that means both agents are obliged to satisfy the contract after it has been
signed. Alternatively, we can think of an infinite penalty for breaking the
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relationship at some point in the event tree. The optimal risk sharing contract
solves

OO
EQWHN N\n
Ew MQ ﬁSL

s.t.

oo S
max P = SN w(s)8' ylse) — enlsh)]
~ S
s.t MU MU 7(s)Bule(sh)] = v
ci(s) >0

The constraint set is convex and the objective function is concave. Hence,
the optimization problems is well-defined, so we can characterize the optimal
contract using the first-order conditions.

—m(s)B" + Am(s) B [er(sh)] = 0
—x(®F + Ar(®) ()] = 0

Rearranging terms

this expression equates the marginal rate of transformation of the moneylen-
der to the marginal rate of substitution of the consumer. In an interior
solution the promise-keeping constraint will be binding. This arrangement
implies that the marginal utility of the consumer is constant across states,
u'[er(s')] = [ (5%)], which implies that consumption should be constant too,
ci(sY)] = ¢(8"). Therefore, the moneylender perfectly insures the consumer
across time and states of the nature.
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7.6.2 Risk Sharing with One-sided Commitment

Now we assume that the financial intermediary is committed to honor the
promises but the consumers can walk away from the contract at any time,
this is called one-sided commitment contracts. Therefore, the contract the
planner (moneylender) offers must be “self-enforcing” in the face of lack of
commitment.

LAUT — B MU QHRAQL
t=0

denote the expected utility associated to receive the endowment. Then, at
any point in time consumers can receive

u(y:) + poAUT

If the financial intermediary wants to induce the households to trade it has
to offer him a better contract. Formally,

u(ey) + ,Q@MU B u(cryy) > u(yy) + BottT
j=1

or using the definition of a contract, ¢; = fi(h')

ulfi(h)] + Q@W B ul fri (R)] > uly,) + BuAUT

Jj=1

This is the participation constraint and make a contract sustainable, in the
sense that the individual does not have an incentive to walk away from the
contract. The problem with this constraint is that depends on the history h'
and that grows rapidly overtime ¢. Now the optimal contract has to solve

OO
:mﬁHm Q?\u
H?Lx M ?i

s.t. MMEN:ASV =v
=0

u(cy) + BE M B u(crsy) > ulye) + BT
=

¢ >0
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7.6.3 Promised Utility Formulation
To make this problem simple we will use a recursive formulation of history
dependent contract that implies enlarge the state space by redefining a new
variable vy, that represents the promised discounted future value or utility.
Define the optimal contract (i.e. the policy functions) associate to this prob-
lem as
ce = g(yr,vr)

Vi1 = U(Yr, vt)

where the optimal contract depend on the current endowment and the history

of shock summarized by v;. Iterating on v, we can back up the history of
shocks,

U1 = 5\? §v
ve = l(y1,01)
vy = l(y2, v2)

= 1(y1, Yo, v0)
= U(y2, Y1, Y0, v0)
Ve = Y1, V1) = UYe—1, Ye—2, -+ Y15 Yo, Vo)

The planner gives to the household a particular utility level v by delivering
state contingent consumption assigned by the contract and promises some
utility tomorrow, defined by v = w,. The state variable in the optimal
contract problem is the promised level of utility. The money lender problem
has to be a strictly decreasing function of v. The higher this value the smaller
the profits that the planner will receive by trading. Using recursive notation
we can redefine the optimal contract problem,

P(v) = max [y — ci] + BP(w,)]

st Elu(e) + Pws| = v
u(cr) + Pws > u(g,) + AT Vs
¢ >0
or

S

P(v) = max T [[ys — ¢s) + BP(w
(0) = max > m (lys — o] + BP(w,)

s=1
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S

s.t. Mus.m ((cs) + Pws] = v

s=1

u(cs) + Pws > u(@,) + prVT Vs

s € [Cminy Cmax]

w, € [vAUT 7

Again, the constraint set is convex and the return function is concave, there-
fore the value function P(v) is concave. The Lagrangian of the recursive
contract can be written as follows.

5 s
L= Muﬁ [ls = el + BP(ws)] + p MU mslu(es) + Bwy) —v| +
S
MU As [ules) + B, — [u(g,) + Bv*PT]]

the first order conditions with respect to {c,,w;} are given by
=5 + pmst (c) + A (c5) = 0
TSP (w,) + s+ Agfws = 0

and using the envelope theorem we can compute the change in the profit
function associated to a change in the period promised value v,

3P (v) 4+ pms3 = 0
Rearranging terms

Atﬁ..w + \/mvﬁ\ﬁnmv =Ts
(ums + As) = —ms P (wy)
P'w)=—p

Given that the profit function is decreasing in v. Then P'(v) < 0, which
means that the Lagrange multiplier of the promise-keeping constraint has to
be positive 1 > 0. Given that (ums + As) has to be positive and 75 > 0, then

it must be the case that A\; > 0. Combing both expressions we have

1

u'(cs) = Ig
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This expression equates the marginal rates of substitution between contingent
consumption today and promised utility to the marginal rate of transforma-
tion for the planner of tomorrows utility. This equation has a positive slope
in ¢, and wg. It is important to not, that P’ < 0 is decreasing in ws, but
the inverse must be increasing, and the negative in front of it changes the
sign of the expression. The dynamic equation is given by a trade of between
promised value today and tomorrow,

A

P'(w) = P'(v) - =

s

What will happens to the promised value utility depends on the Lagrange
multiplier of the participation constraint.

e Participation constraint binds (\; > 0)

If the participation constraint binds, this is because the consumer has
received a good income shock and has to return an important part of
the endowment to the financial intermediary in exchange. It is impor-
tant to remark that previous to this event, the consumer had received
bad income shocks. The one-side commitment problem introduces in-
centives to walk away from the contract. To prevent that the planner
has to promise higher expected utility in the future. That should be
more clear from the above equations,

Pl(ws) < P'(v) = ws > v

this is true because of the concavity of the function P, that implies ¢; <
Y,. The planner induces the household to consume less by promising
more utility tomorrow, that is w,. The optimal level of consumption ¢
and w, can be determined

u'(c) = —P'(w) ™!

u(es) + Bw, = u(g,) + SvAUT

These equations are independent of v. Part of the optimal contract
implies the existence of amnesia. After receiving a good shock the
planner changes the promise utility from that period onwards, so the
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new consumption will be a function of w, not a function of v. The
solution of the optimal contract is given by

s = 91(U)
ws = 11(7,)
the good shock induces a higher continuation value, therefore from this

point onwards history does not matter and the new continuation value
defines future expected utility.

Participation constraint does not binds (\; = 0)

If the participation constraint does not binds, this is because the con-
sumer has received a bad income shock. In this particular case, the
consumer does not have any incentive to walk away, because the con-
tract is going to provide consumption insurance. Hence, the planner
does not need to provide incentives, because for this particular shock
there is no treat to break the contract, it is not on the individuals best
interest. Formally,

P'(ws) = P'(v) = ws =0
In this case, contingent consumption is determined using
W(cs) = —P'(wy) ™' = —P'(v)"

the optimal level of consumption depends on the promised value wy; = v
not on a particular realization of the shock ¥,. The solution of the
optimal contract is then given by

cs = go(v)
and
u'[ga(v,)] = —P'(v)7!

The “optimal contract” implied by

¢ =max{g(7,), g2(v)}

w, = max{ly(7,), v}

For the interval of promised utilities v € (vAYT,T) there exists a cutoff
point in terms of endowment shock, 7(v) such that:
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o If y < 7(v), the planner offer the contract ¢ = g»(v) and leaves the
promised utility unaltered, ws; = v. Thus, the planner is insuring in the
states with low income shocks.

e If y > 7(v), the participation constrain is binding, so the planner in-
duces the consumer to surrender part of its endowment in exchange of
a higher promised utility, ws > v.

It is important to mention that promise utility values never decrease,
stay constant if y < F(v) or increase if y > F(v) where the participation
constraint is threaten to be violated. This is also called the Rachet effect, and
is implied by consumption smoothing. Consumption is constant in periods
where the participation constraint is not binding, because v does not change
and increases in periods were it threatens to bind.

The planner has to ways to give incentives, increase present consumption
and promised utility. The concave scheme on the utility function implies
that the planner will have to use both if the participation constraint binds.
Promising more utility in the future is not enough to prevent consumers
from not walking away. Thus, the household with the high endowment, g
is permanently awarded with the highest consumption level associated with

7, that is ¢ = g»(7),
u(g2(0)) + 57 = u(gg) + SoUT

where ¢ < g but T > vAYT. On the other hand, the household with the
lower endowment, 7, is expecting to receive more utility in the future because
u(7,) < Eu(y), adding in both sides the continuation value of autarchy we
have

QA@HV ATQ@\»:H < mﬁ:m@v AT\Q@\»CH_ _ @.x:\ﬁ;

For this individual with the lowest shock, y = 7, the participation constraint
is not binding

u(c) + Bw = u(gy) + VT < AT
The optimal contract trades off consumption against continuation value only
for sufficiently high values of the realization of the shock y.
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7.6.4 The Dual Approach

The dual approach of contracting theory can be applied when the principal
or the planner is risk-neutral. Using this particular approach, the planner
wants to minimize the cost of giving the right incentives to consumers, in
this particular case preventing them from walking away from the optimal
contract.

S
C(v) = i s mATEQ s
(v) = min | 2 [c (ws)]

s
s.t. MU ms[u(es) + Pws] = v
=1
u(cs) + fws > u(g,) + LoV Vs

cs € Tw::: OEmL

w, € [vAUT,7)

Let ¢ and 7, the Lagrange multipliers of the promise-keeping and participa-
tion constraint respectively. Then, the first order conditions with respect to
{¢s, ws} are given by

s + o (cs) + nsu' (cs) = 0
msBC" (ws) + ¢msB +nsB=0
') == 0

Combing both expressions we have,

(675 4+ )0 (c) = =T,
A@ﬁm + d‘mv = Iﬁ.mﬁtﬂgmv
() =9

Given that the marginal cost is positive, C’(v) > 0, then it must be the case
that the Lagrange multiplier of the promise-keeping constraint is negative,
¢ < 0. By the same argument, (¢, +17,) < 0, given that 7, > 0, it also must
be the case that 7, < 0. Rearranging terms we have
1
W) = =

C'(ws)
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C'(ws) = C'(v) — I

What will happens to the promised value utility depends on the Lagrange
multiplier of the participation constraint.

e Participation constraint binds (7, > 0)

Given that the Lagrange multiplier is 7, < 0, in the cost minimization
problem, it must the case that C'(w;) > C’(v), so the convex cost
function implies w, > v. The planner increases the cost of keeping
the agents with a binding participation constraint by increasing the
promised utility ws. From the other first-order condition we can back-
out the consumption behavior and the participation constraint

C'(wg)u!(es) =1

ules) + ws = u(g,) + o7

If the marginal cost is increasing, then the marginal utility must be
decreasing to keep the ratio constant, which implies that consumption
is increasing cs. As in the previous case, these equations are independent
of v. The optimal contract implies the existence of amnesia.

Participation constraint does not binds (1, = 0)

C'(ws) = C'(v) = wy = v. The individual does not have any incentive
to leave the contractual risk sharing arrangement. Therefore, the cost
for the planner has not changed, because it promises the same lifetime
utility v. Consumption is determined using the first-order conditions
of the optimal contract

C'(v)u(cs) = 1.

The optimal consumption depends on the promised value w; = v not
on a particular realization of the shock 7.




