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3–3 §3.1 STABILITY

This chapter provides an introduction to the stability analysis of discretized ODEs. It is a tutorial review
of some basic definitions and techniques distributed over many books. The next Chapter discusses tools
for symbolic analysis of stability. As noted in Chapter 2, using partitioned analysis gives high flexibility
of implementation. The downside of this freedom is the large number of possibilities. The motivation
for doing stability analysis first is to filter out unsuitable choices.

§3.1. Stability

The term “stable” informally meansresistant to change. For technical use the term has to be defined
more precisely in term of the mathematical model, but the same connotation applies.

§3.1.1. Mathematical Models

By mathematical modelis meant the governing differential equations used for the simulation of a
mechanical system. Generally we will deal with a semidiscrete model: discrete in space and continuous
in time. In the time domain the model is given by ordinary differential equations (ODE) in time. For
such models the following definition of stability, due to Dirichlet,1 has survived the test of time:

“The equilibrium[of a mechanical system]is stable if, in displacing the points of the system
from their equilibrium positions by an infinitesimal amount and giving each one a small
initial velocity, the displacements of different points of the system remain, throughout
the course of the motion, contained within small prescribed limits”

Although the definition is dynamic in nature, it addressesequilibrium solutions. Definitions beyond
that point become more difficult. But most look only atsteady state solutions. An exception is chaotic
systems, as in turbulence models, but we will not look at that class of problems in this course.

One extension is looking at deterministic periodic solutions: say the Earth orbiting around the Sun
(or vice-versa if you believe in Aristotle). The underlying idea is the same. Suppose that a system
is undergoing periodic motion:u(t + T) = u(t). Perturb it by applying an arbitrary but tiny initial
displacement or velocity. Study the subsequent motion. If the motion remains within small prescribed
limits of the unperturbed motion “orbit” the steady state motion is stable, and unstable otherwise. The
static steady-state case addressed by Dirichlet is of course included.

§3.1.2. Difference Equations

An integrator applied for temporal discretization produces a difference system. The foregoing definitions
can be briefly recapitulated by looking at the sequence of computed solutions. Precise definitions are
provided in texts cited in theNotes and Bibliography Section. Here we are interested in the stability
of thetime integrator. Informally, we want the time discretization

1. To preserve the stability of stable mathematical models, and

2. To manifest the instability of unstable mathematical models.

The first condition is classical. The second one is not. In the context of coupled systems, overstability
can be as damaging as instability. For example, suppose one tries to determine the flutter boundary of
an aircraft by doing simulations at increasing speeds. If the time integrator is strongly dissipative, the
onset of flutter may be masked when running at finite step sizes, leading to erroneous conclusions.

1 As it appears in his Appendix to the German translation of Lagrange’sMécanique Analytique[3.52].
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§3.1.3. Stability Analysis Methods

There are two general classes of stability analysis methods:

Amplification Methods. Also calledvon Neumann stability analysis. Based on decomposition of motion
into normal modes, often using Fourier analysis, and superposition. The analysis looks at the growth or
decay of perturbations from one step to the next, and can be implemented using standard linear algebra
procedures. It islocal in nature, but so is the concept of stability. A more severe restriction is that
it strictly applies only tolinear systems. Despite this limitation it is frequently applied to nonlinear
systems through linearization.

Energy Methods. Also known, notably in control theory, as Lyapunov methods. These look at the
variation of certain function (or functional) measures of the motion amplitude. Often these are related
to energy measures of various kinds, hence the name. Energy methods are not restricted to linear
systems, but require the construction of suitable measures, and this has to be done case by case.

Because the systems examined in these lectures are linear, the amplification method is used.

§3.1.4. Test Equations

In practice stability analysis is not performed on the discrete systems of actual applications but ontest
equations, which are highly simplified models of the real thing. The idea is similar to the patch test in
space discretizations: time integrators that do not do well on the test equations can be discarded right
away. Those that survive can be subjected to further tests. Of course the ultimate test comes on the
actual applications, but by then the choices are hopefully narrowed.

The selection of test equations ranges from established procedures (for standard ODE integrators) to
more of a black art (in coupled systems). In this Chapter a scalar test equation is taken as given, and
the stability analysis done on it. This introduces the reader to commonly used time integrators.

§3.2. A First-Order ODE Test Equation

The most commonly used scalar test equation for first-order ODEs, and also the simplest, is

ẏ = λy. (3.1)

Herey = y(t) andλ is a coefficient independent of time, which is generally complex. To simplify the
following study we will restrict its real part to be nonpositive:�[λ] ≤ 0. If so the solutionsy(t) = Ceλt

of (3.1) are stable in the sense of being bounded fort > 0. We therefore expect the time integrator to
preserve this attribute. Gear [3.28, p. 9] definesabsolute stabilityon the test equation (3.1), treated by
an integrator of stepsizeh, as follows:

“The region of absolute stability is that set of values of h (real nonnegative) andλ for
which a perturbation in a single value yn will produce a change in subsequent values
which does not increase from step to step.”

This definition is relevant for�[λ] ≤ 0 and will be used in the next two sections. It fails for�[λ] > 0,
as discussed in §3.6.
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3–5 §3.2 A FIRST-ORDER ODE TEST EQUATION

§3.2.1. A One-Step Integrator

The general one-step integrator in the class of Linear Multistep Methods (LMS) is

yn+1 = yn + h [β ẏn+1 + (1 − β)ẏn] , (3.2)

whereβ is a coefficient in the range [0, 1]. Three well known members of this family are:

Forward Euler(FE) integrator (also known as explicit Euler):β = 0.

Backward Euler(FE) integrator (also known as implicit Euler):β = 1.

Trapezoidal Rule(TR) integrator:β = 1
2.

To get a difference equation, state that (3.1) is verify att = tn: ẏn = λyn, and att = tn+1: ẏn+1 = λyn+1.
Replacing those derivatives into (3.2) yieldsyn+1 = yn + h

[
βλyn+1 + (1 − β)λyn

]
. Move all terms

pertaining to the next time:tn+1 to the left hand side to get the difference system

(1 − βλh)yn+1 = [
1 + (1 − β)λh

]
yn. (3.3)

Solve foryn+1 to obtain theamplification form:

yn+1 = 1 + (1 − β)λh

1 − βλh
yn = 1 + (1 − β)µ

1 − βµ
yn = z yn, where µ = λh. (3.4)

Herezdenotes theamplification factor. This is the amount by which the solution at one step is multiplied
to get to the next step, hence the name. Ifλ is complex, so isz. The criterion for stability is that its
modulus does not exceed unity:

|z| =
∣∣∣∣1 + (1 − β)µ

1 − βµ

∣∣∣∣ ≤ 1. (3.5)

Note that this is verified for stepsizeh = 0 because if soµ = λh = 0 for anyλ, andz = 1. So the
question is: what happens for finiteh > 0? There are three possibilities:

(C) If (3.5) is verified forh = [0, hmax], with hmax > 0, the integrator is calledconditionally stable.
In this casehmax is thestability limit and [0, hmax] thestability range.

(U) If (3.5) is violated for any stepsizeh > 0, the integrator is calledunconditionally unstable.

(A) If (3.5) is verified for allh ≥ 0 (meaning thathmax → ∞) the integrator is calledA-stable.

Obviously (A) is the most desirable objective, followed by (C), whereas (U) is unacceptable.

z=(1+(1-β)*µ)/(1-β*µ);
Plot[{z/.β->0,z/.β->1/2,z/.β->1},{µ,-4,0}, Frame->True,
      PlotStyle->{{AbsoluteThickness[2],RGBColor[0,0,0]},
                  {AbsoluteThickness[2],RGBColor[1,0,0]},
                  {AbsoluteThickness[2],RGBColor[0,0,1]}}];       

Figure 3.1. Script to generate the plot of Figure 3.2.
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§3.2.2. Real Negative λ

If λ is real and negative, the amplification factor behavior for differentβ can be simply obtained by the
Mathematicascript of Figure 3.1. The generated plot ofz versusµ = λh ∈ [0, −4] for FE, BE and TR
is shown in Figure 3.2. This is called anamplification plot. Clearly BE (β = 1) and TR (β = 1

2) are in
the stable region|A| ≤ 1, and it is not difficult to show that this happens for allh > 0. On the other
hand, FE clearly goes unstable forh > −2/λ. If fact, settingβ = 0 in (3.5) givesA = 1 + µ, which
crosses the stability boundaryA = −1 atµ = −2 and goes to−∞ asµ → ∞.

§3.2.3. Complex λ

The complexλ case is of particular interest when the
test equation comes from the reduction of a second order
equation with oscillatory solutions. An amplification plot
such as that in Figure 3.2 can be done via a 3D display that
shows�(µ) and(µ) andz in thex, y andz directions,
respectively. This has the advantages of showing the
magnitude ofz but can be difficult to visualize. The
alternative is to stick with a 2D plot over the complexµ

plane, with�(µ) and(µ) alongx andy, respectively,
and displaying only the stable and unstable regions. This
is called astability chart.

−4 −2 −1 0
−3

−2

−1

0

1

Unstable

Stable

FE

BE

TR

µ = λ h

z

Figure 3.2. Amplification factorz for realλ, µ =
λh ∈ [0, −4] and three integrators.

StabilityIndicator[µ_,β_]:=If[Abs[(1+(1-β)*µ)/(1-β*µ)]<=1,1,0];
ContourPlot[StabilityIndicator[µR+I*µI,0],{µR,-4,0},{µI,-2,2},
            PlotPoints->200,ContourLines->False];

Figure 3.3. Script to generate the plot of Figure 3.4.

TheMathematicascript shown in Figure 3.3 produces a sta-
bility chart for (3.5). The result is shown in Figure 3.4 for the
FE (β = 0) integrator over the left part of theµ plane. The
plot technique deserve some explanation. The function

StabilityIndicator[µ,β] (3.6)

evaluatesz = [1 + (1 − β)µ]/[1 − βµ], which is complex
if µ is. It returns 1 if|z| ≤ 1 and 0 otherwise. So given a
{µ, β} pair, (3.6) gives 1 if stable, and 0 if unstable. When
this discontinuous function is displayed as a contour plot in the
complexµ plane with sufficiently high resolution (requested
by sayingPlotPoints->200), the only contour lines are very
close to stability boundaries.

−4 −3 −2 −1 0
−2

−1

0

1

2

Stable

Unstable

Re(µ)

Im(µ)

Figure 3.4. Stability chart for complexµ = λh,
and the Forward Euler integrator.

The results can be clearly observed in Figure 3.4, which shows the stability boundary to be the circle
|1+µ| ≤ 1. The optionContourLines->False asks that contour lines not be shown to reduce clutter,
making contrast between stable vs. unstable region colors sharper.
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3–7 §3.3 A FIRST-ORDER ODE SYSTEM

For realλ the stable interval isµ = hλ = [0, −2] as previously found. For purely imaginaryλ there is
no stable interval since the circle does not intersect the imaginary axis and FE becomes unconditionally
unstable. Doing this plot for TR and BE gives no stability boundaries over the�(λ) ∈ [−4, 0] range:
the whole plotted region is stable. It is easily shown that both methods are A-stable for any complexλ

with �(λ) < 0.

§3.3. A First-Order ODE System

Suppose that instead of one equation we have the (admittedly contrived) homogeneous system of four
first-order ODEs with constant coefficients:




u̇1

u̇2

u̇3

u̇4


 = −




85 51 −75 −45
51 85 −45 −75

−75 −45 85 51
−45 −75 51 85







u1

u2

u3

u4


 . or u̇ = L u. (3.7)

where theui are functions of time.

§3.3.1. Reduction to Spectral Form

Computing the eigenvaluesλi and eigenvectorsvi of L furnishes the spectral decompositionL = VΛ VT

andVT LV = Λ, in which

Λ = diag[λi ] = −




1024 0 0 0
0 256 0 0
0 0 64 0
0 0 0 4


 , V = 1

2




1 1 1 1
1 1 1 −1

−1 −1 1 1
−1 1 1 −1


 . (3.8)

SinceL is real symmetric, the eigenvalues are real and the matrix of normalized eigenvectorsV is
orthogonal:VT V = I. Make the change of variables:




u1

u2

u3

u4


 = 1

2




1 1 −1 −1
1 −1 −1 1
1 1 1 1
1 −1 1 −1







y1

y2

y3

y4


 , or u = V y, y = VT u, u̇ = V ẏ, ẏ = VT u̇. (3.9)

This change converts (3.7) toV ẏ = V Λy. SinceV is nonsingular, premultiplying byVT = V−1 yields

ẏ = Λy, or




ẏ1

ẏ2

ẏ3

ẏ4


 = −




1024 0 0 0
0 256 0 0
0 0 64 0
0 0 0 4







y1

y2

y3

y4


 . (3.10)

This is called thespectral formof (3.7). Note that the four equations inyi uncouple. Thus they can be
written as four scalar equations

ẏ1 = −1024y1, ẏ2 = −256y2, ẏ3 = −64y3, ẏ4 = −4 y4. (3.11)

These have the form of the model system (3.1) withλ set to the four eigenvaluesλi of L in turn.
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§3.3.2. FE Stability Analysis

To fix the ideas suppose that (3.7) is treated by the Forward Euler (FE) integrator:un+1 = un + hu̇n.
Making the change of variables (3.9) shows that this is equivalent to treating (3.10) by the FE integrator
in y, that is,yn+1 = yn + hẏn, which holds for each uncoupled equation. From the results of the last
Section, for each of the uncoupled equations (3.11) the stable stepsize is bounded by|λi h| ≤ 2. The
stable stepsize for the system is the minimum of the four:

hmax = min

(
2

1024
,

2

256
,

2

64
,

2

4

)
= 2

1024
= 2

λmax
, where λmax = max4

i =1 |λi | = 1024. (3.12)

For the TR and BE integrators it is easy to verify that A-stability is retained.

§3.4. A Second Order ODE

ODEs with second or higher time derivatives can be reduced to a system of first order equations. As an
example, consider the second-order ODE that governs the behavior of an undamped, unforced linear
oscillator of circular frequencyω:

d̈ + ω2 d = 0. (3.13)

whered = d(t) is the displacement from equilibrium andω is real nonnegative. This can be reduced
to a first order system by introducing the velocityv = ḋ as auxiliary variable:

[
ḋ
v̇

]
+

[
0 −1
ω2 0

] [
d
v

]
=

[
0
0

]
, or u̇ = −Lu = 0, u =

[
d
v

]
, L =

[
0 1

−ω2 0

]
. (3.14)

Suppose that this is treated by the FE integrator:un+1 = un + hu̇n, or equivalentlydn+1 = dn + hḋn

andvn+1 = vn + hv̇n. the resulting difference system is

un+1 = Pun, P =
[

1 h
−hω2 1

]
(3.15)

whereP, called theamplification matrix, is the generalization of the amplification factor found in (3.4).
Since det(P) = 1+ω2h2, the eigenvalues ofP arez1 = 1+hωi andz2 = 1−hωi , with i = √−1. The
largest eigenvalue modulus is called thespectral radiusand is denoted byρ. Both eigenvalues have
the same modulus; thusρ = |z1| = |z2| = √

1 + h2ω2. A necessary condition for stability is that the
spectral radius do not exceed unity:

ρ = |
√

1 + h2ω2| ≤ 1, or 1+ h2ω2 ≤ 1. (3.16)

This condition (3.16) is only satisfied forh = 0, and otherwise violated. Consequently the FE method
is unconditionally unstablefor the oscillator problem (3.13), a conclusion that generalizes to undamped
mechanical systems. The result could also be discerned graphically from Figure 3.4, by moving along
the imaginary axis because the eigenvalues ofL are purely imaginary:±ωi .
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3–9 §3.5 GENERAL ODE SYSTEMS

§3.5. General ODE Systems

The rule illustrated by (3.12) can be generalized to a homogeneous first-order linear system with

u̇ = L u, or u̇ − L u = 0, (3.17)

whereL is am× m square matrix. For a linear system, the entries ofL cannot be functions of the state
u, but may depend on time.

§3.5.1. Constant Coefficients

If L is independent oft , the system (3.17) is said to haveconstant coefficients. To simplify matters,
it is convenient to assume thatL is diagonalizable with distinct nonzero eigenvaluesλi through the
similarity transformation

V−1 L V = diag(λi ) = Λ, or L = VΛ V−1. (3.18)

HereΛ is the diagonal matrix of eigenvaluesλi , V a matrix with the right eigenvectors ofL as columns,
andV−1 a matrix with the left eigenvectors as rows. Making the change of variables

u = V y, y = V−1u, u̇ = V ẏ, ẏ = V−1u̇, (3.19)

reduces (3.17) toV ẏ = V Λ y, which premultiplied byV−1 yields the uncoupled systeṁy = Λ y. This
system is treated by an integrator that producesk uncoupled difference equations, the stability of which
can be investigated by the amplification method. Suppose thath̄i is the maximum stable stepsize for
the i th equation. The stability limit for the system is the minimum of the stable stepsizes:

hmax = mink
i =1 h̄i . (3.20)

If L is singular or has a defective eigensystem, additional precautions are necessary. Those are discussed
in several of the texts cited in theNotes and Bibliography Section.

§3.5.2. Variable Coefficients

If the entries ofL depend ont , the foregoing technique can still be used by diagonalizingL at each time
step. In this cases the stability analysis islocal, that is, it represents the local behavior of the system to
a first approximation.

§3.5.3. Forced First-Order Linear System

A generalization of (3.17) results on adding a forcing term

u̇ − L u = f(t) (3.21)

But it turns out that for stability analysis the forcing termf(t) is irrelevant and can be dropped .
Consequently it is sufficient to consider the homogeneous forms analyzed before.
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−3 −2 −1 0 1 2 3
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−2

−1

0

1

2

Stable Unstable

Re(µ)

Im(µ)

BACKWARD EULER TRAPEZOIDAL RULE

Figure 3.5. Stability charts for BE (left) and TR (right) over the complex
µ plane. The overstability region for BE is shown in red.

§3.5.4. Linearization of General First-Order System

A fairly general form2 of a system of first-order nonlinear differential equations is

u̇ = g(u, t) (3.22)

whereu is a vector ofk componentsui (t) andg a vector ofk functionsgi (u, t). To investigate the local
behavior of (3.22) atu = u0 andt = t0 for deviations�u = u − u0 and�t = t − t0, linearize it by
Taylor series

u ≈ ∂g
∂u

�u + ∂g
∂t

�t = L �u + q�t, L = ∂g
∂u

∣∣∣∣
u=u0,t=t0

, q = ∂g
∂t

∣∣∣∣
u=u0,t=t0

. (3.23)

so matrixL appears as the Jacobian ofg with respect tou. The amplification analysis may be carried
out on (3.23) as first approximation. The results, however, may be suspect for highly nonlinear systems.
The energy method cited previously does not suffer from that drawback but has to reworked for different
problems.

§3.6. Overstability

Overstability means getting a bounded numerical solution for a differential equation or system that has
unbounded solutions ast grows. As previously remarked, this can be dangerous in some situations such
as flutter simulations, since physical instability is masked. The phenomenon can be easily illustrated
for Backward Euler (BE) applied to the test equationẏ = λy with �(λ) > 0. The analytical solutions
y(t) = Ceλt grow up exponentially. Applying BE:yn+1 = yn + hẏn+1 gives the amplification factor

z = 1

1 − µ
, µ = λh. (3.24)

The BE stability chart can be generated by the script of 3.3, in which the second argument of
StabilityIndicator is 1 whereas the plot range is�(µ) ∈ [−3, 3] and (µ) ∈ [−3, 3] so as

2 This form assumes an explicit solution foru̇. most general form is implicit:F(u̇, u, t) = 0. But there are few results and
integrators available for the most general case.
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to include portion of the right handµ plane. The chart is shown on the left of Figure 3.5. Note the large
region of overstability, for exampleµ = λh > 2 for realλ. This is caused by the numerical damping
injected by the method. On the other hand, the stability chart for TR, shown on the right of Figure 3.5,
indicates perfect agreement between physical and numerical stability.

Overstability is not always dangerous. If the physical system is known to preclude instability and if
a key objective is to converge rapidly to a steady-state solution, the large numerical damping added
by an overstable integrator such as BE may help in attaining that goal. This scenario arises in pseudo
dynamical simulations.

Notes and Bibliography

The notion of stability as resistance to change is universal. Specific definitions vary with the field. For dynamics
and control, see [3.55,3.56]. For dynamical systems from a broader and more recent perspective, see [3.83], which
has a comprehensive reference list. For chaotic systems exhibiting “orbit shadowing” see [3.51].

There are many textbooks and monographs that focus on the numerical solution of ordinary differential equations.
Of the old (pre-1980) crop, by far the best organized and written is Gear’s textbook [3.28]. As can be expected
from its publication date it is outdated in some topics but still a gem. Lapidus and Seinfield [3.54] contains useful
material for chemical engineering. Lambert’s textbook [3.53] has well chosen examples. Henrici’s monograph
[3.39] for scalar ODEs was groundbreaking in the 1960s, and the sequel [3.40] for systems is still worth keeping
as theoretical backup. One of the numerical analysis classics is Dalhquist and Bj¨orck [3.9], recently reprinted by
Dover. This text contains a tutorial introduction to computational methods for ODEs, skipping proofs.

Of the more recent crop, one may cite Butcher [3.7], Hairer and colleagues [3.36,3.37], Sewell [3.80] and Shampine
[3.81]. The most comprehensive and ambitious is the two-volume set [3.36,3.37]. Sample code for solving ODEs
is provided in the multi-language Numerical Recipes series; for example [3.74] in Fortran (a dead language, but
there is a companion book for C). The implementation quality, as typical of NR, ranges from mediocre to laughable
to dismal; however for one shot student projects it might be acceptable.

There are fewer books dealing with the energy method, as it is highly problem dependent. The book by Straughan
[3.82] focuses on convective fluid mechanics. Others can be found in the bibliography of [3.83]. For the algebraic
eigenproblem the “bible” is Wilkinson [3.91]. Nothing else comes close in comprehensiveness and understanding,
although as can be expected from a 1965 publication date several eigensolution methods are outdated or missing.

References

[3.1] Ahmed, M. O. and Corless, R. M., The method of modified equations in Maple,Electronic Proc.
3rd Int. IMACS Conf. on Applications of Computer Algebra, Maui, 1997. PDF accessible at
http://www.aqit.uwo.ca/∼corless.

[3.2] Belvin, W. K. and Park, K. C., Structural tailoring and feedback control synthesis: an interdisciplinary
approach,J. Guidance, Control & Dynamics, 13, 424–429, 1990.

[3.3] Belytschko, T. and Mullen, R., Mesh partitions of explicit-implicit time integration, in:Formulations and
Computational Algorithms in Finite Element Analysis, ed. by K.-J. Bathe, J. T. Oden and W. Wunderlich,
MIT Press, Cambridge, 673–690, 1976.

[3.4] Belytschko, T. and Mullen, R., Stability of explicit-implicit mesh partitions in time integration,Int. J.
Numer. Meth. Engrg., 12, 1575–1586, 1978.

[3.5] Belytschko, T., Yen, T. and Mullen, R., Mixed methods for time integration,Comp. Meths. Appl. Mech.
Engrg., 17/18, 259–275, 1979.

[3.6] Bergan, P. G. and Felippa, C. A., A triangular membrane element with rotational degrees of freedom,
Comp. Meths. Appl. Mech. Engrg., 50, 25–69, 1985

[3.7] Butcher, J. C.,Numerical Methods for Ordinary Differential Equations, Wiley, New York, 2003.
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