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1. Course Introduction, Admin details

2. Motivating examples (Chapter 1)

3. Brief Probability review
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Admin details

- syllabus

- class location

- student groups, email list, order of groups

for assignments

- HMW presentations by groups on Thurs-

days. /Hand in days are Tuesdays for the

group that makes the presentation/
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- Matlab access, SCS computer facilities, per-

sonal accounts.

- course webpage



Course goal: to understand numerical meth-

ods for problems formulated by stochastic

or partial differential equations models in sci-

ence, engineering and mathematical finance.
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Motivating examples (Chapter 1)
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Example 1 (Noisy Evolution of Stock Values)

Denote stock value by S(t). Assume that

S(t) satisfies the differential equation

dS

dt
= a(t)S(t),

which has the solution

S(t) = e
∫ t
0 a(u)duS(0).

Since we do not know precisely how S(t)

evolves we would like to generalize the model

to a stochastic setting

a(t) = r(t) + ”noise”.
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For instance, we will consider

dS(t) = r(t)S(t)dt + σS(t)dW (t), (1)

where dW (t) will introduce noise in the evo-
lution.

What is the meaning of (1)? The answer
is not as direct as in the deterministic ode
case.

One way to give meaning to (1) is to use
the Forward Euler discretization,

Sn+1 − Sn = rnSn∆tn + σnSn∆Wn. (2)



Here ∆Wn are independent normally distributed

random variables with zero mean and vari-

ance ∆tn, i.e.

E[∆Wn] = 0

and

V ar[∆Wn] = ∆tn = tn+1 − tn.

Then (1) is understood as a limit of (2)

when max∆t → 0.



Applications to Option pricing

European call option: is a contract signed

at time t which gives the right, but not the

obligation, to buy a stock (or other financial

instrument) for a fixed price K at a fixed

future time T > t.

At time t the buyer pays the seller the amount

f(s, t;T ) for the option contract.

What is a fair price for f(s, t;T )?
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The Black-Scholes model for the value f :

(0, T )×(0,∞) → R of a European call option

is the partial differential equation

∂tf + rs∂sf +
σ2s2

2
∂2

s f = rf, 0 < t < T,

f(s, T ) = max(s−K,0), (3)

where the constants r and σ denote the risk-

less interest rate and the volatility, respec-

tively.
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Stochastic representation of f(s, t) The
Feynmann-Kač formula gives the alternative
probability representation of the option price

f(s, t) = E[e−r(T−t) max(S(T )−K,0))|S(t) = s],
(4)

where the underlying stock value S is mod-
eled by the stochastic differential equation
(1) satisfying S(t) = s.
Thus, f(s, t) is both the solution of a PDE
(3) with the expected value of the solution
of a SDE (4)!

Which one should we choose to discretize?
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Example 2 (Porous media flow) Consider

an incompressible flow

div(V ) = 0, (5)

and Darcy’s law

V = −K∇P. (6)

Here V is the flow velocity and P is the pres-

sure field. The function K, the so called

conductivity of the material, is the source of

randomness, since in practical cases, it is not

precisely known.
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To study the concentration C of an inert
pollutant carried by the flow V , we solve the
convection equation

∂tC + V · ∇C = 0.

Observe: The variation of K is, via Darcy’s
law (6), determines the concentration C.

One way to determine the flow velocity is to
solve the pressure equation

div(K∇P ) = 0, (7)

in a domain with given values of the pressure
on the boundary of this domain.



Assume now that the flow is two dimensional

with V = (1, V̂ ), where V̂ (x) is stochastic

with mean zero, i.e. E[V̂ ] = 0. Thus,

∂tC + ∂xC + V̂ ∂yC = 0.

Let us define C̄ as the solution of

∂tC̄ + ∂xC̄ = 0.

Is C̄ is the expected value of C, i.e. is

C̄
?
= E[C]

true?



The answer is in general no. The difference
comes from the expected value

E[V̂ ∂yC] 6= E[V̂ ]E[∂yC] = 0.

Can you see why?
The desired averaged quantity C̃ = E[C] is
an example of turbulent diffusion and in the
simple case V̂ (x)dx = dW (x) (cf. (1)) it will
satisfy a convection diffusion equation of the
form

∂tC̃ + ∂xC̃ =
1

2
∂yyC̃,

which is related to the Feynman-Kač formula
(4).



Example 3 (Optimal Control of Investments)

Suppose that we invest in a risky asset, whose

value S(t) evolves according to the stochas-

tic differential equation

dS(t) = µS(t)dt + σS(t)dW (t),

and in a riskless asset Q(t) that evolves with

dQ(t) = rQ(t)dt.

It is reasonable to assume r < µ, why?

Our total wealth is then X(t) = Q(t)+ S(t).
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Goal: determine an optimal instantaneous
policy of investment to maximize the ex-
pected value of our wealth at a given final
time T.

Let the time dependent proportion,

α(t) ∈ [0,1],

be defined by

α(t)X(t) = S(t),

so that

(1− α(t))X(t) = Q(t).



Then our optimal control problem can be

stated as

max
α∈A

E[g(X(T ))|X(t) = x] ≡ u(t, x), (8)

where g is a given function.

How can we determine α?



The solution to (8) can be obtained by means

of a Hamilton Jacobi equation, which is in

general a nonlinear partial differential equa-

tion satisfied by u(t, x) of the form

ut + H(u, ux, uxx) = 0.

Part of our work is to study the theory of

Hamilton Jacobi equations and numerical meth-

ods for control problems to determine the

Hamiltonian H and the control α.
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Class contents:

1. Probability background

2. Wiener process

3. Ito integral
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Probability Background

A probability space is a triple (Ω,F , P ), where

Ω is the set of outcomes, F is the set of

events and P : F → [0,1] is a function that

assigns probabilities to events satisfying cer-

tain rules.
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Definition 1 (Measurable Space) If Ω is a
given non empty set, then a σ-algebra F on
Ω is a collection F of subsets of Ω that sat-
isfy:

(1) Ω ∈ F;

(2) F ∈ F ⇒ F c ∈ F, where F c = Ω − F is
the complement set of F in Ω; and

(3) F1, F2, . . . ∈ F ⇒
⋃+∞

i=1 Fi ∈ F .
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Definition 2 (Probability Measure) A prob-

ability measure on (Ω,F) is a set function

P : F → [0,1] such that:

(1) P (∅) = 0, P (Ω) = 1; and

(2) If A1, A2, . . . ∈ F are mutually disjoint

sets then

P

+∞⋃
i=1

Ai

 =
+∞∑
i=1

P (Ai).
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Question 1: Give an example of a probabil-
ity space and distinguish clearly the events
F ∈ F from the outcomes ω ∈ Ω.

Question 2: Give an example of two dif-
ferent σ-algebras, G ⊂ F for the same set
of outcomes Ω. Can you give an intuitive
interpretation of the relation G ⊂ F?

Question 3: Is the intersection of σ-algebras
still a σ-algebra?

Question 4: What about the union of σ-
algebras?
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Definition 3 (generated σ-algebra) Given

a family of sets, {An}, there exists a unique

σ-algebra, σ({An}), s.t.

1. {An} ⊂ σ({An}),

2. if F is a σ − algebra,

{An} ⊂ F ⇒ σ({An}) ⊂ F
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Definition 4 A random variable X, in the

probability space (Ω,F , P ), is a function

X : Ω → Rd,

such that the inverse image

X−1(A) ≡ {ω ∈ Ω : X(ω) ∈ A} ∈ F ,

for all open subsets A of Rd.

Equivalently, we may say that X is an F-

measurable function and write X ∈ F.
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Example: Consider a finite family of disjoint

sets,

{An}N
n=1

and let Ω ≡ ∪1≤n≤NAn, F ≡ σ({An}). What

condition has to satisfy

X : Ω → R

in order to be a random variable in (Ω,F)?
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Definition 5 (Independence) Two sets A, B ∈
F are said to be independent if

P (A ∩B) = P (A)P (B).

Two independent random variables X, Y in

Rd are independent if for all open sets A, B ⊆
Rd we have that the events

X−1(A) and Y −1(B) are independent . (9)
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Definition 6 (Expected value) Let X : Ω →
R be a random variable and suppose that the

density function

p′(x) =
P (X ∈ dx)

dx

is integrable. The expected value of X is

then defined by the integral

E[X] =
∫ ∞
−∞

xp′(x)dx, (10)

which also can be written

E[X] =
∫ ∞
−∞

xdp(x). (11)
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The last integral makes sense also in gen-

eral when the density function is a measure,

e.g. by successive approximation with ran-

dom variables possessing integrable densi-

ties. A point mass, i.e. a Dirac delta mea-

sure, is an example of a measure.



Definition 7 (Stochastic Process) A stochas-

tic process X : [0, T ]×Ω → Rd in the proba-

bility space (Ω,F , P ) is a function such that

X(t, ·) is a random variable in (Ω,F , P ) for all

t ∈ (0, T ). We will often write X(t) ≡ X(t, ·).

The t variable will usually be associated with

the notion of time.
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Definition 8 (Wiener process) The one di-

mensional Wiener process W : [0,∞) ×Ω →
R, also known as the Brownian motion, has

the following properties:

(1) with probability 1, the mapping t 7→ W (t)

is continuous and W (0) = 0;

(2) if 0 = t0 < t1 < . . . < tN = T, then the

Wiener increments

W (tN)−W (tN−1), . . . , W (t1)−W (t0)
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are independent; and

(3) for all t > s the increment W (t) − W (s)

has the normal distribution, with E[W (t)−
W (s)] = 0 and E[(W (t)−W (s))2] = t−s,

i.e. for real intervals Γ we have

P (W (t)−W (s) ∈ Γ) =
1√

2π(t− s)

∫
Γ

e
−y2

2(t−s)dy.



Problem: Given the times points

0 = t0 < t1 < . . . < tN = T.

How do we sample realizations of W (tn), for

n = 0, . . . , N?
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Sampling W at discrete times

>> N = 100;

>> dt = 1/N;

>> M = 10;

>> dW = sqrt(dt)*randn(N,M);

>> W = cumsum(dW);

>> W = [zeros(1,M);W];

>> t = linspace(0,1,N+1);

>> plot(t,W)
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Sampling W on [0,1], N = 102 uniform

time steps, M = 10 realizations
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Sampling W on [0,1], N = 103 uniform

time steps, M = 10 realizations
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Question: Which changes are needed to ex-

tend the previous code to variable step size,

i.e. to sample W at given times, not neces-

sarily evenly distributed,

0 = t0 < . . . < tN?
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Observe that the previous code is vectorized

(no for loops) so it runs faster in MATLAB.

What about its memory use?

29



Approximation and Definition of Stochas-

tic Integrals
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Questions on the definition of a stochas-

tic integral

Remark 1 Problem: How to define the stochas-

tic integral
∫ T
0 W (t)dW (t), where W (t) is the

Wiener process.

Can we use the same approach as with Rie-

mann integrals, taking sums

N−1∑
n=0

W (ξn)(W (tn+1)−W (tn))

with ξn ∈ [tn, tn+1]?

31



As a first step, use the forward Euler dis-

cretization

N−1∑
n=0

W (tn) (W (tn+1)−W (tn))︸ ︷︷ ︸
=∆Wn

.

Taking expected values we obtain (why?)

E[
N−1∑
n=0

W (tn)∆Wn] =
N−1∑
n=0

E[W (tn)∆Wn]

=
N−1∑
n=0

E[W (tn)]E[∆Wn]︸ ︷︷ ︸
=0

=0.



Now let us use instead the backward Euler

discretization

N−1∑
n=0

W (tn+1)∆Wn.

Taking expected values yields a different re-



sult:

N−1∑
n=0

E[W (tn+1)∆Wn]

=
N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)
2]

=
N−1∑
n=0

∆t

=T 6= 0.



Moreover, if we use the trapezoidal method

the result is

N−1∑
n=0

E

[
W (tn+1) + W (tn)

2
∆Wn

]

=
N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)
2/2]

=
N−1∑
n=0

∆t

2
= T/2 6= 0.
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Conclusion: we need more information to

define
∫ T
0 W (s)dW (s) than to define a deter-

ministic integral!

In fact, limits of the forward Euler define the

so called Itô integral, while the trapezoidal

method yields the so called Stratonovich in-

tegral.
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Strong and weak convergence

Depending on the application, we focus ei-

ther on

• strong convergence, where approximation

of the outcomes of X(T ) is relevant,

• or weak convergence, where only the dis-

tribution (law) of X(T ) needs to be ap-

proximated.
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Definition. The sequence of random vari-

ables {Yn}n∈N converges strongly to the ran-

dom variable Y if

‖Y − Yn‖L2
P (Ω) ≡

√
E[(Y − Yn)

2] → 0

Obs: By Chebychev we have

P (|Y − Yn| ≥ ε) ≤
E[(Y − Yn)2]

ε2
→ 0

for ay fixed ε > 0.



Definition. The sequence of random vari-

ables {Yn}n∈N converges weakly to the ran-

dom variable Y if E[g(Y )]−E[g(Yn)] → 0, for

all bounded continuous functions g.

Observe: strong convergence ⇒ weak con-

vergence, but the converse is in general not

true.
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Strong and weak convergence

Counterexample. Let random variables {Yn}n∈N
be iid in (Ω,F , P ), and Yn ∼ N(0,1), n =
1, . . ..
Verify that Yn converges weakly but not strongly!

Proof of (⇒) for Lipschitz functions:

|E[g(X)− g(Yn)]| ≤ E[|g(X)− g(Yn)|]
≤ CgE[|X − Yn|]

≤ Cg

√
E[|X − Yn|2]︸ ︷︷ ︸

=‖X−Yn‖L2
P

(Ω)

→ 0.
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Obs: The previous estimate may not be op-

timal. There are cases where the weak error

goes to zero much faster than the strong

one.



Ito Integrals

Theorem 1 Suppose that there exists C > 0

s.t. f : [0, T ]× R → R satisfies

|f(t+∆t, W+∆W )−f(t, W )| ≤ C(∆t+|∆W |)

then the forward Euler (left point quadra-

ture) approximations

I∆t =
N−1∑
n=0

f(tn, W (tn))∆Wn,
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with 0 = t0 < t1 < . . . < tN = T, satisfy

‖I∆t−I∆t′‖L2
P (Ω) = E[I∆t−I∆t′]

1/2 ≤ O
(√

∆tmax

)
(12)



Ito integrals

Remark 2 The previous theorem implies that

I∆t is Cauchy in L2
P (Ω) and its limit defines

the Ito integral

N−1∑
n=0

f(tn, W (tn))∆Wn

=
∫ T

0
f(s, W (s))dW (s) +O

(√
∆tmax

)

The previous estimate should be understood
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as

E
[(N−1∑

n=0

f(tn, W (tn))∆Wn −
∫ T

0
f(s, W (s))dW (s)

)2]
= O (∆tmax)

Question: What is the computational work

to reach an accuracy ε in L2
P (Ω) sense using

uniform time steps?



Information generated by a process.

Definition 9 The symbol FW
t denotes the

information generated by W on the interval

[0, t]. If, based on the observation of the

trajectory {W (s),0 ≤ s ≤ t} it is possible to

decide if an event A ∈ F has occurred or not,

then we write A ∈ FW
t .

If the value of a random variable Z can be

completely determined by the observations

{W (s),0 ≤ s ≤ t} then we write Z ∈ FW
t .
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A stochastic process g is called adapted to

the filtration {FW
t }t≥0 if g(t) ∈ FW

t for all

t ≥ 0.

Obs Math Grads: The filtration {FW
t }t≥0

is actually an increasing family of σ-algebras.

See Øksendal’s book, Chapter 3, for precise

definition.



Examples

1. A = {W (10) < 5}

2. Z =
∫ 1
0 W (s)ds

3. f(t) = sups≤t W (s)

4. g(t) = sups≤t+1 W (s)

39



Remark 3 (Extension to adapted Itô integration)

Itô integrals can be extended to adapted pro-

cesses. Assume f : [0, T ]×Ω → R is adapted

to the filtration {FW
t }t≥0 and that there is a

constant C such that√
E[|f(t + ∆t, ω)− f(t, ω)|2] ≤ C

√
∆t. (13)

Then the proof of Theorem 1 shows that

(12) still holds.
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Theorem 2 (Basic properties of Itô integrals)

Suppose that f, g : [0, T ]×Ω → R are Itô inte-

grable, e.g. FW
t -adapted and satifying (13),

and that c1, c2 are constants in R. Then:

(1) ∫ T

0
(c1f(s, ·) + c2g(s, ·))dW (s)

= c1

∫ T

0
f(s, ·)dW (s) + c2

∫ T

0
g(s, ·)dW (s)

.
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(2) E
[∫ T

0 f(s, ·)dW (s)
]
= 0.

(3)

E

[
(
∫ T

0
f(s, ·)dW (s))(

∫ T

0
g(s, ·)dW (s))

]

=
∫ T

0
E [f(s, ·)g(s, ·)] ds.



Problem How can we approximate numer-

ically the object
∫ T
0 f(s, W (s))dW (s)?
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Approximation of
∫ 1
0 W (s)dW (s):

dt = 1/N;

t = linspace(0,1,N+1);

dW = sqrt(dt)*randn(N,M);

W = cumsum(dW);

W = [zeros(1,M);W];

I = 0.5*(W(N+1,:).^2-t(N+1));

IFE = sum(W(1:N,:).*dW);

Error(J,:) = I-IFE;

mean_Square_Error = mean((Error.^2)’)’;
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Question: Which changes are needed to ex-

tend the previous code to variable step size,

i.e. to approximate I based on given points,

not necessarily evenly distributed,

0 = t0 < . . . < tN?
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Strong approximation for∫ 1
0 W (s)dW (s) = W2(1)−1

2 using F. Euler
with uniform time steps, M = 103.
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Problem: Write a code to reproduce the

previous results.
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Question: Does the Wiener process really

exist?

Answer: yes, see Example 2.18 in the notes,

where we construct it as a limit of piecewise

linear stochastic processes.
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Ito Stochastic Differential Equations

Goal Study existence, uniqueness and ap-

proximation for

dXt =a(t, Xt)dt + b(t, Xt)dWt, 0 < t < T

X(0) =x0

which is understood as

X(t) = x0+
∫ t

0
a(s, X(s))ds

+
∫ t

0
b(s, X(s))dWs, 0 < t < T

(14)
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Idea As we did with Ito integrals, we define

the solution to the SDE as the L2
P (Ω) limit

of forward Euler approximations.

Let 0 = t0 < t1 < . . . < tN = T, then define

the Euler Maruyama approximation by

X(t0) = x0

and for n = 0, . . . , N − 1

X(tn+1) = X(tn)+a(tn, X(tn))∆tn

+b(tn, X(tn))∆Wn,
(15)
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Remark 4 (Time continuous Forward Euler)

For theoretical purposes only we extend X
from 0 = t0 < t1 < . . . < tN = T, to all
t ∈ [0, T ].
Let tn < t < tn+1, then

X(t) = X(tn)+a(tn, X(tn))(t− tn)

+b(tn, X(tn))(W (t)−W (tn)),

that is

X(t) = X(tn)+
∫ t

tn
a(tn, X(tn))ds

+
∫ t

tn
b(tn, X(tn))dW (s)
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or, with the notations

a(s;X) = a(tn, X(tn)),

b(s;X) = b(tn, X(tn)),
for tn ≤ s < tn+1

we can write

X(t) = X(tn)+
∫ t

tn
a(s;X)ds

+
∫ t

tn
b(s;X)dW (s)

Observe that a and b are simple functions

and the integrals above are defined without

limits.
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Discrete F. Euler approximation, X.
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Continuous time F. Euler approximation, X.
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Theorem 3 (Ito SDE strong approximation)

Let X∆t and X∆t′ be Forward Euler approx-

imations (15) to the Ito SDE (14). As-

sume that x0 is deterministic and ∀x, y ∈ R,

0 < s, t < T we have

1.

max {|a(t, x)− a(t, y)|, |b(t, x)− b(t, y)|} ≤ C|x−y|,
(16)

54



2.

max {|a(t, x)− a(s, x)|, |b(t, x)− b(s, t)|}

≤ C(1 + |x|)
√
|s− t|.

(17)

Then, there exists a constant KT > 0 not
depending on ∆t,∆t′ s.t.

max
t∈[0,T ]

E[
(
X∆t(t)−X∆t′(t)

)2
] ≤ KT∆tmax

and

max
t∈[0,T ]

E[
(
X∆t(t)

)2
] ≤ KT (18)



Proof of the thm.

Step 1 Define the continuous Forward Eu-

ler and show (18)

Step 2 Consider the difference

(X∆t−X∆t′)(s) =∫ s

0

(
a(s;X∆t(s))− a(s;X∆t′(s))

)
ds

+
∫ s

0

(
b(s;X∆t(s))− b(s;X∆t′(s))

)
dW (s)
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and estimate integrands using assump-

tions (16),(17).

Step 3 Use the Ito isometry

E[(
∫

f(t)dWt)
2] =

∫
E[f2(t)]dt

Step 4 Apply Grönwall’s lemma to conclude.



Step 3

E[(X∆t −X∆t′)
2(s)]

≤E[
( ∫ s

0

(
a(s;X∆t(s))− a(s;X∆t′(s))

)
ds

+
∫ s

0

(
b(s;X∆t(s))− b(s;X∆t′(s))

)
dW (s)

)2
]

≤2E[
( ∫ s

0

(
a(s;X∆t(s))− a(s;X∆t′(s))

)
ds

)2
]

+2E[
( ∫ s

0

(
b(s;X∆t(s))− b(s;X∆t′(s))

)
dW (s)

)2
]︸ ︷︷ ︸

=
∫ s
0 E[

(
b(s;X∆t(s))−b(s;X∆t′(s))

)2
]ds
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E[(X∆t −X∆t′)
2(s)]

≤2E[s
∫ s

0

(
a(s;X∆t(s))− a(s;X∆t′(s))

)2
ds]

+ 2
∫ s

0
E[
(
b(s;X∆t(s))− b(s;X∆t′(s))

)2
]ds

≤2s
∫ s

0
E[
(
a(s;X∆t(s))− a(s;X∆t′(s))

)2
]ds

+ 2
∫ s

0
E[
(
b(s;X∆t(s))− b(s;X∆t′(s))

)2
]ds
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Step 2 Recall that

E[
(
b(s;X∆t(s))− b(s;X∆t′(s))

)2
] =

E[
(
b(tn, X∆t(tn))− b(t′m, X∆t′(t

′
m))

)2
]

and estimate

|b(tn, X∆t(tn))− b(t′m, X∆t′(t
′
m)|

≤|b(tn, X∆t(tn))− b(t, X∆t(t)|
+ |b(t, X∆t(t))− b(t, X∆t′(t)|︸ ︷︷ ︸

≤C|X∆t(t)−X∆t′(t)|

+|b(t, X∆t′(t))− b(t′m, X∆t′(t
′
m)|
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The first an last terms can be further esti-

mated by

|b(tn, X∆t(tn))− b(t, X∆t(t)|
≤ |b(tn, X∆t(tn))− b(tn, X∆t(t)|︸ ︷︷ ︸

≤C|X∆t(tn)−X∆t(t)|
+ |b(tn, X∆t(t))− b(t, X∆t(t)|︸ ︷︷ ︸

≤C
√
|t−tn||X∆t(t)|
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Finally, use assumptions to get

E[
(
b(s;X∆t(s))− b(s;X∆t′(s))

)2
]

≤ C
(
E[(X∆t(s)−X∆t(s))

2] + ∆tmax

)

and similarly for the drift term.
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Combining Step 2 and Step 3 yields for 0 <

s < T

E[(X∆t(s)−X∆t(s))
2]

≤ C

(∫ s

0
E[(X∆t(t)−X∆t(t))

2]dt + ∆tmax

)
,

From Grönwall’s lemma then we arrive at

E[(X∆t(s)−X∆t(s))
2] ≤ ∆tmaxCeCs

for 0 < s < T and this concludes the proof.
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Remark 5 The previous theorem shows that

the Euler approximations are Cauchy in the

norm

‖X‖2
C0([0,T ];L2

P (Ω))
= max

t∈[0,T ]
E[X2(t)]

and in that sense the approximation error to

the solution of the SDE is O
(
∆t

1/2
max

)

Question What is the corresponding weak

error? Is it also O
(
∆t

1/2
max

)
?
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Ito’s formula

This is a generalization of the deterministic

chain rule. Let

dXt = a(t, Xt)dt

then if Y (t) = g(t, X(t)) we have

dY (t) = (∂tg(t, X(t)) + ∂xg(t, X(t))a(t, Xt)) dt

Question: What is the corresponding for-

mula for Ito SDEs?
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Theorem 4 Let the assumptions inThm. 3

hold and let g : [0, T ]×R → R be bounded in

C2([0, T ]× R). Then Y (t) ≡ g(t, X(t)) satis-

fies the SDE

dY (t) =

(
∂tg + ∂xg a + ∂2

xg
b2

2

)
(t, X(t))dt

+ ∂xg(t, X(t))b(t, X(t))dW (t).
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Proof: Assume g bounded in C3([0, T ]×R).

We have to prove that

g(τ, X(τ))− g(0, X(0)) =∫ τ

0

(
∂tg + ∂xg a + ∂2

xg
b2

2

)
(t, X(t))dt

+
∫ τ

0
∂xg(t, X(t))b(t, X(t))dW (t)

Consider a forward Euler approximation to

X, X. Then, in L2
P (Ω), we have

g(τ, X(τ))− g(0, X(0))

= g(τ, X(τ))− g(0, X(0)) +O
(
∆t

1/2
max

)
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Now consider the telescopic sum

g(τ, X(τ))− g(0, X(0))

=
N−1∑
n=0

{
g(tn+1, X(tn+1))− g(tn, X(tn))

}

and Taylor expand each term. To finish show

that each obtained sum converges to the de-

sired terms.

66



Taylor expansion: Let

∆Xn =X(tn+1)−X(tn)

=a(tn, X(tn))∆tn + b(tn, X(tn))∆Wn.

Then

g(tn+1,X(tn+1))− g(tn, X(tn))

= ∂tg∆tn + ∂xg∆Xn

+
∂ttg

2
(∆tn)

2 +
∂xxg

2
(∆Xn)

2 + ∂txg∆tn∆Xn

+ o((∆Xn)
2) + o((∆tn)

2)
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g(τ, X(τ))− g(0, X(0))

=
N−1∑
n=0

{
g(tn+1, X(tn+1))− g(tn, X(tn))

}

=
N−1∑
n=0

∂t g∆tn︸ ︷︷ ︸
→
∫ τ
0 ∂t g(s,X(s))ds

+
N−1∑
n=0

∂xg b(tn, X(tn))∆Wn︸ ︷︷ ︸
→
∫ τ
0 (∂x gb)(s,X(s))dW (s)

+
N−1∑
n=0

∂xxg b2

2
(∆Wn)

2

+
N−1∑
n=0

{
∂ttg

2
(∆tn)

2 +
∂xxg

2
(∆Xn)

2 + ∂txg∆tn∆Xn}

+
N−1∑
n=0

{o((∆Xn)
2) + o((∆tn)

2)}
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We have

N−1∑
n=0

{
∂ttg

2
(∆tn)

2+
∂xxg

2
(∆Xn)

2+∂txg∆tn∆Xn} → 0,

and that

N−1∑
n=0

∂xxg b2

2
(∆Wn)

2 →
∫ τ

0

(∂xxg b2)(s, X(s))

2
ds.

By the assumption on the boundedness of
the third derivatives (recall Taylor remainder
form), we obtain

N−1∑
n=0

{o((∆Xn)
2) + o((∆tn)

2)} → 0.
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To verify that

N−1∑
n=0

∂xxg b2

2
(∆Wn)

2 →
∫ τ

0

(∂xxg b2)(s, X(s))

2
ds

we prove instead that

N−1∑
n=0

∂xxg b2

2
(∆Wn)

2−
N−1∑
n=0

∂xxg b2

2
∆tn︸ ︷︷ ︸

→
∫ τ
0

(∂xxg b2)(s,X(s))
2 ds

→ 0.

i.e.

(I) ≡ E[

N−1∑
n=0

(∂xxg b2)(tn, X(tn))

2︸ ︷︷ ︸
≡αn

{(∆Wn)
2 −∆tn}


2

] → 0.
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Now compute, for 0 ≤ n < m ≤ N − 1,

E[αnαm{(∆Wn)
2 −∆tn}{(∆Wm)2 −∆tm}]

= E[αnαm{(∆Wn)
2 −∆tn}]E[{(∆Wm)2 −∆tm}]︸ ︷︷ ︸

=0

= 0

Therefore

(I) =
N−1∑
n=0

E[α2
n((∆Wn)

2 −∆tn)
2]

=
N−1∑
n=0

E[α2
n]E[((∆Wn)

2 −∆tn)
2]︸ ︷︷ ︸

=C∆t2n

≤ C∆tmax → 0
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Remark 6 The regularity assumptions for g

can be weakened. Let g = g(x). To prove the

result for g bounded in C2(R) use a mollifier

0 ≤ φδ ∈ C∞(R) satisfying
∫
R φδ = 1 and

|supp(φδ)| = O (δ). Then consider

gδ(x) =
∫
R

g(y)φδ(x− y)dy ∈ C∞(R)

which for fixed δ > 0 is bounded in C3(R) and

converges pointwise to g in C2(R) as δ → 0.
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Write

g(Xτ)− g(x0) =gδ(Xτ)− gδ(x0)

+ (g − gδ)(Xτ)− (g − gδ)(x0)

=
∫ τ

0

(
∂xgδ a + ∂2

xgδ
b2

2

)
(t, X(t))dt

+
∫ τ

0
∂xgδ(t, X(t))b(t, X(t))dW (t)

+ (g − gδ)(Xτ)− (g − gδ)(x0)

To conclude, let 0 < δ → 0 and show, using
dominated convergence, that
• E[(g − gδ)

2(Xτ)] → 0,

• E[(
∫ τ
0 (L(g − gδ)) (t, X(t))dt)2] → 0



•
E[
(∫ τ

0
∂x(g − gδ)(t, X(t))b(t, X(t))dW (t)

)2
]

=
∫ τ

0
E[(∂x(g − gδ)(t, X(t))b(t, X(t)))2]dt → 0

For g = g(t, x) we need to mollify also in the

t-direction.


