Numerical Methods of SDEs-Dr. Raidl Tempone
Homework #3

Exercise 1 Formulate and motivate a forward Euler method for approximation of the Stratonovich SDE

dXt = a(t, Xt)dt + b(t, Xt) 9] th (1)

First approach: (Incorrect approach!) We approximated b(¢, X;) by the midpoint rule:
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What is wrong with approach (2)?

Consider the following process as an example to illustrate why formulation (2) was incorrect.

dX(t) = bXdW (t) with a constant b, (3)

Using (2) to approximate (3) we obtain:
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where we have used the fact that E(f(z)) = [(f(x)dp(z)) where p(z) is the probability density of x.

From (5), consider a similiar integral:
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However, the integral in (6) does not converge.



Formulation:

Rewrite (1), so that may discretize using the forward Euler method.
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From (7), considering one interval, [t,, t,+1]
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Discretization of (8) to obtain the following:
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Exercise 2 Consider the deterministic differential equation

Z(0) = o 0<t<T,

and consider a peturbation of (10), the Ito stochastic differential equation

X(0) = x0 0<t<T,

where a is a smooth function and b> 0 is a positive constant. The aim of this exercise is to compare
the solution of both equations. Define then the difference:

et = Xt — Zt (12)

a) Consider a(x) = ax (linear case) and compute E(e¢) and Var(ey).
Hint: Use Ito’s formula when necessary.

From (10), obtain the following solution

Zy = wge™ (13)

Applying the intergrating factor, define the following:
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Ito’s formula. Let f be a smooth function, assume that X; is the solution of an SDE, then
gt = f(Xy,t) satisfies the SDE
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Applying (15) to (14), to obtain the following:
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integrating (16), will obtain:
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Therefore, now that we have obtained an equation for Xy, see (17), revisit the definition for the
difference, (12).
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Solution: Now derived an equation for e, (18), compute E(e¢) and Var(ey).

e Compute E(e;). Will use, Theorem 2.15 (ii), using the basic properities of It6’s integrals.
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= 0 by Thm 2.15 (19)

e Compute Var(e).
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Will use, It6 isometry in order to simplify (20).
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b. Assume now that |a(x) — a(y)| < Ca|x —y| with a positive constant C,. Find bounds for the
expectation, E(|et|?) and use it to bound the variance Var(ey).
Discuss what happens as b — 0.

e Find bounds for the expectation, E(|e¢|?).
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Taking the absolute value, squaring both sides, and taking the expectation we will obtain
the left hand solution. To obtain a upper bound, we will use various methods involving the
triangle inequality, Cauchy-Schwarz inequality, Fubini’s theorem, and Gronwall’s lemma.
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From (22), we will square both sides, and take the expectation to obtain:
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To simplify the integral in (23), we will use Gromwall’s lemma.

Lemma. Assume that there exist positive constants A and K such that the function
f: R — R satisfies:
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Also, to use Gronwall’s lemma, define the following:
f(t) = Ele:|?

From (25), and substituting into (23), we will obtain:
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Let K =2C?T and A = 2b*T, (note: A > 0)
Then by Gronwall’s lemma, obtain a bound on E(|eg|?).
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e Using answer from part 2a), (27), obtain a bound on the variance Var(ey).

Var(e;) = E(¢f) - [E(e)]
——
see (19)
< E(e) (Note : [E(e)]* > 0)
Var(e;) < 22T 2CaTt



e Discuss what happens as b — 0.

From (28), as b — 0, will lead to:
0 < Var(e;) < 0= Var(e;) =0 (29)

Therefore, the stochastic term disappears as b — 0 in the SDE of X;. Thus, matching the
deterministic function, Z;



c) Implement a uniform time step forward Euler discretization of the above equations taking
a(x) = cos(x),b=0.1, and T = 6.
Plot the sample estimator for Var(eg) vs. time.
Compare it with the bound obtained in part (b).
Use M = 103 sample paths and different number of time steps: N = 10, 20, 40.

e Each graph below was graphed using Matlab, please see appendix for code.

e For each figure, the deterministic function, trajectories, and the bounds were plotted.

e Figure one: Number of time steps: N = 10.
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e Figure two: Number of time steps: N = 20.
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e Figure three: Number of time steps: N = 40.
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APPENDIX: Problem 2(c) Mathlab code

clf randn(round(clock),1); T = 6; N = 40; Delta_t = T/N; b=0.1; X0=0;
C1=2x(b"2); C2=8; v_error_mean=zeros(N,1); v_error_square=zeros(N,1);
v_variance=zeros(N,1); v_xdet=zeros(N,1); v_xdet2=zeros(N,1); M = 1le+3;
for s = 1:M
X=X0;
Z=X0;
for j = 1:N
Wincl = sqrt(Delta_t)*randn;
X=X+cos(X)*Delta_t + b*Wincl;
Z=Z+cos(Z)*Delta_t;
v_xdet(j,1)=v_xdet(j,1)+X;
v_xdet2(j,1)=v_xdet2(j,1)+X"2;
e=abs(X-2);
v_error_mean(j,1)=v_error_mean(j,1)+e;
e2=(X-2)"2;
v_error_square(j,1)=v_error_square(j,1)+e2;
end end X=X0; X1=X0; Z=X0; for j=1:N
v_xdet(j,1)=v_xdet(j,1)/M;
v_xdet2(j,1)=v_xdet2(j,1)/M;
v_variance_det(j,1)=v_xdet2(j,1)-((v_xdet(j,1))"2);
Wincl = sqrt(Delta_t)*randn;
X=X+cos(X)*Delta_t + b*Wincl;
v_notmean(j,1) = X;
Winc2 = sqrt(Delta_t)*randn;
X1=X1+cos(X1)*Delta_t + b*Winc2;
v_notmean2(j,1) = X1;
v_error_mean(j,1)=v_error_mean(j,1)/M;
v_error_square(j,1)=v_error_square(j,1)/M;
v_variance(j,1)=v_error_square(j,1)-((v_error_mean(j,1))"2);
Z=Z+cos(Z)*Delta_t;
v_deterministic(j,1)=Z;
v_time=linspace(0,T,N);
v_minus_2d(j,1)=v_xdet(j,1)-2*sqrt(v_variance_det(j,1));
v_plus_2d(j,1)=v_xdet(j,1)+2*sqrt(v_variance_det(j,1)); end
title(’N = 10’); subplot(2,1,1); plot(v_time, v_variance,’r’);
legend(’Variance(e(t))’); xlabel(’Time (in seconds)’); subplot(2,1,2);
plot(v_time, v_deterministic, ’k’, v_time, v_xdet,’b’, v_time, v_notmean,
‘m+--’, v_time, v_notmean2,’gx--’); hold on; plot(v_time, v_minus_2d,’r’,
v_time, v_plus_2d,’r’,’LineWidth’,3); legend(’Z’,’Avg(X)’,’Trajectory
1’,’Trajectory 2’,’Avg(X) +/- 2 8SD’);
xlabel (’Time (in seconds)’);



