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Chapter 1

Introduction and Motivating
Examples

The goal of this course is to give useful understanding to solve problems
formulated by stochastic or partial differential equations models in science,
engineering and mathematical finance. Typically, these problems require
numerical methods to obtain a solution and therefore the course focuses
on basic understanding of stochastic and partial differential equations to
construct reliable and efficient computational methods.

In particular, we will study the amount of computational work for al-
ternative numerical methods to solve a problem with a given accuracy. The
optimal method clearly minimizes the work for given accuracy. Therefore it is
valuable to know something about accuracy and work for different numerical
methods, which lead us to error estimates and convergence results.

1.1 Noisy Evolution of Stock Values

Let us consider a stock value denoted by the time dependent function S(t).
To begin our discussion, assume that S(t) satisfies the differential equation

dS

dt
= a(t)S(t),

which has the solution
S(t) = e

R t
0 a(u)duS(0).

Our aim is to introduce some kind of noise in the above simple model
of the form a(t) = r(t) + ”noise”, taking into account that we do not know
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precisely how the evolution will be. An example of a ”noisy” model we shall
consider is the stochastic differential equation

dS(t) = r(t)S(t)dt+ σS(t)dW (t), (1.1)

where dW (t) will introduce noise in the evolution. To seek a solution for the
above, the starting point will be the discretization

Sn+1 − Sn = rnSn∆tn + σnSn∆Wn, (1.2)

where ∆Wn are independent normally distributed random variables with zero
mean and variance ∆tn, i.e. E[∆Wn] = 0 and V ar[∆Wn] = ∆tn = tn+1− tn.
As will be seen later on, (1.1) may have more than one possible interpretation,
and the characterization of a solution will be intrinsically associated with the
numerical discretization used to solve it.

We shall consider, among others, applications to option pricing problems.
An European call option is a contract which gives the right, but not the
obligation, to buy a stock for a fixed price K at a fixed future time T . The
celebrated Black-Scholes model for the value f : (0, T ) × (0,∞) → R of an
option is the partial differential equation

∂tf + rs∂sf +
σ2s2

2
∂2
sf = rf, 0 < t < T,

f(s, T ) = max(s−K, 0), (1.3)

where the constants r and σ denote the riskless interest rate and the volatility
respectively. If the underlying stock value S is modeled by the stochastic
differential equation (1.1) satisfying S(t) = s, the Feynmann-Kač formula
gives the alternative probability representation of the option price

f(s, t) = E[e−r(T−t) max(S(T )−K, 0))|S(t) = s], (1.4)

which connects the solution of a partial differential equation with the ex-
pected value of the solution of a stochastic differential equation. Although
explicit exact solutions can be found in particular cases, our emphasis will
be on general problems and numerical solutions. Those can arise from dis-
cretization of (1.3), by finite difference or finite elements methods, or from
Monte Carlo methods based on statistical sampling of (1.4), with a discretiza-
tion (1.2). Finite difference and finite element methods lead to a discrete
system of equations substituting derivatives for difference quotients, (e.g.)
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ft ≈ f(tn+1)−f(tn)
∆t

; the Monte Carlo method discretizes a probability space,

substituting expected values by averages of finite samples, e.g. {S(T, ωj)}Mj=1

and f(s, t) ≈
∑M

j=1
e−r(T−t) max(S(T,ωj)−K,0)

M
. Which method is best? The solu-

tion depends on the problem to solve and we will carefully study qualitative
properties of the numerical methods to understand the answer.

1.2 Porous Media Flow

An other motivation for stochastic differential equations is provided by porous
media flow. In this case the uncertainty comes from the media where the
flow takes place. The governing equations are the continuity equation of an
incompressible flow

div(V ) = 0, (1.5)

and Darcy’s law

V = −K∇P, (1.6)

where V represents the flow velocity and P is the pressure field. The function
K, the so called conductivity of the material, is the source of randomness,
since in practical cases, it is not precisely known. We would like to study the
concentration C of an inert pollutant carried by the flow V , satisfying the
convection equation

∂tC + V · ∇C = 0.

The variation of K is, via Darcy’s laws (1.6), important to determine prop-
erties of the concentration C. One way to determine the flow velocity is to
solve the pressure equation

div(K∇P ) = 0, (1.7)

in a domain with given values of the pressure on the boundary of this domain.
Assume that the flow is two dimensional with V = (1, V̂ ), where V̂ (x) is
stochastic with mean zero, i.e. E[V̂ ] = 0. Thus,

∂tC + ∂xC + V̂ ∂yC = 0.

Let us define C̄ as the solution of ∂tC̄ + ∂xC̄ = 0. We wonder if C̄ is the

expected value of C, i.e. is C̄
?
= E[C] ? The answer is in general no. The
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difference comes from the lack of independence between V̂ and C, which in
general will imply

E[V̂ ∂yC] 6= E[V̂ ]E[∂yC] = 0.

The desired averaged quantity C̃ = E[C] is an example of turbulent diffusion
and in the simple case V̂ (x)dx = dW (x) (cf. (1.1)) it will satisfy a convection
diffusion equation of the form

∂tC̃ + ∂xC̃ =
1

2
∂yyC̃,

which is related to the Feynman-Kač formula (1.4). We will develop efficient
numerical methods for more general stochastic velocities.

1.3 Optimal Control of Investments

Suppose that we invest in a risky asset, whose value S(t) evolves according
to the stochastic differential equation dS(t) = µS(t)dt+ σS(t)dW (t), and in
a riskless asset Q(t) that evolves with dQ(t) = rQ(t)dt, r < µ. Our total
wealth is then X(t) = Q(t) + S(t) and the goal is to determine an optimal
instantaneous policy of investment in order to maximize the expected value
of our wealth at a given final time T. Let α(t) be defined by α(t)X(t) = S(t),
so that (1 − α(t))X(t) = Q(t) with α ∈ [0, 1]. Then our optimal control
problem can be stated as

max
α

E[g(X(T ))|X(t) = x] ≡ u(t, x),

where g is a given function. How can we determine α? The solution of this
problem can be obtained by means of a Hamilton Jacobi equation, which is
in general a nonlinear partial differential equation of the form

ut +H(u, ux, uxx) = 0.

Part of our work is to study the theory of Hamilton Jacobi equations and
numerical methods for control problems to determine the Hamiltonian H and
the control α.
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Chapter 2

Stochastic Integrals

This chapter introduces stochastic integrals, which will be the basis for
stochastic differential equations in the next chapter. Here we construct ap-
proximations of stochastic integrals and prove an error estimate. The error
estimate is then used to establish existence and uniqueness of stochastic in-
tegrals, which has the interesting ingredient of intrinsic dependence on the
numerical approximation due to infinite variation. Let us first recall the basic
definitions of probability we will use.

2.1 Probability Background

A probability space is a triple (Ω,F , P ), where Ω is the set of outcomes, F
is the set of events and P : F → [0, 1] is a function that assigns probabilities
to events satisfying the following definitions.

Definition 2.1 If Ω is a given non empty set, then a σ-algebra F on Ω is a
collection F of subsets of Ω that satisfy:

(1) Ω ∈ F ;

(2) F ∈ F ⇒ F c ∈ F , where F c = Ω−F is the complement set of F in Ω;
and

(3) F1, F2, . . . ∈ F ⇒
⋃+∞
i=1 Fi ∈ F .

Definition 2.2 A probability measure on (Ω,F) is a set function P : F →
[0, 1] such that:
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(1) P (∅) = 0, P (Ω) = 1; and

(2) If A1, A2, . . . ∈ F are mutually disjoint sets then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P (Ai).

Definition 2.3 A random variable X, in the probability space (Ω,F , P ), is
a functionX : Ω → Rd such that the inverse imageX−1(A) ≡ {ω ∈ Ω : X(ω) ∈ A} ∈
F , for all open subsets A of Rd.

Definition 2.4 [ Independence of random variables] Two sets A,B ∈ F are
said to be independent if

P (A ∩B) = P (A)P (B).

Two independent random variables X, Y in Rd are independent if

X−1(A) and Y −1(B) are independent for all open sets A,B ⊆ Rd.

Definition 2.5 A stochastic process X : [0, T ] × Ω → Rd in the probabil-
ity space (Ω,F , P ) is a function such that X(t, ·) is a random variable in
(Ω,F , P ) for all t ∈ (0, T ). We will often write X(t) ≡ X(t, ·).

The t variable will usually be associated with the notion of time.

Definition 2.6 Let X : Ω → R be a random variable and suppose that the
density function

p′(x) =
P (X ∈ dx)

dx
is integrable. The expected value of X is then defined by the integral

E[X] =

∫ ∞

−∞
xp′(x)dx, (2.1)

which also can be written

E[X] =

∫ ∞

−∞
xdp(x). (2.2)

The last integral makes sense also in general when the density function is a
measure, e.g. by successive approximation with random variables possessing
integrable densities. A point mass, i.e. a Dirac delta measure, is an example
of a measure.
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Exercise 2.7 Show that if X, Y are independent random variables then

E[XY ] = E[X]E[Y ].

2.2 Brownian Motion

As a first example of a stochastic process, let us introduce

Definition 2.8 [ The Wiener process] The one-dimensional Wiener process
W : [0,∞)× Ω → R, also known as the Brownian motion, has the following
properties:

(1) with probability 1, the mapping t 7→ W (t) is continuous and W (0) = 0;

(2) if 0 = t0 < t1 < . . . < tN = T, then the increments

W (tN)−W (tN−1), . . . ,W (t1)−W (t0)

are independent ; and

(3) for all t > s the increment W (t) −W (s) has the normal distribution,
with E[W (t)−W (s)] = 0 and E[(W (t)−W (s))2] = t− s, i.e.

P (W (t)−W (s) ∈ Γ) =

∫
Γ

e
−y2

2(t−s)√
2π(t− s)

dy, Γ ⊂ R.

Does there exists a Wiener process and how to construct W if it does?
In computations we will only need to determine W at finitely many time
steps {tn : n = 0, . . . , N} of the form 0 = t0 < t1 < . . . < tN = T . The def-
inition then shows how to generate W (tn) by a sum of independent normal
distributed random variables, see Example 2.18 for computational methods
to generate independent normal distributed random variables. These inde-
pendent increments will be used with the notation ∆Wn = W (tn+1)−W (tn).
Observe, by Properties 1 and 3, that for fixed time t the Brownian motion
W (t) is itself a normal distributed random variable. To generate W for all
t ∈ R is computationally infeasible, since it seems to require infinite compu-
tational work. Example 2.18 shows the existence of W by proving uniform
convergence of successive continuous piecewise linear approximations. The
approximations are based on an expansion in the orthogonal L2(0, T ) Haar-
wavelet basis, which will be further studied in Section 9.2 to develop fast
computational methods for the porous media problem of Section 1.2.
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2.3 Approximation and Definition of Stochas-

tic Integrals

Remark 2.9 [ Questions on the definition of a stochastic integral] Let us
consider the problem of finding a reasonable definition for the stochastic
integral

∫ T
0
W (t)dW (t), where W (t) is the Wiener process. As a first step,

let us discretize the integral by means of the forward Euler discretization

N−1∑
n=0

W (tn) (W (tn+1)−W (tn)))︸ ︷︷ ︸
=∆Wn

.

Taking expected values we obtain by Property 2 of Definition 2.8

E[
N−1∑
n=0

W (tn)∆Wn] =
N−1∑
n=0

E[W (tn)∆Wn] =
N−1∑
n=0

E[W (tn)]E[∆Wn]︸ ︷︷ ︸
=0

= 0.

Now let us use instead the backward Euler discretization

N−1∑
n=0

W (tn+1)∆Wn.

Taking expected values yields a different result:

N−1∑
n=0

E[W (tn+1)∆Wn] =
N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)
2] =

N−1∑
n=0

∆t = T 6= 0.

Moreover, if we use the trapezoidal method the result is

N−1∑
n=0

E

[
W (tn+1) +W (tn)

2
∆Wn

]
=

N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)
2/2]

=
N−1∑
n=0

∆t

2
= T/2 6= 0.

2

Remark 2.9 shows that we need more information to define the stochas-
tic integral

∫ t
0
W (s)dW (s) than to define a deterministic integral. We must
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decide if the solution we seek is the limit of the forward Euler method. In
fact, limits of the forward Euler define the so called Itô integral, while the
trapezoidal method yields the so called Stratonovich integral. It is useful
to define the class of stochastic processes which can be Itô integrated. We
shall restrict us to a class that allows computable quantities and gives con-
vergence rates of numerical approximations. For simplicity, we begin with
Lipschitz continuous functions in R which satisfy (2.3) below. The next the-
orem shows that once the discretization method is fixed to be the forward
Euler method, the discretizations converge in L2. Therefore the limit of for-
ward Euler discretizations is well defined, i.e. the limit does not depend on
the sequence of time partitions, and consequently the limit can be used to
define the Itô integral.

Theorem 2.10 Suppose there exist a positive constant C such that f :
[0, T ]× R → R satisfies

|f(t+ ∆t,W + ∆W )− f(t,W )| ≤ C(∆t+ |∆W |). (2.3)

Consider two different partitions of the time interval [0, T ]

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm} ¯̄N

m=0
¯̄t0 = 0, ¯̄t ¯̄N = T,

with the corresponding forward Euler approximations

Ī =
N̄−1∑
n=0

f(t̄n,W (t̄n))(W (t̄n+1)−W (t̄n)), (2.4)

¯̄I =

¯̄N−1∑
m=0

f(¯̄tm,W (¯̄tm))(W (¯̄tm+1)−W (¯̄tm)). (2.5)

Let the maximum time step ∆tmax be

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Then

E[(Ī − ¯̄I)2] ≤ O(∆tmax). (2.6)
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Proof. It is useful to introduce the finer grid made of the union of the nodes
on the two grids

{tk} ≡ {t̄n} ∪
{¯̄tm} .

Then in that grid we can write

Ī − ¯̄I =
∑
k

∆fk∆Wk,

where ∆fk = f(t̄n,W (t̄n))−f(¯̄tm,W (¯̄tm)), ∆Wk = W (tk+1)−W (tk) and the
indices m,n satisfy tk ∈ [¯̄tm, ¯̄tm+1) and tk ∈ [t̄n, t̄n+1), as depicted in Figure
2.1.

{tk}

{¯̄tm}

{t̄n}
0

t0

¯̄t0

t̄0

T

tN

¯̄t ¯̄N

t̄N̄

t1 t2

¯̄t1

t̄1

t3 t4

¯̄t2

t̄2

t5

¯̄t3

t̄3

. . .

. . .

. . .

tN−2 tN−1

¯̄t ¯̄N−1

t̄N̄−1

Figure 2.1: Mesh points used in the proof.

Therefore,

E[(Ī − ¯̄I)2] = E[
∑
k,l

∆fk∆fl∆Wl∆Wk]

= 2
∑
k>l

E[∆fk∆fl∆Wl∆Wk]︸ ︷︷ ︸
=E[∆fk∆fl∆Wl]E[∆Wk]=0

+
∑
k

E[(∆fk)
2(∆Wk)

2]

=
∑
k

E[(∆fk)
2]E[(∆Wk)

2] =
∑
k

E[(∆fk)
2]∆tk. (2.7)

Taking squares in (2.3) we arrive at |∆fk|2 ≤ 2C2((∆′tk)
2 + (∆′Wk)

2)
where ∆′tk = t̄n − ¯̄tm ≤ ∆tmax and ∆′Wk = W (t̄n) −W (¯̄tm), using also the

12



standard inequality (a + b)2 ≤ 2(a2 + b2). Substituting this in (2.7) proves
the theorem

E[(Ī − ¯̄I)2] ≤
∑
k

2C2

(∆′tk)
2 + E[(∆′Wk)

2]︸ ︷︷ ︸
=∆′tk

∆tk

≤ 2C2 T (∆t2max + ∆tmax). (2.8)

2

Thus, the sequence of approximations I∆t is a Cauchy sequence in the
Hilbert space of random variables generated by the norm ‖I∆t‖L2 ≡

√
E[I2

∆t]
and the scalar product (X,Y ) ≡ E[XY ]. The limit I of this Cauchy sequence
defines the Itô integral∑

i

fi∆Wi
L2

→ I ≡
∫ T

0

f(s,W (s))dW (s).

Remark 2.11 [ Accuracy of strong convergence] If f(t,W (t)) = f̄(t) is inde-

pendent of W (t) we have first order convergence

√
E[(Ī − ¯̄I)2] = O(∆tmax),

whereas if f(t,W (t)) depends on W (t) we only obtain one half order con-

vergence

√
E[(Ī − ¯̄I)2] = O(

√
∆tmax) . The constant C in (2.3) and (2.9)

measures the computational work to approximate the integral with the Euler
method: to obtain an approximation error ε, using uniform steps, requires
by (2.8) the computational work corresponding to N = T/∆t ≥ 4T 2C2/ε2

steps.

Exercise 2.12 Use the forward Euler discretization to show that∫ T

0

s dW (s) = TW (T )−
∫ T

0

W (s)ds

Definition 2.13 A process f : [0, T ] × Ω → R is adapted if f(t, ·) only
depends on events which are generated by W (s), s ≤ t.

Remark 2.14 [ Extension to adapted Itô integration] Itô integrals can be
extended to adapted processes. Assume f : [0, T ] × Ω → R is adapted and
that there is a constant C such that√

E[|f(t+ ∆t, ω)− f(t, ω)|2] ≤ C
√

∆t. (2.9)

Then the proof of Theorem 2.10 shows that (2.4-2.6) still hold.
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Theorem 2.15 (Basic properties of Itô integrals)
Suppose that f, g : [0, T ]×Ω → R are Itô integrable, e.g. adapted and satifying
(2.9), and that c1, c2 are constants in R. Then:

(1)
∫ T

0
(c1f(s, ·)+c2g(s, ·))dW (s) = c1

∫ T
0
f(s, ·)dW (s)+c2

∫ T
0
g(s, ·)dW (s).

(2) E
[∫ T

0
f(s, ·)dW (s)

]
= 0.

(3)

E

[
(

∫ T

0

f(s, ·)dW (s))(

∫ T

0

g(s, ·)dW (s))

]
=

∫ T

0

E [f(s, ·)g(s, ·)] ds.

Proof. To verify Property 2, we first use that f is adapted and the inde-
pendence of the increments ∆Wn to show that for an Euler discretization

E[
N−1∑
n=0

f(tn, ·)∆Wn] =
N−1∑
n=0

E[f(tn, ·)]E[∆Wn] = 0.

It remains to verify that the limit of Euler discretizations preserves this
property: Cauchy’s inequality and the convergence result (2.6) imply that

|E[

∫ T

0

f(t, ·)dW (t)]| = |E[

∫ T

0

f(t, ·)dW (t)−
N−1∑
n=0

f(tn, ·)∆Wn] + E[
N−1∑
n=0

f(tn, ·)∆Wn]|

≤

√√√√E[

(∫ T

0

f(t, ·)dW (t)−
N−1∑
n=0

f(tn, ·)∆Wn

)2

] → 0.

Property 1 and 3 can be verified analogously. 2

Exercise 2.16 Use the forward Euler discretization to show that

(1)
∫ T

0
W (s)dW (s) = 1

2
W (T )2 − T/2.

(2) Property 1 and 3 in Theorem 2.15 hold.
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Exercise 2.17 Consider the Ornstein-Uhlenbeck process defined by

X(t) = X∞ + e−at(X(0)−X∞) + b

∫ t

0

e−a(t−s)dW (s), (2.10)

where X∞, a and b are given real numbers. Use the properties of the Itô inte-
gral to compute E[X(t)], V ar[X(t)], limt→∞E[X(t)] and limt→∞ V ar[X(t)].
Can you give an intuitive interpretation of the result?

Example 2.18 [ Existence of a Wiener process] To construct a Wiener pro-
cess on the time interval [0, T ], define the Haar-functions Hi by H0(t) ≡ 1
and for 2n ≤ i < 2n+1 and n = 0, 1, 2 . . ., by

Hi(t) =


T−1/22n/2 if (i− 2n)2−n ≤ t/T < (i+ 0.5− 2n)2−n,
−T−1/22n/2 if (i+ 0.5− 2n)2−n ≤ t/T < (i+ 1− 2n)2−n,
0 otherwise.

(2.11)
Then {Hi} is an orthonormal basis of L2(0, T ), (why?). Define the continuous
piecewise linear function W (m) : [0, T ] → R by

W (m)(t) =
m∑
i=1

ξiSi(t), (2.12)

where ξi, i = 1, . . . ,m are independent random variables with the normal
distribution N(0, 1) and

Si(t) =

∫ t

0

Hi(s)ds =

∫ T

0

1(0,t)(s)Hi(s)ds,

1(0,t)(s) =

{
1 if s ∈ (0, t),
0 otherwise.

The functions Si are small ”hat”-functions with a maximum value T−1/22−(n+2)/2

and zero outside an interval of length T2−n. Let us postpone the proof that
W (m) converge uniformly and first assume this. Then the limit W (t) =∑∞

i=1 ξiSi(t) is continuous. To verify that the limit W is a Wiener process,
we first observe that W (t) is a sum of normal distributed variables so that
W (t) is also normal distributed. It remains to verify that the increments
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∆Wn and ∆Wm are independent, for n 6= m, and E[(∆Wn)
2] = ∆tn. Parse-

val’s equality shows the independence and the correct variance

E[∆Wn∆Wm]

= E[
∑
i,j

ξiξj(Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))]

=
∑
i,j

E[ξiξj](Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))

=
∑
i

(Si(tn+1)− Si(tn))(Si(tm+1)− Si(tm))

{Parseval}
=

∫ T

0

1(tn,tn+1)(s)1(tm,tm+1)(s)ds =

{
0 if m 6= n,
tn+1 − tn if n = m.

To prove uniform convergence, the goal is to establish

P

(
sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) <∞

)
= 1.

Fix a n and a t ∈ [0, T ] then there is only one i, satisfying 2n ≤ i < 2n+1,
such that Si(t) 6= 0. Denote this i by i(t, n). Let χn ≡ sup2n≤i<2n+1 |ξi|, then

sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) = sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|Si(t,n)(t)

≤ sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|T−1/22−(n+2)/2

≤
∞∑
n=0

χnT
−1/22−(n+2)/2.

If
∞∑
n=0

χn2
−(n+2)/2 = ∞ (2.13)

on a set with positive probability, then χn > n for infinitely many n, with
positive probability, and consequently

∞ = E[
∞∑
n=0

1{χn>n}] =
∞∑
n=0

P (χn > n), (2.14)
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but

P (χn > n) ≤ P (∪2n+1

i=2n{|ξi| > n}) ≤ 2nP (|ξ0| > n) ≤ C 2ne−n
2/4,

so that
∑∞

n=0 P (χn > n) <∞, which contradicts (2.14) and (2.13). Therefore
P (supt∈[0,T ]

∑∞
i=1 |ξi|Si(t) < ∞) = 1, which proves the uniform convergence.

2

Exercise 2.19 [ Extension to multidimensional Itô integrals] The multidi-
mensional Wiener process W in Rl is defined by W (t) ≡ (W 1(t), . . . ,W l(t)),
where W i, i = 1, . . . , l are independent one-dimensional Wiener processes.
Show that

I∆t ≡
N−1∑
n=0

l∑
i=1

fi(tn, ·)∆W i
n

form a Cauchy sequence with E[(I∆t1 − I∆t2)
2] = O(∆tmax), as in Theorem

2.10, provided f : [0, T ]× Ω → Rl is adapted and (2.9) holds.

Exercise 2.20 G eneralize Theorem 2.15 to multidimensional Itô integrals.

Remark 2.21 A larger class of Itô integrable functions are the functions in
the Hilbert space

V =

{
f : [0, T ]× Ω → Rl : f is adapted and

∫ T

0

E[|f(t)|2]dt <∞
}

with the inner product
∫ T

0
E[f(t)·g(t)]dt. This follows from the fact that every

function in V can be approximated by adapted functions fh that satisfy (2.9),

for some constant C depending on h, so that
∫ T

0
E[|f(t, ·)− fh(t, ·)|2]dt ≤ h

as h→ 0. However, in contrast to Itô integration of the functions that satisfy
(2.9), an approximation of the Itô integrals of f ∈ V does not in general give
a convergence rate, but only convergence.

Exercise 2.22 Read Example 2.18 and show that the Haar-functions can
be used to approximate stochastic integrals

∫ T
0
f(t)dW (t) '

∑m
i=0 ξifi, for

given deterministic functions f with fi =
∫ T

0
f(s)Hi(s)ds. In what sense does

dW (s) =
∑∞

i=0 ξiHids hold?

Exercise 2.23 Give an interpretation of the approximation (2.12) in terms
of Brownian bridges, cf. [KS].
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Chapter 3

Stochastic Differential
Equations

This chapter extends the work on stochastic integrals, in the last chapter, and
constructs approximations of stochastic differential equations with an error
estimate. Existence and uniqueness is then provided by the error estimate.

We will denote by C,C ′ positive constants, not necessarily the same at
each occurrence.

3.1 Approximation and Definition of SDE

We will prove convergence of Forward Euler approximations of stochastic
differential equations, following the convergence proof for Itô integrals. The
proof is divided into four steps, including Grönwall’s lemma below. The first
step tends the Euler approximation X̄(t) to all t ∈ [0, T ]:

Step 1. Consider a grid in the interval [0, T ] defined by the set of nodes

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T and define the discrete stochastic process X̄ by the
forward Euler method

X̄(t̄n+1)− X̄(t̄n) = a(t̄n, X̄(t̄n))(t̄n+1 − t̄n) + b(t̄n, X̄(t̄n))(W (t̄n+1)−W (t̄n)),
(3.1)
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for n = 0, . . . , N̄ − 1. Now extend X̄ continuously, for theoretical purposes
only, to all values of t by

X̄(t) = X̄(t̄n) +

∫ t

t̄n

a(t̄n, X̄(t̄n))ds+

∫ t

t̄n

b(t̄n, X̄(t̄n))dW (s), t̄n ≤ t < t̄n+1.

(3.2)
In other words, the process X̄ : [0, T ] × Ω → R satisfies the stochastic
differential equation

dX̄(s) = ā(s, X̄)ds+ b̄(s, X̄)dW (s), t̄n ≤ s < t̄n+1, (3.3)

where ā(s, X̄) ≡ a(t̄n, X̄(t̄n)), b̄(s, X̄) ≡ b(t̄n, X̄(t̄n)), for t̄n ≤ s < t̄n+1, and
the nodal values of the process X̄ is defined by the Euler method (3.1).

Theorem 3.1 Let X̄ and ¯̄X be forward Euler approximations of the stochas-
tic process X : [0, T ]× Ω → R, satisfying the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t < T, (3.4)

with time steps

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm} ¯̄N

m=0
¯̄t0 = 0, ¯̄t ¯̄N = T,

respectively, and

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Suppose that there exists a positive constant C such that the initial data and
the given functions a, b : [0, T ]× R → R satisfy

E[|X̄(0)|2 + | ¯̄X(0)|2] ≤ C, (3.5)

E[
(
X̄(0)− ¯̄X(0)

)2

] ≤ C∆tmax, (3.6)

and

|a(t, x)− a(t, y)| < C|x− y|,
|b(t, x)− b(t, y)| < C|x− y|, (3.7)
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|a(t, x)− a(s, x)|+ |b(t, x)− b(s, x)| ≤ C(1 + |x|)
√
|t− s|. (3.8)

Then there is a constant K such that

max
{
E[X̄2(t, ·)], E[ ¯̄X

2
(t, ·)]

}
≤ KT, t < T, (3.9)

and

E

[(
X̄(t, ·)− ¯̄X(t, ·)

)2
]
≤ K∆tmax, t < T. (3.10)

The basic idea for the extension of the convergence for Itô integrals to
stochastic differntial equations is

Lemma 3.2 ( Grönwall ) Assume that there exist positive constants A and
K such that the function f : R → R satisfies

f(t) ≤ K

∫ t

0

f(s)ds+ A. (3.11)

Then
f(t) ≤ AeKt.

Proof. Let I(t) ≡
∫ t

0
f(s)ds. Then by (3.11)

dI

dt
≤ KI + A,

and multiplying by e−Kt we arrive at

d

dt
(Ie−Kt) ≤ Ae−Kt.

After integrating, and using I(0) = 0, we obtain I ≤ A (eKt−1)
K

. Substituting
the last result in (3.11) concludes the proof. 2

Proof of the Theorem. To prove (3.10), assume first that (3.9) holds. The
proof is divided into the following steps:

(1) Representation of X̄ as a process in continuous time: Step 1.

(2) Use the assumptions (3.7) and (3.8).
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Figure 3.1: Mesh points used in the proof.

(3) Use the property (3) from Theorem 2.15.

(4) Apply Grönwall’s lemma.

Step 2. Consider another forward Euler discretization ¯̄X, defined on a

grid with nodes
{¯̄tm} ¯̄N

m=0
, and subtract the two solutions to arrive at

X̄(s)− ¯̄X(s)
(3.3)
= X̄(0)− ¯̄X(0)+

∫ s

0

(ā− ¯̄a)(t)︸ ︷︷ ︸
≡∆a(t)

dt+

∫ s

0

(b̄− ¯̄b)(t)︸ ︷︷ ︸
≡∆b(t)

dW (t). (3.12)

The definition of the discretized solutions implies that

∆a(t) = (ā− ¯̄a)(t) = a(t̄n, X̄(t̄n))− a(¯̄tm,
¯̄X(¯̄tm)) =

= a(t̄n, X̄(t̄n))− a(t, X̄(t))︸ ︷︷ ︸
=(I)

+ a(t, X̄(t))− a(t, ¯̄X(t))︸ ︷︷ ︸
=(II)

+ a(t, ¯̄X(t))− a(¯̄tm,
¯̄X(¯̄tm))︸ ︷︷ ︸

=(III)

where t ∈ [¯̄tm, ¯̄tm+1) ∩ [t̄n, t̄n+1), as shown in Figure 3.1. The assumptions
(3.7) and (3.8) show that
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|(I)| ≤ |a(t̄n, X̄(t̄n))− a(t, X̄(t̄n))|+ |a(t, X̄(t̄n))− a(t, X̄(t))|
≤ C|X̄(t̄n)− X̄(t)|+ C(1 + |X̄(t̄n)|)|t− t̄n|1/2. (3.13)

Note that (3.7) and (3.8) imply

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|). (3.14)

Therefore

|X̄(t̄n)− X̄(t)| (3.3)
= |a(t̄n, X̄(t̄n))(t− t̄n) + b(t̄n, X̄(t̄n))(W (t)−W (t̄n))|

(3.14)

≤ C(1 + |X̄(t̄n)|)((t− t̄n) + |W (t)−W (t̄n)|). (3.15)

The combination of (3.13) and (3.15) shows

|(I)| ≤ C(1 + |X̄(t̄n)|)
(
|W (t)−W (t̄n)|+ |t− t̄n|1/2

)
and in a similar way,

|(III)| ≤ C(1 + | ¯̄X(t)|)
(
|W (t)−W (¯̄tm)|+ |t− ¯̄tm|1/2

)
,

and by the assumptions (3.7)

|(II)|
(3.7)

≤ C|X̄(t)− ¯̄X(t)|.

Therefore, the last three inequalities imply

|∆a(t)|2 ≤ (|(I)|+ |(II)|+ |(III)|)2 ≤ C2

(
|X̄(t)− ¯̄X(t)|2

+(1 + |X̄(t̄n)|2)(|t− t̄n|+ |W (t)−W (t̄n)|2)

+ (1 + | ¯̄X(¯̄tm)|2)(|t− ¯̄tm|+ |W (t)−W (¯̄tm)|2)
)
. (3.16)

Recall that max(t− t̄n, t− ¯̄tm) ≤ ∆tmax, and

E[(W (t)−W (s))2] = t− s, s < t,

so that the expected value of (3.16) and the assumption (3.9) yield
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E[|∆a(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + (1 + E[|X̄(t̄n)|2] + E[| ¯̄X(¯̄tm)|2])∆tmax

)
(3.9)

≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.17)

Similarly, we have

E[|∆b(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.18)

Step 3. Define a refined grid {th}Nh=0 by the union

{th} ≡ {t̄n} ∪
{¯̄tm} .

Observe that both the functions ∆a(t) and ∆b(t) are adapted and piecewise
constant on the refined grid. The error representation (3.12) and (3) of
Theorem 2.15 imply

E[|X̄(s)− ¯̄X(s)|2] ≤ E

[(
X̄(0)− ¯̄X(0) +

∫ s

0

∆a(t)dt+

∫ s

0

∆b(t)dW (t)

)2
]

≤ 3E[|X̄(0)− ¯̄X(0)|2]

+ 3E

[(∫ s

0

∆a(t)dt

)2]
+ 3E

[(∫ s

0

∆b(t)dW (t)

)2]
(3.6)

≤ 3(C∆tmax + s

∫ s

0

E[(∆a(t))2]dt+

∫ s

0

E[(∆b(t))2]dt).

(3.19)

Inequalities (3.17-3.19) combine to

E[|X̄(s)− ¯̄X(s)|2]
(3.17−3.19)

≤ C(

∫ s

0

E[|X̄(t)− ¯̄X(t)|2]dt+ ∆tmax). (3.20)

Step 4. Finally, Grönwall’s Lemma 3.2 applied to (3.20) implies

E[|X̄(t)− ¯̄X(t)|2] ≤ ∆tmaxCe
Ct,

which finishes the proof. 2
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Exercise 3.3 Prove (3.9). Hint: Follow Steps 1-4 and use (3.5) .

2

Corollary 3.4 The previous theorem yields a convergence result also in the
L2 norm ‖X‖2 =

∫ T
0
E[X(t)2]dt. The order of this convergence is 1/2, i.e.

‖X̄ − ¯̄X‖ = O(
√

∆tmax).

Remark 3.5 [ Strong and weak convergence] Depending on the application,
our interest will be focused either on strong convergence

‖X(T )− X̄(T )‖L2[Ω] =
√
E[(X(T )− X̄(T ))2] = O(

√
∆t),

or on weak convergence E[g(X(T ))] − E[g(X̄(T ))], for given functions g.
The next chapters will show first order convergence of expected values for
the Euler method,

E[g(X(T ))− g(X̄(T ))] = O(∆t),

and introduce Monte Carlo methods to approximate expected values E[g(X̄(T ))].
We will distinguish between strong and weak convergence by Xn → X, de-
noting the strong convergence E[|Xn − X|2] → 0 for random variables and∫ T

0
E[|Xn(t)−X(t)|2]dt→ 0 for stochastic processes, and by Xn ⇀ X, denot-

ing the weak convergence E[g(Xn)] → E[g(X)] for all bounded continuous
functions g.

2

Exercise 3.6 Show that strong convergence, Xn → X, implies weak conver-
gence Xn ⇀ X. Show also by an example that weak convergence, Xn ⇀ X,
does not imply strong convergence, Xn → X. Hint: Let {Xn} be a sequence
of independent identically distributed random variables.

2

Corollary 3.4 shows that successive refinements of the forward Euler ap-
proximation forms a Cauchy sequence in the Hilbert space V, defined by
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Definition 2.21. The limit X ∈ V , of this Cauchy sequence, satisfies the
stochastic equation

X(s) = X(0) +

∫ s

0

a(t,X(t))dt+

∫ s

0

b(t,X(t))dW (t), 0 < s ≤ T, (3.21)

and it is unique, (why?). Hence, we have constructed existence and unique-
ness of solutions of (3.21) by forward Euler approximations. Let X be the
solution of (3.21). From now on we use indistinctly also the notation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t ≤ T

X(0) = X0. (3.22)

These notes focus on the Euler method to approximate stochastic dif-
ferential equations (3.22). The following result motivates that there is no
method with higher order convergence rate than the Euler method to control
the strong error

∫ 1

0
E[(X(t) − X̄(t))2]dt, since even for the simplest equa-

tion dX = dW any linear approximation Ŵ of W , based on N function
evaluations, satisfies

Theorem 3.7 Let Ŵ (t) = f(t,W (t1), . . . ,W (tN)) be any approximation of
W (t), which for fixed t is based on any linear function f(t, ·) : RN → R, and
a partition 0 = t0 < . . . < tN = 1 of [0, 1], then the strong approximation
error is bounded from below by(∫ 1

0

E[(W (t)− Ŵ (t))2]dt

)1/2

≥ 1√
6N

, (3.23)

which is the same error as for the Euler method based on constant time steps
and linear interpolation between the time steps.

Proof. The linearity of f(t, ·) implies that

Ŵ (t) ≡
N∑
i=1

αi(t)∆Wi

where αi : [0, 1] → R, i = 1, . . . , N are any functions. The idea is to choose
the functions αi : [0, 1] → R, i = 1, . . . , N in an optimal way, and see that
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Figure 3.2: Optimal choice for weight functions αi.

the minimum error satisfies (3.23). We have∫ 1

0

E[(W (t)− Ŵ (t))2]dt

=

∫ 1

0

(
E[W 2(t)]− 2

N∑
i=1

αi(t)E[W (t)∆Wi] +
N∑

i,j=1

αi(t)αj(t)E[∆Wi∆Wj]
)
dt

=

∫ 1

0

tdt− 2

∫ 1

0

N∑
i=1

E[W (t)∆Wi]αidt+

∫ 1

0

N∑
i=1

α2
i (t)∆tidt

and in addition

E[W (t)∆Wi] =


∆ti, ti+1 < t

(t− ti), ti < t < ti+1

0, t < ti.

(3.24)

Perturbing the functions αi, to αi+ εδi, ε << 1, around the minimal value of∫ 1

0
E[W (t)− Ŵ (t)]2dt gives the following conditions for the optimum choice

of αi, cf. Figure 3.2:

−2E[W (t)∆Wi] + 2α∗i (t)∆ti = 0, i = 1, . . . , N.

and hence

min

∫ 1

0

E[W (t)− Ŵ (t)]2dt =

∫ 1

0

tdt−
∫ 1

0

N∑
i=1

E[W (t)∆Wi]
2

∆ti
dt

=︸︷︷︸
(3.24)

N∑
n=1

(tn + ∆tn/2)∆tn −
N∑
n=1

(
tn∆tn +

∫ tn+1

tn

(t− tn)
2

∆tn
dt

)

=
N∑
n=1

(∆tn)
2/6 ≥ 1

6N
.

where Exercise 3.8 is used in the last inequality and proves the lower bound of
the approximation error in the theorem. Finally, we note that by (3.24) the

optimal α∗i (t) = E[W (t)∆Wi]
∆ti

is infact linear interpolation of the Euler method.
2

26



Exercise 3.8 To verify the last inequality in the previous proof, compute

min
∆t

N∑
n=1

(∆tn)
2

subject to

N∑
n=1

(∆tn) = 1.

2

3.2 Itô’s Formula

Recall that using a forward Euler discretization we found the relation∫ T

0

W (s)dW (s) = W 2(T )/2− T/2, or

W (s)dW (s) = d(W 2(s)/2)− ds/2, (3.25)

whereas in the deterministic case we have y(s)dy(s) = d(y2(s)/2). The follow-
ing useful theorem with Itô ’s formula generalizes (3.25) to general functions
of solutions to the stochastic differential equations.

Theorem 3.9 Suppose that the assumptions in Theorem 2.10 hold and that
X satisfies the stochastic differential equation

dX(s) = a(s,X(s))ds+ b(s,X(s))dW (s), s > 0

X(0) = X0,

and let g : (0,+∞)×R → R be a given bounded function in C2((0,∞)×R).
Then y(t) ≡ g(t,X(t)) satisfies the stochastic differential equation

dy(t) =

(
∂tg(t,X(t)) + a(s,X(s))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+ b(t,X(t))∂xg(t,X(t))dW (t), (3.26)
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Proof. We want to prove the Itô formula in the integral sense

g(τ,X(τ))− g(0, X(0))

=

∫ τ

0

(
∂tg(t,X(t)) + a(s,X(s))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+

∫ τ

0

b(t,X(t))∂xg(t,X(t))dW (t).

Let X̄ be a forward Euler approximation (3.1) and (3.2) of X, so that

∆X̄ ≡ X̄(tn + ∆tn)− X̄(tn) = a(tn, X̄(tn))∆tn + b(tn, X̄(tn))∆Wn. (3.27)

Taylor expansion of g up to second order gives

g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

= ∂tg(tn, X̄(tn))∆tn + ∂xg(tn, X̄(tn))∆X̄(tn)

+
1

2
∂ttg(tn, X̄(tn))∆t

2
n + ∂txg(tn, X̄(tn))∆tn∆X̄(tn)

+
1

2
∂xxg(tn, X̄(tn))(∆X̄(tn))

2 + o(∆t2n + |∆X̄n|2). (3.28)

The combination of (3.27) and (3.28) shows

g(tm, X̄(tm))− g(0, X̄(0)) =
m−1∑
n=0

(
g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

)
=

m−1∑
n=0

∂tg∆tn +
m−1∑
n=0

(ā∂xg∆tn + b̄∂xg∆Wn) +
1

2

m−1∑
n=0

(b̄)2∂xxg(∆Wn)
2

+
m−1∑
n=0

(
(b̄∂txg + āb̄∂xxg)∆tn∆Wn + (

1

2
∂ttg + ā∂txg +

1

2
ā2∂xxg)∆t

2
n

)
+

m−1∑
n=0

o(∆t2n + |∆X̄(tn)|2). (3.29)

Let us first show that

m−1∑
n=0

(b̄)2∂xxg(X̄)(∆Wn)
2 →

∫ t

0

b2∂xxg(X)ds,
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as ∆tmax → 0. It is sufficient to establish

Y ≡ 1

2

m−1∑
n=0

(b̄)2∂xxg((∆Wn)
2 −∆tn) → 0, (3.30)

since (3.10) implies
∑m−1

n=0 (b̄)2∂xxg∆tn →
∫ t

0
b2∂xxgds. Use the notation αi =

((b̄)2∂xxg)(ti, X̄(ti)) and independence to obtain

E[Y 2] =
∑
i,j

E[αiαj((∆Wi)
2 −∆ti)((∆Wj)

2 −∆tj)]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)((∆Wi)

2 −∆ti)] +
∑
i

E[α2
i ((∆Wi)

2 −∆ti)
2]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)]E[((∆Wi)

2 −∆ti)]︸ ︷︷ ︸
=0

+
∑
i

E[α2
i ]E[((∆Wi)

2 −∆ti)
2]︸ ︷︷ ︸

=2∆t2i

→ 0,

when ∆tmax → 0, therefore (3.30) holds. Similar analysis with the other
terms in (3.29) concludes the proof. 2

Remark 3.10 The preceding result can be remembered intuitively by a Tay-
lor expansion of g up to second order

dg = ∂tg dt+ ∂xg dX +
1

2
∂xxg (dX)2

and the relations: dtdt = dtdW = dWdt = 0 and dWdW = dt.

Example 3.11 Let X(t) = W (t) and g(x) = x2

2
. Then

d

(
W 2(s)

2

)
= W (s)dW (s) + 1/2(dW (s))2 = W (s)dW (s) + ds/2.

Exercise 3.12 Let X(t) = W (t) and g(x) = x4. Verify that

d(W 4(s)) = 6W 2(s)ds+ 4W 3(s)dW (s)

and
d

ds
(E[g(W (s))]) =

d

ds
(E[(W (s))4]) = 6s.

Apply the last result to compute E[W 4(t)] and E[(W 2(t)− t)2].
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Exercise 3.13 Generalize the previous exercise to deteremine E[W 2n(t)].

Example 3.14 We want to compute
∫ T

0
tdW (t). Take g(t, x) = tx, and

again X(t) = W (t), so that

tW (t) =

∫ t

0

sdW (s) +

∫ t

0

W (s)ds

and finally
∫ t

0
sdW (s) = tW (t)−

∫ t
0
W (s)ds.

Exercise 3.15 Consider the stochastic differential equation

dX(t) = −a(X(t)−X∞)dt+ bdW (t),

with initial data X(0) = X0 ∈ R and given a, b ∈ R.
(i) Using that

X(t)−X(0) = −a
∫ t

0

(X(s)−X∞)dt+ bW (t),

take the expected value and find an ordinary differential equation for the
function m(t) ≡ E[X(t)].

(ii) Use Itô ’s formula to find the differential of (X(t))2 and apply similar
ideas as in (i) to compute V ar[X(t)].

(iii) Use an integrating factor to derive the exact solution (2.10) in Ex-
ample 2.17. Compare your results from (i) and (ii) with this exact solution.

Example 3.16 Consider the stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dW (t),

used to model the evolution of stock values. The values of r (interest rate)
and σ (volatility) are assumed to be constant. Our objective is to find a
closed expression for the solution, often called geometric Brownian motion.
Let g(x) = ln(x). Then a direct application of Itô formula shows

d ln(S(t)) = dS(t)/S(t)− 1/2

(
σ2S2(t)

S2(t)

)
dt = rdt− σ2

2
dt+ σdW (t),

so that

ln

(
S(T )

S(0)

)
= rT − Tσ2

2
+ σW (T )

and consequently

S(T ) = e(r−
σ2

2
)T+σW (T )S(0).
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Exercise 3.17 Suppose that we want to simulate S(t), defined in the
previous example by means of the forward Euler method, i.e.

Sn+1 = (1 + r∆tn + σ∆Wn)Sn, n = 0, . . . , N

As with the exact solution S(t), we would like to have Sn positive. Then we
could choose the time step ∆tn to reduce the probability of hitting zero

P (Sn+1 < 0|Sn = s) < ε << 1. (3.31)

Motivate a choice for ε and find then the largest ∆tn satisfying (3.31).

Remark 3.18 The Wiener process has unbounded variation i.e.

E

[∫ T

0

|dW (s)|
]

= +∞.

This is the reason why the forward and backward Euler methods give different
results. We have for a uniform mesh ∆t = T/N

E[
N−1∑
i=0

|∆Wi|] =
N−1∑
i=0

E[|∆Wi|] =
N−1∑
i=0

√
2∆ti
π

=

√
2T

π

N−1∑
i=0

√
1/N =

√
2NT

π
→∞, as N →∞.

3.3 Stratonovich Integrals

Recall from Chapter 2 that Itô integrals are constructed via forward Euler
discretizations and Stratonovich integrals via the trapezoidal method, see
Exercise 3.19. Our goal here is to express a Stratonovich integral∫ T

0

g(t,X(t)) ◦ dW (t)

in terms of an Itô integral. Assume then thatX(t) satisfies the Itô differential
equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t).
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Then the relation reads∫ T

0

g(t,X(t)) ◦ dW (t) =

∫ T

0

g(t,X(t))dW (t)

+
1

2

∫ T

0

∂xg(t,X(t))b(t,X(t))dt. (3.32)

Therefore, Stratonovich integrals satisfy

dg(t,X(t)) = ∂tg(t,X(t))dt+ ∂xg(t,X(t)) ◦ dX(t), (3.33)

just like in the usual calculus.

Exercise 3.19 Use that Stratonovich integrals g(t,X(t))◦dW (t) are defined
by limits of the trapezoidal method to verify (3.32), cf. Remark 2.9.

Exercise 3.20 Verify the relation (3.33), and use this to show that dS(t) =
rS(t)dt+ σS(t) ◦ dW (t) implies S(t) = ert+σW (t)S(0).

Remark 3.21 [ Stratonovich as limit of piecewise linear interpolations] Let

RN(t) ≡ W (tn) + W (tn+1)−W (tn)
tn+1−tn (t − tn), t ∈ (tn, tn+1) be a piecewise linear

interpolation ofW on a given grid, and defineXN by dXN(t) = a(XN(t))dt+
b(XN(t))dRN(t). Then XN → X in L2, where X is the solution of the
Stratonovich stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t)) ◦ dW (t).

In the special case when a(x) = rx and b(x) = σx this follows from

d

dt
(ln(XN(t))) = rdt+ σdRN ,

so that
XN(t) = ert+σR

N (t)X(0).

The limit N → ∞ implies XN(t) → X(t) = ert+σW (t)X(0), as in Exercise
3.20.
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3.4 Systems of SDE

Let W1,W2, . . . ,Wl be scalar independent Wiener processes. Consider the l-
dimensional Wiener process W = (W1,W2, . . . ,Wl) and X : [0, T ]× Ω → Rd

satisfying for given drift a : [0, T ]× Rd → Rd and diffusion b : [0, T ]× Rd →
Rd×l the Itô stochastic differential equation

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d. (3.34)

Here and below we use of the summation convention

αjβj ≡
∑
j

αjβj,

i.e., if the same summation index appears twice in a term, the term denotes
the sum over the range of this index. Theorem 3.9 can be directly generalized
to the system (3.34).

Theorem 3.22 (Itô ’s formula for systems) Let

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d,

and consider a smooth and bounded function g : R+ × Rd → R. Then

dg(t,X(t)) =

{
∂tg(t,X(t)) + ∂xi

g(t,X(t))ai(t,X(t))

+
1

2
bik(t,X(t))∂xixj

g(t,X(t))bjk(t,X(t))

}
dt

+∂xi
g(t,X(t))bij(t,X(t))dWj(t),

or in matrix vector notation

dg(t,X(t)) =

{
∂tg(t,X(t)) +∇xg(t,X(t)) a(t,X(t))

+
1

2
trace

(
b(t,X(t))bT(t,X(t))∇2

xg(t,X(t))
)}

dt

+∇xg(t,X(t)) b(t,X(t))dW (t).

2
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Remark 3.23 The formal rules to remember Theorem 3.22 are Taylor ex-
pansion to second order and

dWjdt = dtdt = 0

dWidWj = δijdt =

{
dt if i = j,
0 otherwise.

(3.35)

Exercise 3.24 Verify Remark 3.23.
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Chapter 4

The Feynman-Kǎc Formula and
the Black-Scholes Equation

4.1 The Feynman-Kǎc Formula

Theorem 4.1 Suppose that a, b and g are smooth and bounded functions.
Let X be the solution of the stochastic differential equation,
dX(t) = a(t,X(t))dt + b(t,X(t))dW (t) and let u(x, t) = E[g(X(T ))|X(t) =
x]. Then u is the solution of the Kolmogorov backward equation

L∗u ≡ ut + aux +
1

2
b2uxx = 0, t < T (4.1)

u(x, T ) = g(x).

Proof. Define û to be the solution of (4.1), i.e. L∗û = 0, û(·, T ) = g(·).
We want to verify that û is the expected value E[g(X(T ))| X(t) = x]. The
Itô formula applied to û(X(t), t) shows

dû(X(t), t) =

(
ût + aûx +

1

2
b2ûxx

)
dt + bûxdW

= L∗ûdt + bûxdW.

Integrate this from t to T and use L∗û = 0 to obtain

û(X(T ), T ) − û(X(t), t) = g(X(T )) − û(X(t), t)

=

∫ T

t

bûxdW (s).
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Take the expectation and use that the expected value of the Itô integral is
zero,

E[g(X(T ))|X(t) = x]− û(x, t) = E[

∫ T

t

b(s,X(s))ûx(X(s), s)dW (s)|X(t) = x]

= 0.

Therefore
û(x, t) = E[g(X(T ))|X(t) = x],

which proves the theorem since the solution of Equation (4.1) is unique. 2

Exercise 4.2 [ Maximum Principle] Let the function u satisfy

ut + aux +
1

2
b2uxx = 0, t < T

u(x, T ) = g(x).

Prove that u satisfies the maximum principle

max
0<t<T, x∈R

u(t, x) ≤ max
x∈R

g(x).

4.2 Black-Scholes Equation

Example 4.3 Let f(t, S(t)) be the price of a European put option where
S(t) is the price of a stock satisfying the stochastic differential equation
dS = µSdt + σSdW , where the volatility σ and the drift µ are constants.
Assume also the existence of a risk free paper, B, which follows dB = rBdt,
where r, the risk free rent is a constant. Find the partial differential equation
of the price, f(t, S(t)), of an option.

Solution. Consider the portfolio I = −f + α S + βB for α(t), β(t) ∈ R.
Then the Itô formula and self financing, i.e. dI = −df + αdS + βdB, imply

dI = −df + αdS + βdB

= −(ft + µSfS +
1

2
σ2S2fSS)dt − fSσSdW + α(µSdt+ σSdW ) + βrBdt

=

(
−(ft + µSfS +

1

2
σ2S2fSS) + (αµS + βrB)

)
dt + (−fS + α)σSdW.

36



Now choose α such that the portfolio I becomes riskless, i.e. α = fS, so
that

dI =

(
−(ft + µSfS +

1

2
σ2S2fSS) + (fSµS + βrB)

)
dt

=

(
−(ft +

1

2
σ2S2fSS) + βrB

)
dt. (4.2)

Assume also that the existence of an arbitrage opportunity is precluded, i.e.
dI = rIdt, where r is the interest rate for riskless investments, to obtain

dI = r(−f + αS + βB)dt

= r(−f + fSS + βB)dt. (4.3)

Equation (4.2) and (4.3) show that

ft + rsfs +
1

2
σ2s2fss = rf, t < T, (4.4)

and finally at the maturity time T the contract value is given by definition,
e.g. a standard European put option satisfies for a given exercise price K

f(T, s) = max(K − s, 0).

The deterministic partial differential equation (4.4) is called the Black-Scholes
equation. The existence of adapted β is shown in the exercise below. 2

Exercise 4.4 Replicating portfolio. It is said that the self financing port-
folio, αS + βB, replicates the option f . Show that there exists an adapted
stochastic process β(t), with β(0) = −fS(0, S(0)), satisfying self financing,
d(αS + βB) = αdS + βdB, with α = fS.

Exercise 4.5 Verify that the corresponding equation (4.4) holds if µ, σ and
r are given functions of time and stock price.

Exercise 4.6 Simulation of a replicating portfolio. Assume that the pre-
viously described Black-Scholes model holds and consider the case of a bank
that has written (sold) a call option on the stock S with the parameters

S(0) = S0 = 760, r = 0.06, σ = 0.65, K = S0.
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with an exercise date, T = 1/4 years. The goal of this exercise is to simulate
the replication procedure described in Exercise 4.4, using the exact solution
of the Black Scholes call price, computed by the Matlab code

% BS call option computation

function y = bsch(S,T,K,r,sigma);

normal = inline(’(1+erf(x/sqrt(2)))/2’,’x’);

d1 = (log(S/K)+(r+.5*sigma^2)*T)/sigma/sqrt(T);

d2 = (log(S/K)+(r-.5*sigma^2)*T)/sigma/sqrt(T);

y = S*normal(d1)-K*exp(-r*T)*normal(d2);

To this end, choose a number of hedging dates, N , and time steps ∆t ≡
T/N . Assume that β(0) = −fS(0, S0) and then

• Write a code that computes the ∆ ≡ ∂f(0, S0)/∂S0 of a call option.

• Generate a realization for S(n∆t, ω), n = 0, . . . , N .

• Generate the corresponding time discrete realizations for the processes
αn and βn and the portfolio value, αnSn + βnBn.

• Generate the value after settling the contract at time T ,

αNSN + βNBN −max(SN −K, 0).

Compute with only one realization, and several values ofN , sayN = 10, 20, 40, 80.
What do you observe? How would you proceed if you don’t have the exact
solution of the Black-Scholes equation?

Theorem 4.7 (Feynman-Kǎc ) Suppose that a, b, g, h and V are bounded
smooth functions. Let X be the solution of the stochastic differential equation
dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) and let

u(x, t) = E[g(X(T ))e
R T

t V (s,X(s))ds|X(t) = x]

+ E[−
∫ T

t

h(s,X(s))e
R s

t V (τ,X(τ))dτds|X(t) = x].
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Then u is the solution of the partial differential equation

L∗V u ≡ ut + aux +
1

2
b2uxx + V u = h, t < T (4.5)

u(x, T ) = g(x).

Proof. Define û to be the solution of the equation (4.5), i.e. L∗V û = h and
let G(s) ≡ e

R s
t V (τ,X(τ))dτ . We want to verify that û is the claimed expected

value. We have by Itô ’s formula, with L∗û = ût + aûx + 1
2
b2ûxx,

d(û(s,X(s))e
R s

t V (τ,X(τ))dτ ) = d(û(s,X(s))G)

= Gdû + ûdG

= G(L∗ûdt + bûxdW ) + ûV Gdt,

Integrate both sides from t to T , take the expected value and use L∗û =
L∗V û− V û = h− V û to obtain

E[g(X(t))G(T ) | X(t) = x]− û(x, t)

= E[

∫ T

t

GL∗û ds] + E[

∫ T

t

bGûx dW ] + E[

∫ T

t

ûV G ds]

= E[

∫ T

t

hG ds] − E[

∫ T

t

ûV G ds] + E[

∫ T

t

ûV G ds]

= E[

∫ T

t

hG ds|X(t) = x].

Therefore

û(x, t) = E[g(X(T ))G(T )|X(t) = x] − E[

∫ T

t

hG ds|X(t) = x].

2

Remark 4.8 Compare Black-Scholes equation (4.4) with Equation (4.5):
then u corresponds to f , X to S̃, a(t, x) = rx, b(t, x) = σx, V = −r and
h = 0. Using the Feynman-Kac formula, we obtain
f(t, S̃(t)) = E[e−r(T−t) max(K−S̃(T ), 0)], with dS̃ = rS̃dt+σS̃dW , which es-
tablishes the important relation between approximation based on the Monte
Carlo method and partial differential equations discussed in Chapter 1.
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Corollary 4.9 Let u(x, t) = E[g(X(T ))|X(t) = x] =
∫

R g(y)P (y, T ;x, t) dy.
Then the density, P as a function of the first two variables, solves the Kol-
mogorov forward equation, also called the Fokker-Planck equation,

−∂sP (y, s;x, t)− ∂y
(
a(y, s)P (y, s;x, t)

)
+

1

2
∂2
y

(
b2(y, s)P (y, s;x, t)

)︸ ︷︷ ︸
=:LP

= 0, s > t

P (y, t;x, t) = δ(x− y),

where δ is the Dirac-delta measure concentrated at zero.

Proof. Assume LP̂ = 0, P̂ (y, t;x, t) = δ(x− y). The Feynman-Kǎc formula
implies L∗u = 0, so that integration by part shows

0 =

∫ T

t

∫
R
L∗y,su(y, s)P̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

+

∫ T

t

∫
R
u(y, s)Ly,sP̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

.

Consequently,

u(x, t) =

∫
R
g(y)P̂ (y, T ;x, t) dy

= E[g(X(T ))|X(t) = x],

for all functions g. Therefore P̂ is the density function P . Hence P solves
LP = 0. 2

Exercise 4.10 [ Limit probability distribution] Consider the Ornstein-Uhlenbeck
process defined by

dX(s) = (m−X(s))ds+
√

2dW (s),

X(0) = x0.

Verify by means of the Fokker-Plank equation that there exist a limit distri-
bution for X(s), when s→∞.
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Exercise 4.11 Assume that S(t) is the price of a single stock. Derive a
Monte-Carlo and a PDE method to determine the price of a contingent claim
with the contract

∫ T
0
h(t, S(t)) dt, for a given function h, replacing the usual

contract max(S(T )−K, 0) for European call options.

Exercise 4.12 Derive the Black-Scholes equation for a general system of
stocks S(t) ∈ Rd solving

dSi = ai(t, S(t))dt+
d∑
j=1

bij(t, S(t))dWj(t)

and a rainbow option with the contract f(T, S(T )) = g(S(T )) for a given
function g : Rd → R, for example

g(S) = max

(
1

d

d∑
i=1

Si −K, 0

)
.
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Chapter 5

The Monte-Carlo Method

5.1 Statistical Error

This chapter gives the basic understanding of simulation of expected values
E[g(X(T ))] for a solution, X, of a given stochastic differential equation with
a given function g. In general the approximation error has the two parts
of statistical error and time discretization error, which are analyzed in the
next sections. The estimation of statistical error is based on the Central
Limit Theorem. The error estimate for the time discretization error of the
Euler method is directly related to the proof of Feyman-Kǎc’s theorem with
an additional residual term measuring the accuracy of the approximation,
which turns out to be first order in contrast to the half order accuracy for
strong approximation.

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t)

on t0 ≤ t ≤ T, how can one compute the value E[g(X(T ))]? The Monte-
Carlo method is based on the approximation

E[g(X(T ))] '
N∑
j=1

g(X(T ;ωj))

N
,

where X is an approximation of X, e.g. the Euler method. The error in the
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Monte-Carlo method is

E[g(X(T ))]−
N∑
j=1

g(X(T ;ωj))

N

= E[g(X(T ))− g(X(T ))]−
N∑
j=1

g(X(T ;ωj))− E[g(X(T ))]

N
. (5.1)

In the right hand side of the error representation (5.1), the first part is the
time discretization error, which we will consider in the next subsection, and
the second part is the statistical error, which we study here.

Example 5.1 Compute the integral I =
∫

[0,1]d
f(x)dx by the Monte Carlo

method, where we assume f(x) : [0, 1]d → R.

Solution. We have

I =

∫
[0,1]d

f(x) dx

=

∫
[0,1]d

f(x)p(x) dx ( where p is the uniform density function)

= E[f(x)] ( where x is uniformly distributed in [0, 1]d)

'
N∑
n=1

f(x(ωn))

N

≡ IN ,

where {x(ωn)} is sampled uniformly in the cube [0, 1]d, by sampling the
components xi(ωn) independent and uniformly on the interval [0, 1]. 2

The Central Limit Theorem is the fundamental result to understand the
statistical error of Monte Carlo methods.

Theorem 5.2 (The Central Limit Theorem) Assume ξn, n = 1, 2, 3, . . .
are independent, identically distributed (i.i.d) and E[ξn] = 0, E[ξ2

n] = 1.
Then

N∑
n=1

ξn√
N
⇀ ν, (5.2)
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where ν is N(0, 1) and ⇀ denotes convergence of the distributions, also called
weak convergence, i.e. the convergence (5.2) means E[g(

∑N
n=1 ξn/

√
N)] →

E[g(ν)] for all bounded and continuous functions g.

Proof. Let f(t) = E[eitξn ]. Then

f (m)(t) = E[imξmn e
itξn ], (5.3)

and

E[eit
PN

n=1 ξn/
√
N ] = f

(
t√
N

)N
=

(
f(0) +

t√
N
f ′(0) +

1

2

t2

N
f ′′(0) + o

(
t2

N

))N
.

The representation (5.3) implies

f(0) = E[1] = 1,

f ′(0) = iE[ξn] = 0,

f ′′(0) = −E[ξ2
n] = −1.

Therefore

E[eit
PN

n=1 ξn/
√
N ] =

(
1− t2

2N
+ o

(
t2

N

))N
→ e−t

2/2, as N →∞

=

∫
R

eitxe−x
2/2

√
2π

dx, (5.4)

and we conclude that the Fourier transform (i.e. the characteristic function)
of
∑N

n=1 ξn/
√
N converges to the right limit of Fourier transform of the stan-

dard normal distribution. It is a fact, cf. [D], that convergence of the Fourier
transform together with continuity of the limit Fourier transform at 0 im-
plies weak convergence, so that

∑N
n=1 ξn/

√
N ⇀ ν, where ν is N(0, 1). The

exercise below verifies this last conclusion, without reference to other results.
2
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Exercise 5.3 Show that (5.4) implies

E[g(
N∑
n=1

ξn/
√
N)] → E[g(ν)] (5.5)

for all bounded continuous functions g. Hint: study first smooth and quickly
decaying functions gs, satisying gs(x) =

∫∞
−∞ e−itxĝs(t)dt/(2π) with the Fourier

transform ĝs of gs satisfying ĝs ∈ L1(R); show that (5.4) implies

E[gs(
N∑
n=1

ξn/
√
N)] → E[gs(ν)];

then use Chebychevs inequality to verify that no mass of
∑N

n=1 ξn/
√
N es-

capes to infinity; finally, let χ(x) be a smooth cut-off function which is one
for |x| ≤ N and zero for |x| > 2N and split the general bounded continuous
function g into g = gs + g(1− χ) + (gχ− gs), where gs is an arbitrary close
approximation to gχ; use the conclusions above to prove (5.5).

Example 5.4 What is the error of IN − I in Example 5.1?

Solution. Let the error εN be defined by

εN =
N∑
n=1

f(xn)

N
−
∫

[0,1]d
f(x)dx

=
N∑
n=1

f(xn)− E[f(x)]

N
.

By the Central Limit Theorem,
√
NεN ⇀ σν, where ν is N(0, 1) and

σ2 =

∫
[0,1]d

f 2(x)dx−
(∫

[0,1]d
f(x)dx

)2

=

∫
[0,1]d

(
f(x)−

∫
[0,1]d

f(x)dx

)2

dx.

In practice, σ2 is approximated by

σ̂2 =
1

N − 1

N∑
n=1

(
f(xn)−

N∑
m=1

f(xm)

N

)2

.
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2

One can generate approximate random numbers, so called pseudo random
numbers, by for example the method

ξi+1 ≡ aξi + b mod n

where a and n are relative prime and the initial ξ0 is called the seed, which
determines all other ξi. For example the combinations n = 231, a = 216 + 3
and b = 0, or n = 231 − 1, a = 75 and b = 0 are used in practise. In
Monte Carlo computations, we use the pseudo random numbers {xi}Ni=1,
where xi = ξi

n
∈ [0, 1], which for N � 231 behave approximately as inde-

pendent uniformly distributed variables.

Theorem 5.5 The following Box-Müller method generates two independent
normal random variables x1 and x2 from two independent uniformly dis-
tributed variables y1 and y2

x1 =
√
−2 log(y2) cos(2πy1)

x2 =
√
−2 log(y2) sin(2πy1).

Sketch of the Idea. The variables x and y are independent standard normal
variables if and only if their joint density function is e−(x2+y2)/2/2π. We have

e−(x2+y2)/2dxdy = re−r
2/2drdθ = d(e−r

2/2)dθ

using x = rcosθ, y = rsinθ and 0 ≤ θ < 2π, 0 ≤ r < ∞. The random
variables θ and r can be sampled by taking θ to be uniformly distributed
in the interval [0, 2π) and e−r

2/2 to be uniformly distributed in (0, 1], i.e.
θ = 2πy1, and r =

√
−2log(y2). 2

Example 5.6 Consider the stochastic differential equation dS = rSdt +
σSdW , in the risk neutral formulation where r is the riskless rate of return
and σ is the volatility. Then

ST = S0 e
rT−σ2

2
T+σ

√
Tν
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where ν is N(0, 1). The values of a call option, fc, and put option, fp, are by
Remark 4.8

fc = e−rTE[max(S(T )−K, 0)]

and
fp = e−rTE[max(K − S(T ), 0)].

2

Example 5.7 Consider the system of stochastic differential equations,

dSi = rSidt+
M∑
j=1

σijSidWj, i = 1, ...,M.

Then

Si(T ) = Si(0) e
rT−

PM
j=1

 
σij

√
Tνj−

σ2
ij
2
T

!

where νj are independent and N(0, 1). A rainbow call option, based on Sav =
1
M

∑M
i=1 Si, can then be simulated by the Monte Carlo method and

fc = e−rTE[max(Sav(T )−K, 0)].

2

5.2 Time Discretization Error

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t ≤ T,

and let X be the forward Euler discretization of X. Then

X(tn+1)−X(tn) = a(tn, X(tn))∆tn + b(tn, X(tn))∆Wn, (5.6)
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where ∆tn = tn+1−tn and ∆Wn = W (tn+1)−W (tn) for a given discretization
0 = t0 < t1 < ... < tN = T. Equation (5.6) can be extended, for theoretical
use, to all t by

X(t)−X(tn) =

∫ t

tn

ā(s,X)ds+

∫ t

tn

b̄(s,X)dW (s), tn ≤ t < tn+1,

where, for tn ≤ s < tn+1,

ā(s,X) = a(tn, X(tn)), (5.7)

b̄(s,X) = b(tn, X(tn)).

Theorem 5.8 Assume that a, b and g are smooth and decay sufficiently fast
as |x| → ∞. Then there holds

E[g(X(T ))− g(X(T ))] = O(max ∆t).

Proof. Let u satisfy the equation

L∗u ≡ ut + aux +
b2

2
uxx = 0, t < T (5.8)

u(x, T ) = g(x). (5.9)

The Feynman-Kǎc formula shows

u(x, t) = E[g(X(T ))|X(t) = x]

and in particular

u(0, X(0)) = E[g(X(T ))]. (5.10)

Then by the Itô formula,

du(t,X(t)) =

(
ut + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

(5.8)
=

(
−aux −

b2

2
uxx + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

=

{
(ā− a)ux(t,X(t)) +

(
b̄2

2
− b2

2

)
uxx(t,X(t))

}
dt

+ b̄(t,X)ux(t,X(t))dW.
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Evaluate the integral from 0 to T,

u(T,X(T ))− u(0, X(0)) =

∫ T

0

(ā− a)ux(t,X(t))dt+

∫ T

0

b̄2 − b2

2
uxx(t,X(t))dt

+

∫ T

0

b̄(t,X(t))uxdW.

Take the expected value and use (5.10) to obtain

E[g(X(T )) − g(X(T ))]

=

∫ T

0

E[(ā− a)ux] +
1

2
E[(b̄2 − b2)uxx]dt+ E

[∫ T

0

b̄uxdW

]
=

∫ T

0

E[(ā− a)ux] +
1

2
E[(b̄2 − b2)uxx]dt.

The following Lemma 5.9 proves the Theorem. 2

Lemma 5.9 There holds for tn ≤ t < tn+1

f1(t) ≡ E[(ā(t,X)− a(t,X(t)))ux(t,X(t))] = O(∆tn),

f2(t) ≡ E[(b̄2(t,X)− b2(t,X(t)))uxx(t,X(t))] = O(∆tn).

Proof. Since ā(t,X) = a(tn, X(tn)),

f1(tn) = E[(ā(tn, X)− a(tn, X(tn)))ux(tn, X(tn))] = 0. (5.11)

Provided |f ′1(t)| ≤ C, the initial condition (5.11) implies that f1(t) = O(∆tn),
for tn ≤ t < tn+1. Therefore, it remains to show that |f ′1(t)| ≤ C. Let
α(t, x) = −(a(t, x)−a(tn, X(tn)))ux(t, x), so that f(t) = E[α(t,X(t))]. Then
by Itô ’s formula

df

dt
=

d

dt
E
[
α(t,X(t))

]
= E

[
dα(t,X(t))

]
/dt

= E

[(
αt + āαx +

b̄2

2
αxx

)
dt+ αxb̄dW

]
/dt

= E

[
αt + āαx +

b̄2

2
αxx

]
= O(1).

49



Therefore there exists a constant C such that |f ′(t)| ≤ C, for tn < t < tn+1,
and consequently

f1(t) ≡ E[
(
ā(t,X)− a(t,X(t))

)
ux(t,X t)] = O(∆tn), for tn ≤ t < tn+1.

Similarly, we can also prove

f2(t) ≡ E[
(
b̄2(t,X)− b2(t,X(t))

)
uxx(t,X t)] = O(∆tn), for tn ≤ t < tn+1.

2

Example 5.10 Consider the stochastic volatility model,

dS = ωSdt+ σSdZ (5.12)

dσ = ασdt+ vσdW

where Z and W are Brownian motions with correlation coefficient ρ, i.e.
E[dZdW ] = ρdt. We can construct Z and W from the independent W1 and
W2 by

W = W1, Z = ρW1 +
√

1− ρ2 W2.

2

Exercise 5.11 In the risk neutral formulation a stock price solves the stochas-
tic differential equation

dS = rSdt+ σSdW (t),

with constant interest rate r and volatility σ.

1. Show that

S(T ) = S(0)erT−
σ2

2
T+σW (T ). (5.13)

2. Use equation (5.13) to simulate the price

f(0, S(0)) = e−rTE[ max (S(T )−K, 0) ]

of an European call option by a Monte-Carlo method.
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3. Compute also the corresponding ∆ = ∂f(0, S)/∂S by approximating
with a difference quotient and determine a good choice of your approx-
imation of ′′∂S ′′.

4. Estimate the accuracy of your results. Suggest a better method to solve
this problem.

Exercise 5.12 Assume that a system of stocks solves

dSi
Si(t)

= rdt+
d∑
j=1

σijdWj(t) i = 1, ..., d

where Wj are independent Brownian motions.

1. Show that
Si(T ) = S(0)erT+

Pd
j=1(σijWj(T )− 1

2
σ2

ijT ).

2. Let Sav ≡
∑d

i=1 Si/d and simulate the price of the option above with
S(T ) replaced by Sav(T ). Estimate the accuracy of your results. Can
you find a better method to solve this problem?

Exercise 5.13 [ An example of variance reduction] Consider the computa-
tion of a call option on an index Z,

πt = e−r(T−t)E[max(Z(T )−K, 0)], (5.14)

where Z is the average of d stocks,

Z(t) ≡ 1

d

d∑
i=1

Si(t)

and
dSi(t) = rSi(t)dt+ σiSi(t)dWi(t), i = 1, . . . , d

with volatilities
σi ≡ 0.2 ∗ (2 + sin(i)) i = 1, . . . , d.

The correlation between Wiener processes is given by

E[dWi(t)dWi′(t)] = exp(−2 |i− i′|/d))dt 1 ≤ i, i′ ≤ d.

The goal of this exercise is to experiment with two different variance reduction
techniques, namely the antithetic variates and the control variates.

From now on we take d = 10, r = 0.04 and T = 0.5 in the example above.
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(a) Implement a Monte Carlo approximation with for the value in (5.14).
Estimate the statistical error. Choose a number of realizations such
that the estimate for the statistical error is less than 1% of the value
we want to approximate.

(b) Same as (a) but using antithetic variates. The so called antithetic
variates technique reduces the variance in a sample estimator A(M ;Y )
by using another estimator A(M ;Y ′) with the same expectation as the
first one, but which is negatively correlated with the first. Then, the
improved estimator is A(M ; 1

2
(Y + Y ′)). Here, the choice of Y and Y ′

relates to the Wiener process W and its reflection along the time axis,
−W , which is also a Wiener process , i.e.

πt ≈
1

M

M∑
j=1

{max(Z(W (T, ωj))−K, 0) + max(Z(−W (T, ωj))−K, 0)}
2

.

(c) Same as (a) but using control variates to reduce the variance. The
control variates technique is based on the knowledge of an estimator
Y ′′, positively correlated with Y , whose expected value E[Y ′′] is known
and relatively close to the desired E[Y ], yielding Y −Y ′′+E[Y ′′] as an
improved estimator.

For the application of control variates to (5.14) use the geometric av-
erage

Ẑ(t) ≡ {
d∏
i=1

Si(t)}
1
d ,

compute
π̂t = e−r(T−t)E[max(Ẑ(T )−K, 0)]

exactly (hint: find a way to apply Black-Scholes formula). Then ap-
proximate

πt ≈ π̂t+
e−r(T−t)

M

M∑
j=1

{
max(Z(W (T, ωj))−K, 0)−max(Ẑ(W (T, ωj))−K, 0)

}
.

(d) Discuss the results from (a-c). Does it pay to use variance reduction?
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Chapter 6

Finite Difference Methods

This section introduces finite difference methods for approximation of par-
tial differential equations. We first apply the finite difference method to a
partial differential equation for a financial option problem, which is more
efficiently computed by partial differential methods than Monte Carlo tech-
niques. Then we discuss the fundamental Lax Equivalence Theorem, which
gives the basic understanding of accuracy and stability for approximation of
differential equations.

6.1 American Options

Assume that the stock value, S(t), evolves in the risk neutral formulation by
the Itô geometric Brownian motion

dS = rSdt+ σSdW.

An American put option is a contract that gives the possibility to sell a stock
for a fixed price K up to time T . Therefore the derivation of option values in
Chapter 4 shows that European and American options have the formulations:

1. The price of an European put option is

f(t, s) ≡ E[ e−r(T−t) max
(
K − S(T ), 0

)
| S(t) = s ].

2. The price of an American option is obtained by maximizing over all
sell time τ strategies, which depend on the stock price up to the sell
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time,

fA(t, s) ≡ max
t≤τ≤T

E[ e−r(τ−t) max
(
K − S(τ), 0

)
| S(t) = s ]. (6.1)

How to find the optimal selling strategy for an American option? Assume
that selling is only allowed at the discrete time levels 0,∆t, 2∆t, . . . , T . Con-
sider the small time step (T −∆t, T ). By assumption the option is not sold
in the step. Therefore the European value f(t, s) holds, where f(T, s) =
max(K − s, 0) and for T −∆t < t < T

ft + rSfS +
1

2
σ2S2fSS = rf. (6.2)

If, for a fixed stock price s = S(T −∆t), there holds f(T −∆t, s) < max(K−
s, 0) then keeping the option gives the expected value f(T −∆t, s) which is
clearly less than the value max(K − s, 0) obtained by selling at time T −∆t.
Therefore it is optimal to sell if f(T −∆t, s) < max(K − s, 0) ≡ fF . Modify
the initial data at t = T −∆t to max(f(T −∆t, s), fF ) and repeat the step
(6.2) for (T − 2∆t, T −∆t) and so on. The price of the American option is
obtained as the limit of this solution as ∆t→ 0.

Example 6.1 A corresponding Monte Carlo method based on (6.1) requires
simulation of expected values E[e−rτ max(K − S(τ), 0)] for many different
possible selling time strategies τ until an approximation of the maximum
values is found. Since the τ need to depend on ω, with M time steps and N
realizations there are MN different strategies.

Note that the optimal selling strategy

τ = τ ∗ = inf
v
{v : t ≤ v ≤ T, fA

(
v, S(v)

)
= max

(
K − S(v), 0

)
}

for the American option, which is a function of fA, seems expensive to eval-
uate by Monte Carlo technique, but is obtained directly in the partial dif-
ferential formulation above and below. This technique is a special case of
the so called dynamic programming method, which we shall study systemat-
ically for general optimization problems in a later Chapter, cf. also the last
example in Chapter 1.

Here and in Exercise 6.2 is a numerical method to determine the value of
an American option:
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(1) Discretize the computational domain [0, T ]× [s0, s1] and let

fA(n∆t, i∆S) ' f̄n,i, f̄N,i = max
(
K − i∆S, 0

)
.

(2) Use the Euler and central difference methods for the equation (6.2)

∂tfA ' f̄n,i−f̂n−1,i

∆t
∂SfA ' f̄n,i+1−f̄n,i−1

2∆S

∂SSfA ' f̄n,i+1−2f̄n,i+f̄n,i−1

(∆S)2
fA ' f̄n,i.

(3) Make a Black-Scholes prediction for each time step

f̂n−1,i = f̄n,i(1− r∆t− σ2i2∆t) + f̄n,i+1(
1

2
ri∆t+

1

2
σ2i2∆t)

+ f̄n,i−1(−
1

2
ri∆t+

1

2
σ2i2∆t).

(4) Compare the prediction with selling by letting

f̄n−1,i = max
(
f̂n−1,i,max(K − i∆S, 0)

)
,

and go to the next time Step 3 by decreasing n by 1.

Exercise 6.2 The method above needs in addition boundary conditions at
S = s0 and S = s1 for t < T . How can s0, s1 and these conditions be choosen
to yield a good approximation?

Exercise 6.3 Give a trinomial tree interpretation of the finite difference
scheme

f̄n+1,i = f̄n,i(1 + r∆t+ σ2i2∆t) + f̄n,i+1(−
1

2
ri∆t− 1

2
σ2i2∆t)

+ f̄n,i−1(
1

2
ri∆t− 1

2
σ2i2∆t),

for Black-Scholes equation of an European option. Binomial and trinomial
tree approximations are frequent in the finance economy literature, cf. [J.
Hull].

56



Let us now study general finite difference methods for partial differential
equations. The motivation to introduce general finite difference methods in
contrast to study only the binomial and trinomial tree methods is that higher
order methods, such as the Crank-Nicolson method below, are more efficient
to solve e.g. (6.2).

The error for the binomial and the trinomial tree method applied to
the partial differential equation (6.2) for a European option is ε = O(∆t +
(∆s)2), which is clearly the same for the related forward and backward Euler
methods. The work is thenA = O((∆t∆s)−1), so thatA = O(ε−3/2). For the
Crank-Nicolsen method the accuracy is ε = O((∆t)2 + (∆s)2) and the work
is still A = O((∆t∆s)−1), which implies the improved bound A = O(ε−1).
For a general implicit method with a smooth exact solution in [0, T ] × Rd

the accuracy is ε = O((∆t)q +(∆s)p) with the miminal work ( using e.g. the

multigrid method ) A = O( q
2

∆t
( p

2

∆s
)d), which gives A = O( q2

ε1/q (
p2

ε1/p )d). In the
next section we derive these error estimates for some model problems.

6.2 Lax Equivalence Theorem

Lax equivalence theorem defines the basic concepts for approximation of
linear well posed differential equations. Here, well posed means that the
equation is solvable for data in a suitable function space and that the solution
operator is bounded. We will first formally state the result without being
mathematically precise with function spaces and norms. Then we present
two examples with proofs based on norms and functions spaces.

The ingredients of Lax Equivalence Theorem 6.4 are:

(0) an exact solution u, satisfying the linear well posed equation Lu = f ,
and an approximation uh, obtained from Lhuh = fh;

(1) stability, the approximate solution operators ‖L−1
h ‖ are uniformly bounded

in h and the exact solution operator ‖L−1‖ is bounded;

(2) consistency, fh → f and Lhu→ Lu as the mesh size h→ 0; and

(3) convergence, uh → u as the mesh size h→ 0.

Theorem 6.4 The combination of stability and consistency is equivalent to
convergence.
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The idea of the proof. To verify convergence, consider the identity

u− uh = L−1
h [ Lhu− Lhuh ]

Step(0)
= L−1

h [ (Lhu− Lu) + (f − fh) ].

Stability implies that L−1
h is bounded and consistency implies that

Lhu− Lu→ 0 and f − fh → 0,

and consequently the convergence holds

lim
h→0

(u− uh) = lim
h→0

L−1
h [ (Lhu− Lu) + (f − fh) ]

= 0.

Clearly, consistency is necessary for convergence. Example 6.7, below, indi-
cates that also stability is necessary. 2

Let us now more precisely consider the requirements and norms to verify
stability and consistency for two concrete examples of ordinary and partial
differential equations.

Example 6.5 Consider the forward Euler method for the ordinary differen-
tial equation

u′(t) = Au(t) 0 < t < 1,
u(0) = u0.

(6.3)

Verify the conditions of stability and consistency in Lax Equivalence Theo-
rem.

Solution. For a given partition, 0 = t0 < t1 < ... < tN = 1, with ∆t =
tn+1 − tn, let

un+1 ≡ (I + ∆tA)un

= Gnu0 where G = (I + ∆tA).

Then:

(1) Stability means |Gn| + |Hn| ≤ eKn∆t for some K, where | · | denotes
the matrix norm |F | ≡ sup{v∈Rn:|v|≤1} |Fv| with the Euclidean norm

|w| ≡
√∑

iw
2
i in Rn.
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(2) Consistency means |(G −H)v| ≤ C(∆t)p+1, where H = e∆tA and p is
the order of accuracy. In other words, the consistency error (G−H)v is
the local approximation error after one time step with the same initial
data v.

This stability and consistency imply the convergence

| un − u(n∆t) | = | (Gn −Hn)u0 |
= | (Gn−1 +Gn−2H + ...+GHn−2 +Hn−1)(G−H)u0 |
≤ | Gn−1 +Gn−2H + ...+GHn−2 +Hn−1||(G−H)u0 |
≤ C(∆t)p+1n| u0 |eKn∆t

≤ C ′(∆t)p,

with the convergence rate O(∆tp). For example, p = 1 in case of the Euler
method and p = 2 in case of the trapezoidal method. 2

Example 6.6 Consider the heat equation

ut = uxx t > 0, (6.4)

u(0) = u0.

Verify the stability and consistency conditions in Lax Equivalence Theorem.

Solution. Apply the Fourier transform to equation (6.4),

ût = −ω2û

so that
û(t, ω) = e−tω

2

û0(ω).

Therefore Ĥ = e−∆tω2
is the exact solution operator for one time step, i.e.

û(t+ ∆t) = Ĥû(t). Consider the difference approximation of (6.4)

un+1,i − un,i
∆t

=
un,i+1 − 2un,i + un,i−1

∆x2
,

which shows

un+1,i = un,i

(
1− 2∆t

∆x2

)
+

∆t

∆x2
(un,i+1 + un,i−1) ,
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where un,i ' u(n∆t, i∆x). Apply the Fourier transform to obtain

ûn+1 =

[(
1− 2∆t

∆x2

)
+

∆t

∆x2

(
ej∆xω + e−j∆xω

)]
ûn

=

[
1− 2

∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω)

]
ûn

= Ĝûn ( Let Ĝ ≡ 1− 2
∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω))

= Ĝn+1û0.

1. We have

2π‖un‖2
L2 = ‖ûn‖2

L2 (by Parseval’s formula)

= ‖Ĝnû0‖2
L2

≤ sup
ω
|Ĝn|2 ‖û0‖2

L2 .

Therefore the condition

‖Ĝn‖L∞ ≤ eKn∆t (6.5)

implies L2-stability.

2. We have
2π‖u1 − u(∆t)‖2

L2 = ‖Ĝû0 − Ĥû0‖2
L2 ,

where u1 is the approximate solution after one time step. Let λ ≡ ∆t
∆x2 ,

then we obtain

|(Ĝ− Ĥ)û0| = |
(
1− 2λ+ 2λ cos ∆xω − e−∆tω2

)
û0|

= O(∆t2)ω4|û0|,

since for 0 ≤ ∆tω2 ≡ x ≤ 1

|1− 2λ + 2λ cos
√
x/λ− e−x|

=
(
1− 2λ+ 2λ

(
1− x

2λ
+O(x2)

)
−
(
1− x+O(x2)

))
≤ Cx2 = C(∆t)2ω4,

and for 1 < ∆tω2 = x

|1− 2λ+ 2λ cos
√
x/λ− e−x| ≤ C = C

(∆t)2ω4

x2
≤ C(∆t)2ω4.
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Therefore the consistency condition reduces to

‖ (Ĝ− Ĥ)û0 ‖ ≤ ‖K∆t2ω4û0‖ (6.6)

≤ K∆t2‖∂xxxxu0‖L2 .

3. The stability (6.5) holds if

‖Ĝ‖L∞ ≡ sup
ω
|Ĝ(ω)| = max

ω
|1− 2λ+ 2λ cos ∆xω| ≤ 1, (6.7)

which requires

λ =
∆t

∆x2
≤ 1

2
. (6.8)

The L2-stability condition (6.7) is called the von Neuman stability con-
dition.

4. Convergence follows by the estimates (6.6), (6.7) and ‖Ĥ‖L∞ ≤ 1

2π‖ un − u(n∆t) ‖2
L2 = ‖ (Ĝn − Ĥn)û0 ‖2

L2

= ‖ (Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1)(Ĝ− Ĥ)û0 ‖2
L2

≤ ‖ Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1‖2
L∞‖(Ĝ− Ĥ)û0 ‖2

L2

≤ (Kn(∆t)2)2 ≤ (KT∆t)2,

and consequently the convergence rate is O(∆t). 2

Let us study the relations between the operators G and H for the simple
model problem

u′ + λu = 0

u(0) = 1

with an approximate solution un+1 = r(x)un (where x = λ∆t):

(1) the exact solution satisfies

r(x) = e−λ∆t = e−x,
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(2) the forward Euler method

un+1 − un
∆t

+ λun = 0 ⇒ r(x) = 1− x,

(3) the backward Euler method

un+1 − un
∆t

+ λun+1 = 0 ⇒ r(x) = (1 + x)−1,

(4) the trapezoidal method

un+1 − un
∆t

+
λ

2
(un + un+1) = 0 ⇒ r(x) =

(
1 +

x

2

)−1 (
1− x

2

)
,

and

(5) the Lax-Wendroff method

un+1 = un −∆tλun +
1

2
∆t2λ2un ⇒ r(x) = 1− x+

1

2
x2.

The consistence |e−λ∆t− r(λ∆t)| = O(∆tp+1) holds with p = 1 in case 2 and
3, and p = 2 in case 4 and 5. The following stability relations hold:

(1) |r(x)| ≤ 1 for x ≥ 0 in case 1, 3 and 4.

(2) r(x) → 0 as x→∞ in case 1 and 3.

(3) r(x) → 1 as x→∞ in case 4.

Property (1) shows that for λ > 0 case 3 and 4 are unconditionally stable.
However Property (2) and (3) refine this statement and imply that only
case 3 has the same damping behavior for large λ as the exact solution.
Although the damping Property (2) is not necessary to prove convergence it
is advantegous to have for proplems with many time scales, e.g. for a system
of equations (6.3) where A has eigenvalues λi ≤ 1, i = 1, . . . , N and some
λj � −1, ( why?).

The unconditionally stable methods, e.g. case 3 and 4, are in general more
efficient to solve parabolic problems, such as the Black-Scholes equation (6.2),
since they require for the same accuracy fewer time steps than the explicit
methods, e.g. case 2 and 5. Although the work in each time step for the
unconditionally stable methods may be larger than for the explicit methods.
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Exercise 6.7 Show by an example that ‖un‖2
L2 → ∞ if for some ω there

holds |Ĝ(ω)| > 1, in Example 6.6, i.e. the von Neumann stability condition
does not hold.
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Chapter 7

The Finite Element Method
and Lax-Milgram’s Theorem

This section presents the finite element method, including adaptive approxi-
mation and error estimates, together with the basic theory for elliptic partial
differential equations. The motivation to introduce finite element methods is
the computational simplicity and efficiency for construction of stable higher
order discretizations for elliptic and parabolic differential equations, such as
the Black and Scholes equation, including general boundary conditions and
domains. Finite element methods require somewhat more work per degree
of freedom as compared to finite difference methods on a uniform mesh. On
the other hand, construction of higher order finite difference approximations
including general boundary conditions or general domains is troublesome.

In one space dimension such an elliptic problem can, for given functions
a, f, r : (0, 1) → R, take the form of the following equation for u : [0, 1] → R,

(−au′)′ + ru = f on (0, 1)
u(x) = 0 for x = 0, x = 1,

(7.1)

where a > 0 and r ≥ 0. The basic existence and uniqueness result for general
elliptic differential equations is based on Lax-Milgram’s Theorem, which we
will describe in section 7.3. We shall see that its stability properties, based
on so called energy estimates, is automatically satisfied for finite element
methods in contrast to finite difference methods.

Our goal, for a given tolerence TOL, is to find an approximation uh of
(7.1) satisfying

‖u− uh‖ ≤ TOL,
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using few degrees of freedoom by adaptive finite element approximation.
Adaptive methods are based on:

(1) an automatic mesh generator,

(2) a numerical method ( e.g. the finite element method),

(3) a refinement criteria (e.g. a posteriori error estimation), and

(4) a solution algorithm ( e.g. the multigrid method).

7.1 The Finite Element Method

A derivation of the finite element method can be divided into:

(1) variational formulation in an infinite dimensional space V ,

(2) variational formulation in a finite dimensional subspace, Vh ⊂ V ,

(3) choice of a basis for Vh, and

(4) solution of the discrete system of equations.

Step 1. Variational formulation in an infinite dimensional space, V .

Consider the following Hilbert space,

V =

{
v : (0, 1) → R :

∫ 1

0

(
v2(x) + (v′(x))2

)
dx <∞, v(0) = v(1) = 0

}
.

Multiply equation (7.1) by v ∈ V and integrate by parts to get∫ 1

0

fv dx =

∫ 1

0

((−au′)′ + ru)v dx

= [−au′v]10 +

∫ 1

0

(au′v′ + ruv) dx (7.2)

=

∫ 1

0

(au′v′ + ruv) dx.
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Therefore the variational formulation of (7.1) is to find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V, (7.3)

where

A(u, v) =

∫ 1

0

(au′v′ + ruv) dx,

L(v) =

∫ 1

0

fv dx.

Remark 7.1 The integration by parts in (7.2) shows that a smooth solution
of equation (7.1) satisfies the variational formulation (7.3). For a solution of
the variational formulation (7.3) to also be a solution of the equation (7.1),
we need additional conditions on the regularity of the functions a, r and f
so that u′′ is continuous. Then the following integration by parts yields, as
in (7.2),

0 =

∫ 1

0

(au′v′ + ruv − fv) dx =

∫ 1

0

(−(au′)′ + ru− f)v dx.

Since this holds for all v ∈ V , it implies that

−(au′)′ + ru− f = 0,

provided −(au′)′ + ru− f is continuous. 2

Step 2. Variational formulation in the finite dimensional subspace, Vh.

First divide the interval (0, 1) into 0 = x0 < x2 < ... < xN+1 = 1, i.e.
generate the mesh. Then define the space of continuous piecewise linear
functions on the mesh with zero boundary conditions

Vh = {v ∈ V : v(x) |(xi,xi+1)= cix+ di, i.e. v is linear on (xi, xi+1), i = 0, · · · , N
and v is continuous on (0, 1)}.

The variational formulation in the finite dimensional subspace is to find uh ∈
Vh such that

A(uh, v) = L(v) ∀v ∈ Vh. (7.4)

66



The function uh is a finite element solution of the equation (7.1). Other finite
element solutions are obtained from alternative finite dimensional subspaces,
e.g. based on piecewise quadratic approximation.

Step 3. Choose a basis for Vh.

Let us introduce the basis functions φi ∈ Vh, for i = 1, ..., N , defined by

φi(xj) =

{
1 if i = j
0 if i 6= j.

(7.5)

A function v ∈ Vh has the representation

v(x) =
N∑
i=1

viφi(x),

where vi = v(xi), i.e. each v ∈ Vh can be written in a unique way as a linear
combination of the basis functions φi.

Step 4. Solve the discrete problem (7.4).

Using the basis functions φi, for i = 1, ..., N from Step 3, we have

uh(x) =
N∑
i=1

ξiφi(x),

where ξ = (ξ1, ..., ξN)T ∈ RN , and choosing v = φj in (7.4), we obtain

L(φj) = A(uh, φj)

= A(
∑
i

φiξi, φj) =
∑
i

ξiA(φi, φj),

so that ξ ∈ RN solves the linear system

Ãξ = L̃, (7.6)

where

Ãji = A(φi, φj),

L̃j = L(φj).

The N ×N matrix Ã is called the stiffness matrix and the vector L̃ ∈ RN is
called the load vector.
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Example 5.1 Consider the following two dimensional problem,

−div(k∇u) + ru = f in Ω ⊂ R2 (7.7)

u = g1 on Γ1

∂u

∂n
= g2 on Γ2,

where ∂Ω = Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The variational formulation has
the following form.

1. Variational formulation in the infinite dimensional space.

Let

Vg =

{
v(x) :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, v|Γ1 = g

}
.

Take a function v ∈ V0, i.e. v = 0 on Γ1, then by (7.7)∫
Ω

fv dx = −
∫

Ω

div(k∇u)v dx+

∫
Ω

ruv dx

=

∫
Ω

k∇u · ∇v dx−
∫

Γ1

k
∂u

∂n
v ds−

∫
Γ2

k
∂u

∂n
v ds+

∫
Ω

ruv dx

=

∫
Ω

k∇u · ∇v dx−
∫

Γ2

kg2v ds+

∫
Ω

ruv dx.

The variational formulation for the model problem (7.7) is to find u ∈ Vg1
such that

A(u, v) = L(v) ∀v ∈ V0, (7.8)

where

A(u, v) =

∫
Ω

(k∇u · ∇v + ruv) dx,

L(v) =

∫
Ω

fv dx+

∫
Γ2

kg2vds.

2. Variational formulation in the finite dimensional space.

Assume for simplicity that Ω is a polygonial domain which can be divided
into a triangular mesh Th = {K1, ...KN} of non overlapping triangles Ki and
let h = maxi(length of longest side of Ki). Assume also that the boundary
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function g1 is continuous and that its restriction to each edge Ki ∩ Γ1 is a
linear function. Define

V h
0 = {v ∈ V0 : v|Ki

is linear ∀Ki ∈ Th, v is continuous on Ω},
V h
g1

= {v ∈ Vg1 : v|Ki
is linear ∀Ki ∈ Th, v is continuous on Ω},

and the finite element method is to find uh ∈ V h
g1

such that

A(uh, v) = L(v), ∀v ∈ V h
0 . (7.9)

3. Choose a basis for V h
0 .

As in the one dimensional problem, choose the basis φj ∈ V h
0 such that

φj(xi) =

{
1 i = j
0 i 6= j j = 1, 2, ..., N,

where xi, i = 1, . . . , N , are the vertices of the triangulation.

4. Solve the discrete system.

Let

uh(x) =
N∑
i=1

ξiφi(x), and ξi = uh(xi).

Then (7.9) can be written in matrix form,

Ãξ = L̃, where Ãji = A(φi, φj) and L̃j = L(φj).

2

7.2 Error Estimates and Adaptivity

We shall now study a priori and a posteriori error estimates for finite element
methods, where

‖u− uh‖ ≤ E1(h, u, f) is an a priori error estimate,

‖u− uh‖ ≤ E2(h, uh, f) is an a posteriori error estimate.

Before we start, let us study the following theorem, which we will prove later,
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Theorem 7.2 (Lax-Milgram) Let V be a Hilbert space with norm ‖ · ‖V
and scalar product (·, ·)V and assume that A is a bilinear functional and L is
a linear functional that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2
V ∀v ∈ V ;

(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
and the stability estimate ‖u‖V ≤ Λ/α holds.

7.2.1 An A Priori Error Estimate

The approximation property of the space Vh can be characterized by

Lemma 7.3 Suppose Vh is the piecewise linear finite element space (7.4),
which discretizes the functions in V , defined on (0, 1), with the interpolant
π : V → Vh defined by

πv(x) =
N∑
i=1

v(xi)φi(x), (7.10)

where {φi} is the basis (7.5) of Vh. Then

‖(v − πv)′‖L2(0,1) ≤

√∫ 1

0

h2v′′(x)2 dx ≤ Ch, (7.11)

‖v − πv‖L2(0,1) ≤

√∫ 1

0

h4v′′(x)2 dx ≤ Ch2,

where h = maxi (xi+1 − xi).
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Proof. Take v ∈ V and consider first (7.11) on an interval (xi, xi+1). By the
mean value theorem, there is for each x ∈ (xi, xi+1) a ξ ∈ (xi, xi+1) such that
v′(ξ) = (πv)′(x). Therefore

v′(x)− (πv)′(x) = v′(x)− v′(ξ) =

∫ x

ξ

v′′(s)ds,

so that∫ xi+1

xi

|v′(x)− (πv)′(x)|2dx =

∫ xi+1

xi

(

∫ x

ξ

v′′(s)ds)2dx

≤
∫ xi+1

xi

|x− ξ|
∫ x

ξ

(v′′(s))2dsdx

≤ h2

∫ xi+1

xi

(v′′(s))2ds, (7.12)

which after summation of the intervals proves (7.11).
Next, we have

v(x)− πv(x) =

∫ x

xi

(v − πv)′(s)ds,

so by (7.12)∫ xi+1

xi

|v(x)− πv(x)|2dx =

∫ xi+1

xi

(

∫ x

xi

(v − πv)′(s)ds)2dx

≤
∫ xi+1

xi

|x− xi|
∫ x

xi

((v − πv)′)2(s)dsdx

≤ h4

∫ xi+1

xi

(v′′(s))2ds,

which after summation of the intervals proves the lemma. 2

Our derivation of the a priori error estimate

‖u− uh‖V ≤ Ch,

where u and uh satisfy (7.3) and (7.4), respectivly, uses Lemma 7.3 and a
combination of the following four steps:
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(1) error representation based on the ellipticity

α

∫
Ω

(v2(x) + (v′(x))2) dx ≤ A(v, v) =

∫
Ω

(a(v′)2 + rv2) dx,

where α = infx∈(0,1)(a(x), r(x)) > 0,

(2) the orthogonality
A(u− uh, v) = 0 ∀v ∈ Vh,

obtained by Vh ⊂ V and subtraction of the two equations

A(u, v) = L(v) ∀v ∈ V by (7.3),

A(uh, v) = L(v) ∀v ∈ Vh by (7.4),

(3) the continuity

|A(v, w)| ≤ C‖v‖V ‖w‖V ∀v, w ∈ V,

where C ≤ supx∈(0,1)(a(x), r(x)), and

(4) the interpolation estimates

‖(v − πv)′‖L2 ≤ Ch, (7.13)

‖v − πv‖L2 ≤ Ch2,

where h = max (xi+1 − xi).

To start the proof of an a priori estimate let e ≡ u− uh. Then by Cauchy’s
inequality

A(e, e) = A(e, u− πu+ πu− uh)

= A(e, u− πu) + A(e, πu− uh)
Step2
= A(e, u− πu)

≤
√
A(e, e)

√
A(u− πu, u− πu),

so that by division of
√
A(e, e),√

A(e, e) ≤
√
A(u− πu, u− πu)

Step3
= C‖u− πu‖V
≡ C

√
‖u− πu‖2

L2 + ‖(u− πu)′‖2
L2

Step4

≤ Ch.
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Therefore, by Step 1
α‖e‖2

V ≤ A(e, e) ≤ Ch2,

which implies the a priori estimate

‖e‖V ≤ Ch,

where C = K(u). 2

7.2.2 An A Posteriori Error Estimate

Example 7.4 Consider the model problem (7.1), namely,{
−(au′)′ + ru = f in (0, 1),
u(0) = u(1) = 0.

Then √
A(u− uh, u− uh) ≤ C ‖a−

1
2 (f − ruh + a′u′h)h‖L2

≡ E(h, uh, f). (7.14)

Proof. Let e = u − uh and let πe ∈ Vh be the nodal interpolant of e. We
have

A(e, e) = A(e, e− πe) (by orthogonality)

= A(u, e− πe)− A(uh, e− πe).

Using the notation (f, v) ≡
∫ 1

0
fv dx, we obtain by integration by parts

A(e, e) = (f, e− πe)−
N∑
i=1

∫ xi+1

xi

(au′h(e− πe)′ + ruh(e− πe)) dx

= (f − ruh, e− πe)−
N∑
i=1

{
[au′h(e− πe)]xi+1

xi
−
∫ xi+1

xi

(au′h)
′(e− πe) dx

}
= (f − ruh + a′u′h, e− πe) ( since u′′h|(xi,xi+1) = 0, (e− πe)(xi) = 0)

≤ ‖a−
1
2h(f − ruh + a′u′h)‖L2‖a

1
2h−1(e− πe)‖L2 .
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Lemma 7.5 implies√
A(e, e) ≤ C‖a−

1
2h(f − ruh + a′u′h)‖L2 ,

which also shows that
‖e‖V ≤ Ch,

where C = K ′(uh). 2

Lemma 7.5 There is a constant C, independent of u and uh, such that,

‖a
1
2h−1(e− πe)‖L2 ≤ C

√∫ 1

0

ae′e′ dx ≤ C
√
A(e, e)

2

Exercise 7.6 Use the interpolation estimates in Lemma 7.3 to prove Lemma
7.5.

7.2.3 An Adaptive Algorithm

We formulate an adaptive algorithm based on the a posteriori error estimate
(7.14) as follows:

(1) Choose an initial coarse mesh Th0 with mesh size h0.

(2) Compute the corresponding FEM solution uhi
in Vhi

.

(3) Given a computed solution uhi
in Vhi

, with the mesh size hi,

stop if E(hi, uhi
, f) ≤ TOL

go to step 4 if E(hi, uhi
, f) > TOL.

(4) Determine a new mesh Thi+1
with mesh size hi+1 such that

E(hi+1, uhi
, f) ∼= TOL,

by letting the error contribution for all elements be approximately con-
stant, i.e.

‖a−
1
2h(f − ruh − a′u′h)‖L2(xi,xi+1)

∼= C, i = 1, . . . , N,

then go to Step 2.
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7.3 Lax-Milgram’s Theorem

Theorem 7.7 Suppose A is symmetric, i.e. A(u, v) = A(v, u) ∀u, v ∈ V,
then (Variational problem) ⇐⇒ (Minimization problem) with

(Var) Find u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
(Min) Find u ∈ V such that F (u) ≤ F (v) ∀v ∈ V,

where

F (w) ≡ 1

2
A(w,w)− L(w) ∀w ∈ V.

Proof. Take ε ∈ R. Then

(⇒) F (u + εw) =
1

2
A(u+ εw, u+ εw)− L(u+ εw)

=

(
1

2
A(u, u)− L(u)

)
+ εA(u,w)− εL(w) +

1

2
ε2A(w,w)

≥
(

1

2
A(u, u)− L(u)

) (
since

1

2
ε2A(w,w) ≥ 0 and A(u,w) = L(w)

)
= F (u).

(⇐) Let g(ε) = F (u+ εw), where g : R → R. Then

0 = g′(0) = 0 · A(w,w) + A(u,w)− L(w) = A(u,w)− L(w).

Therefore
A(u,w) = L(w) ∀w ∈ V.

2

Theorem 7.8 (Lax-Milgram) Let V be a Hilbert space with norm ‖ · ‖V
and scalar product (·, ·)V and assume that A is a bilinear functional and L is
a linear functional that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2
V ∀v ∈ V ;
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(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
and the stability estimate ‖u‖V ≤ Λ/α holds.

Proof. The goal is to construct u ∈ V solving the minimization problem

F (u) ≤ F (v) for all v ∈ V , which by the previous theorem is equivalent to
the variational problem. The energy norm, ‖v‖2 ≡ A(v, v), is equivalent to
the norm of V, since by Condition 2 and 3,

α‖v‖2
V ≤ A(v, v) = ‖v‖2 ≤ C‖v‖2

V .

Let

β = infv∈V F (v). (7.15)

Then β ∈ R, since

F (v) =
1

2
‖v‖2 − L(v) ≥ 1

2
‖v‖2 − Λ‖v‖ ≥ −Λ2

2
.

We want to find a solution to the minimization problem minv∈V F (v). It is
therefore natural to study a minimizing sequence vi, such that

F (vi) → β = inf
v∈V

F (v). (7.16)

The next step is to conclude that the vi infact converge to a limit:∥∥∥∥vi − vj
2

∥∥∥∥2

=
1

2
‖vi‖2 +

1

2
‖vj‖2 −

∥∥∥∥vi + vj
2

∥∥∥∥2

( by the parallelogram law )

=
1

2
‖vi‖2 − L(vi) +

1

2
‖vj‖2 − L(vj)

−

(∥∥∥∥vi + vj
2

∥∥∥∥2

− 2L(
vi + vj

2
)

)

= F (vi) + F (vj)− 2F

(
vi + vj

2

)
≤ F (vi) + F (vj)− 2β ( by (7.15) )

→ 0, ( by (7.16) ).
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Hence {vi} is a Cauchy sequence in V and since V is a Hilbert space ( in
particular V is a complete space) we have vi → u ∈ V.

Finally F (u) = β, since

|F (vi)− F (u)| = |1
2
(‖vi‖2 − ‖u‖2)− L(vi − u)|

= |1
2
A(vi − u, vi + u)− L(vi − u)|

≤ (
C

2
‖vi + u‖V + Λ)‖vi − u‖V

→ 0.

Therefore there exists a unique (why?) function u ∈ V such that F (u) ≤
F (v) ∀v ∈ V. To verify the stability estimate, take v = u in (Var) and use
the ellipcity (1) and continuity (3) to obtain

α‖u‖2
V ≤ A(u, u) = L(u) ≤ Λ‖u‖V

so that

‖u‖V ≤
Λ

α
.

The uniqueness of u can also be verified from the stability estimate. If u1, u2

are two solutions of the variational problem we have A(u1−u2, v) = 0 for all
v ∈ V . Therefore the stability estimate implies ‖u1 − u2‖V = 0, i.e. u1 = u2

and consequently the solution is unique. 2

Example 7.9 Determine conditions for the functions k, r and f : Ω → R
such that the assumptions in the Lax-Milgram theorem are satisfied for the
following elliptic partial differential equation in Ω ⊂ R2

−div(k∇u) + ru = f in Ω

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, and v|∂Ω = 0},
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A(u, v) =

∫
Ω

(k∇u∇v + ruv) dx,

L(v) =

∫
Ω

fv dx,

‖v‖2
V =

∫
Ω

(v2(x) + |∇v|2) dx.

Consequently V is a Hilbert space and A is symmetric and continuous pro-
vided k and r are uniformly bounded.

The ellipticity follows by

A(v, v) =

∫
Ω

(k|∇v|2 + rv2) dx

≥ α

∫
Ω

(v2(x) + |∇v|2) dx

= α‖v‖2
H1 ,

provided α = infx∈Ω(k(x), r(x)) > 0.
The continuity of A is a consequence of

A(v, w) ≤ max(‖k‖L∞ , ‖r‖L∞)

∫
Ω

(|∇v||∇w|+ |v||w|)dx

≤ max(‖k‖L∞ , ‖r‖L∞)‖v‖H1‖w‖H1 ,

provided max(‖k‖L∞ , ‖r‖L∞) = C <∞.
Finally, the functional L is continuous, since

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖V ,

which means that we may take Λ = ‖f‖L2 provided we assume that f ∈
L2(Ω). Therefore the problem satisfies the Lax-Milgram theorem. 2

Example 7.10 Verify that the assumption of the Lax-Milgram theorem are
satisfied for the following problem,

−∆u = f in Ω,

u = 0 on ∂Ω.
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Solution. This problem satisfies (Var) with

V = H1
0 = {v ∈ H1 : v|∂Ω = 0},

H1 = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞},

A(u, v) =

∫
Ω

∇u∇v dx,

L(v) =

∫
Ω

fv dx.

To verify the V-ellipticity, we use the Poincaré inequality, i.e. there is a
constant C such that

v ∈ H1
0 ⇒

∫
Ω

v2 dx ≤ C

∫
Ω

|∇u|2 dx. (7.17)

In one dimension and Ω = (0, 1), the inequality (7.17) takes the form∫ 1

0

v2(x) dx ≤
∫ 1

0

(v′(x))2 dx, (7.18)

provided v(0) = 0. Since

v(x) = v(0) +

∫ x

0

v′(s) ds =

∫ x

0

v′(s) ds,

and by Cauchy’s inequality

v2(x) =

(∫ x

0

v′(s) ds

)2

≤ x

∫ x

0

v′(s)2 ds

≤
∫ 1

0

v′(s)2 ds since x ∈ (0, 1).

The V-ellipticity of A follows by (7.18) and

A(v, v) =

∫ 1

0

v′(x)2 dx =
1

2

∫ 1

0

(
(v′(x))2 dx+

1

2
(v′(x))2

)
dx

≥ 1

2

∫ 1

0

(v′(x)2 + v(x)2) dx

=
1

2
‖v‖2

H1
0

∀v ∈ H1
0 .
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The other conditions can be proved similarly as in the previous example.
Therefore this problem satisfies the Lax-Milgram theorem. 2
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Chapter 8

Markov Chains, Duality and
Dynamic Programming

8.1 Introduction

There are two main ideas in the arbitrage theory of pricing. One is that in
complete markets, everyone should agree on a common price – any other price
leads to an arbitrage opportunity. The other is that this price is the expected
value of the cash flow with respect to some probability model – risk neutral
pricing. In the simplest case, this probability model is a discrete Markov
chain. This lecture describes how to compute probabilities and expected
values for discrete Markov chain models. This is the main computational
step in ”risk neutral“ option pricing.

The methods here compute the expected values by a time marching pro-
cess that uses the transition matrix. Another evolution process allows us
to compute probabilities. These evolution processes are related but not the
same. The relation between the forward evolution for probabilities and the
backward evolution for expected values is called duality. It is similar to the
relation between a matrix and its transpose. The transpose of a matrix is
sometimes called its dual.

The method of risk neutral arbitrage pricing extends to other more tech-
nical situations, but the main ideas are clear in the simple context of Markov
chains. If the Markov chain model is replaced by a stochastic differential
equation model, then the transition matrix is replaced by a partial differen-
tial operator – the ”generator“, and the matrix transpose is replaced by the
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“dual” of this generator. This is the subject of future lectures.
Many financial instruments allow the holder to make decisions along the

way that effect the ultimate value of the instrument. American style options,
loans that be repaid early, and convertible bonds are examples. To compute
the value of such an instrument, we also seek the optimal decision strategy.
Dynamic programming is a computational method that computes the value
and decision strategy at the same time. It reduces the difficult “multiperiod
decision problem” to a sequence of hopefully easier “single period” problems.
It works backwards in time much as the expectation method does. The tree
method commonly used to value American style stock options is an example
of the general dynamic programming method.

8.2 Markov Chains

(This section assumes familiarity with basic probability theory using mathe-
maticians’ terminology. References on this include the probability books by
G. C. Rota, W. Feller, Hoel and Stone, and B. V. Gnedenko.)

Many discrete time discrete state space stochastic models are stationary
discrete Markov chains. Such a Markov chain is characterized by its state
space, S, and its transition matrix, P . We use the following notations:

• x, y, . . .: possible states of the system, elements of S.

• The possible times are t = 0, 1, 2, . . ..

• X(t): the (unknown) state of the system at time t. It is some element
of S.

• u(x, t) = Pr(X(t) = x). These probabilities satisfy an evolution equa-
tion moving forward in time. We use similar notation for conditional
probabilities, for example, u(x, t|X(0) = x0) = Pr(X(t) = x|X(0) =
x0).

• p(x, y) = Pr(x→ y) = Pr(X(t+ 1) = y|X(t) = x). These “transition
probabilities” are the elements of the transition matrix, P .

The transition probabilities have the properties:

0 ≤ p(x, y) ≤ 1 for all x ∈ S and y ∈ S. (8.1)
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and ∑
y∈S

p(x, y) = 1 for all x ∈ S. (8.2)

The first is because the p(x, y) are probabilities, the second because the state
x must go somewhere, possibly back to x. It is not true that

(NOT ALWAYS TRUE)
∑
x∈S

p(x, y) = 1 . (NOT ALWAYS TRUE)

The Markov property is that knowledge of the state at time t is all the
information about the present and past relevant to predicting the future.
That is:

Pr(X(t+ 1) = y|X(t) = x0, X(t− 1) = x1, . . .)

= Pr(X(t+ 1) = y|X(t) = x0) (8.3)

no matter what extra history information (X(t− 1) = x1, . . .) we have. This
may be thought of as a lack of long term memory. It may also be thought of
as a completeness property of the model: the state space is rich enough to
characterize the state of the system at time t completely.

To illustrate this point, consider the model

Z(t+ 1) = aZ(t) + bZ(t− 1) + ξ(t) , (8.4)

where the ξ(t) are independent random variables. Models like this are used
in “time series analysis”. Here Z is a continuous variable instead a discrete
variable to make the example simpler. If we say that the state at time t is
Z(t) then (8.4) is not a Markov chain. Clearly we do better at predicting
Z(t+ 1) if we know both Z(t) and Z(t− 1) than if we know just Z(t). If we
say that the state at time t is the two dimensional vector

X(t) =

(
Z(t)
Z(t− 1)

)
,

then (
Z(t)
Z(t− 1)

)
=

(
a b
1 0

)(
Z(t− 1)
Z(t− 2)

)
+

(
ξ(t)
0

)
may be rewriten

X(t+ 1) = AX(t) +

(
ξ(t)
0

)
.
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Thus, X(t) is a Markov chain. This trick of expressing lag models with
multidimensional states is common in time series analysis.

The simpler of the evolutions, and the one less used in practice, is the
forward evolution for the probabilities u(x, t). Once we know the numbers
u(x, t) for all x ∈ S and a particular t, we can compute them for t + 1.
Proceding in this way, starting from the numbers u(x, 0) for all x ∈ S, we
can compute up to whatever T is desired. The evolution equation for the
probabilities u(x, t) is found using conditional probability:

u(x, t+ 1) = Pr(X(t+ 1) = x)

=
∑
y∈S

Pr(X(t+ 1) = x|X(t) = y) ·Pr(X(t) = y)

u(x, t+ 1) =
∑
y∈S

p(y, x)u(y, t) . (8.5)

To express this in matrix form, we suppose that the state space, S, is
finite, and that the states have been numbered x1, . . ., xn. The transition
matrix, P , is n×n and has (i, j) entry pij = p(xi, xj). We sometimes conflate
i with xi and write pxy = p(x, y); until you start programming the computer,
there is no need to order the states. With this convention, (8.5) can be
interpreted as vector–matrix multiplication if we define a row vector u(t)
with components (u1(t), . . . , un(t)), where we have written ui(t) for u(xi, t).
As long as ordering is unimportant, we could also write ux(t) = u(x, t). Now,
(8.5) can be rewritten

u(t+ 1) = u(t)P . (8.6)

Since u is a row vector, the expression Pu does not make sense because the
dimensions of the matrices are incompatible for matrix multiplication. The
convention of using a row vector for the probabilities and therefore putting
the vector in the left of the matrix is common in applied probability. The
relation (8.6) can be used repeatedly1

u(1) = u(0)P and u(2) = u(1)P
→

u(2) = (u(0)P )P = u(0) (PP ) = u(0)P 2

1The most important fact in linear algebra is that matrix multiplication is associative:
(AB)C = A(BC) for any three matrices of any size, including row or column vectors, as
long as the multiplication is compatible.
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to yield
u(t) = u(0)P t , (8.7)

where P t means P to the power t, not the transpose of P .
Actually, the Markov property is a bit stronger than (8.3). It applies not

only to events determined by time t+1, but to any events determined in the
future of t. For example, if A is the event X(t+ 3) = x or y and X(t+ 1) 6=
X(t+ 4), then

Pr(A | X(t) = z and X(t− 1) = w) = Pr(A | X(t) = z) .

8.3 Expected Values

The more general and useful evolution equation is the backward evolution
for expected values. In the simplest situation, suppose that X(t) is a Markov
chain, that the probability distribution u(x, 0) = Pr(X(0) = x) is known,
and that we want to evaluate E(V (X(T )). We will call time t = 0 the present,
time t = T the payout time, and times t = 1, · · · , T − 1 intermediate times.

The backward evolution computed the desired expected value in terms of
a collection of other conditional expected values, f(x, t), where x ∈ S and t
is an intermediate time. We start with the final time values f(x, T ) = V (x)
for all x ∈ S. We then compute the numbers f(x, T − 1) using the f(x, t)
and P . We continue in this way back to time t = 0.

The f(x, t) are expected values of the payout, given knowledge of the
state at a future intermediate time:

f(x, t) = E [V (X(T ))|X(t) = x] . (8.8)

Recall our convention that time 0 is the present time, time t > 0 is in the
future, but not as far in the future as the time, T , at which the payout is
made. We may think of the f(x, t) as possible expected values at the future
intermediate time t. At time t we would know the value of X(t). If that
value were x, then the expected value of V (X(T )) would be f(x, t).

Instead of computing f(x, t) directly from the definition (8.8), we can
compute it in terms of the f(x, t + 1) using the transition matrix. If the
system is in state x at time t, then the probability for it to be at state y at
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the next time is p(x→ y) = p(x, y). For expectation values, this implies

f(x, t) = E [fT (X(T ))|X(t) = x]

=
∑
y∈S

E [fT (X(T ))|X(t+ 1) = y] ·Pr (X(t+ 1) = y | X(t) = x)

f(x, t) =
∑
y∈S

f(y, t+ 1)p(x, y) . (8.9)

It is clear from (8.8) that f(x, T ) = V (x); if we know the state at time T
then we know the payout exactly. From these, we compute all the numbers
f(x, T − 1) using (8.9) with t = T − 1. Continuing like this, we eventually
get to t = 0. We may know X(0), the state of the system at the current
time. For example, if X(t) is the price of a stock at time t, then X(0) = x0

is the current spot price. Then the desired expected value would be f(x0, 0).
Otherwise we can use

E [V (X(T ))] =
∑
x∈S

E [V (X(T ))|X(0) = x] ·Pr (X(0) = x)

=
∑
x∈S

f(x, 0)u(x, 0) .

All the values on the bottom line should be known.
Another remark on the interpretation of (8.9) will be helpful. Suppose we

are at state x at time t and wish to know the expected value of V (X(T )). In
one time step, starting from state x, we could go to state y at time t+1 with
probability2 p(x, y). The right side of (8.9) is the average over the possible y
values, using probability p(x, y). The quantities being averaged, f(y, t+1) are
themselves expected values of V (X(T )). Thus, we can read (8.9) as saying
that the expected value is the expected value of the expected values at the
next time. A simple model for this situation is that we toss a coin. With
probability p we get payout U and with probability 1−p we get payout V . Let
us suppose that both U and V are random with expected values fU = E(U)
and fV = E(V ). The overall expected payout is p · fu + (1 − p) · fV . The
Markov chain situation is like this. We are at a state x at time t. We first
choose state y ∈ S with probability p(x, y). For each y at time t+ 1 there is
a payout probability, Uy, whose probability distribution depends on y, t+ 1,

2Here we should think of y as the variable and x as a parameter.
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V , and the Markov chain. The overall expected payout is the average of the
expected values of the Uy, which is what (8.9) says.

As with the probability evolution equation (8.5), the equation for the
evolution of the expectation values (8.9) can be written in matrix form. The
difference from the probability evolution equation is that here we arrange the
numbers fj = f(xj, t) into a column vector, f(t). The evolution equation for
the expectation values is then written in matrix form as

f(t) = Pf(t+ 1) . (8.10)

This time, the vector goes on the right. If apply (8.10) repeatedly, we get,
in place of (8.7),

f(t) = P T−tf(T ) . (8.11)

There are several useful variations on this theme. For example, suppose
that we have a running payout rather than a final time payout. Call this
payout g(x, t). If X(t) = x then g(x, t) is added to the total payout that
accumulates over time from t = 0 to t = T . We want to compute

E

[
T∑
t=0

g(X(t), t)

]
.

As before, we find this by computing more specific expected values:

f(x, t) = E

[
T∑
t′=t

g(X(t′), t′)|X(t) = x

]
.

These numbers are related through a generalization of (8.9) that takes into
account the known contribution to the sum from the state at time t:

f(x, t) =
∑
y∈S

f(y, t+ 1)p(x, y) + g(x, t) .

The “initial condition”, given at the final time, is

f(x, T ) = g(x, T ) .

This includes the previous case, we take g(x, T ) = fT (x) and g(x, t) = 0 for
t < T .
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As a final example, consider a path dependent discounting. Suppose for a
state x at time t there is a discount factor r(x, t) in the range 0 ≤ r(x, t) ≤ 1.
A cash flow worth f at time t+1 will be worth r(x, t)f at time t if X(t) = x.
We want the discounted value at time t = 0 at state X(0) = x of a final time
payout worth fT (X(T )) at time T . Define f(x, t) to be the value at time t of
this payout, given that X(t) = x. If X(t) = x then the time t + 1 expected
discounted (to time t+ 1) value is∑

y∈S

f(y, t+ 1)p(x, y) .

This must be discounted to get the time t value, the result being

f(x, t) = r(x, t)
∑
y∈S

f(y, t+ 1)p(x, y) .

8.4 Duality and Qualitative Properties

The forward evolution equation (8.5) and the backward equation (8.9) are
connected through a duality relation. For any time t, we compute (8.8) as

E [V (X(T ))] =
∑
x∈S

E [V (X(T ))|X(t) = x] ·Pr(X(t) = x)

=
∑
x∈S

f(x, t)u(x, t) . (8.12)

For now, the main point is that the sum on the bottom line does not depend
on t. Given the constancy of this sum and the u evolution equation (8.5), we
can give another derivation of the f evolution equation (8.9). Start with∑

x∈S

f(x, t+ 1)u(x, t+ 1) =
∑
y∈S

f(y, t)u(y, t) .

Then use (8.5) on the left side and rearrange the sum:

∑
y∈S

(∑
x∈S

f(x, t+ 1)p(y, x)

)
u(y, t) =

∑
y∈S

f(y, t)u(y, t) .

Now, if this is going to be true for any u(y, t), the coefficients of u(y, t) on
the left and right sides must be equal for each y. This gives (8.9). Similarly,
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it is possible to derive (8.5) from (8.9) and the constancy of the expected
value.

The evolution equations (8.5) and (8.9) have some qualitative properties
in common. The main one being that they preserve positivity. If u(x, t) ≥ 0
for all x ∈ S, then u(x, t+1) ≥ 0 for all x ∈ S also. Likewise, if f(x, t+1) ≥ 0
for all x, then f(x, t) ≥ 0 for all x. These properties are simple consequences
of (8.5) and (8.9) and the positivity of the p(x, y). Positivity preservation
does not work in reverse. It is possible, for example, that f(x, t+ 1) < 0 for
some x even though f(x, t) ≥ 0 for all x.

The probability evolution equation (8.5) has a conservation law not shared
by (8.9). It is ∑

x∈S

u(x, t) = const . (8.13)

independent of t. This is natural if u is a probability distribution, so that the
constant is 1. The expected value evolution equation (8.9) has a maximum
principle

max
x∈S

f(x, t) ≤ max
x∈S

f(x, t+ 1) . (8.14)

This is a natural consequence of the interpretation of f as an expectation
value. The probabilities, u(x, t) need not satisfy a maximum principle either
forward of backward in time.

This duality relation has is particularly transparent in matrix terms. The
formula (8.8) is expressed explicitly in terms of the probabilities at time t as∑

x∈S

f(x, T )u(x, T ) ,

which has the matrix form
u(T )f(T ) .

Written in this order, the matrix multiplication is compatible; the other
order, f(T )u(T ), would represent an n×n matrix instead of a single number.
In view of (8.7), we may rewrite this as

u(0)P Tf(T ) .

Because matrix multiplication is associative, this may be rewritten[
u(0)P t

]
·
[
P T−tf(T )

]
(8.15)
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for any t. This is the same as saying that u(t)f(t) is independent of t, as we
already saw.

In linear algebra and functional analysis, “adjoint” or “dual” is a fancy
generalization of the transpose operation of matrices. People who don’t like
to think of putting the vector to the left of the matrix think of uP as mul-
tiplication of (the transpose of) u, on the right, by the transpose (or adjoint
or dual) of P . In other words, we can do enough evolution to compute an
expected value either using P its dual (or adjoint or transpose). This is the
origin of the term “duality” in this context.

8.5 Dynamic Programming

Dynamic programming is a method for valuing American style options and
other financial instruments that allow the holder to make decisions that effect
the ultimate payout. The idea is to define the appropriate value function,
f(x, t), that satisfies a nonlinear version of the backwards evolution equation
(8.9). In the real world, dynamic programming is used to determine “opti-
mal” trading strategies for traders trying to take or unload a big position
without moving the market, to find cost efficient hedging strategies when
trading costs or other market frictions are significant, and for many other
purposes. Its main drawback stems from the necessity of computing the cost
to go function (see below) for every state x ∈ S. For complex models, the
state space may be too large for this to be practical. That’s when things
really get interesting.

I will explain the idea in a simple but somewhat abstract situation. As
in the previous section, it is possible to use these ideas to treat other re-
lated problems. We have a Markov chain as before, but now the transition
probabilities depend on a “control parameter”, ξ. That is

p(x, y, ξ) = Pr (X(t+ 1) = y|X(t) = x, ξ) .

In the “stochastic control problem”, we are allowed to choose the control
parameter at time t, ξ(t), knowing the value of X(t) but not any more about
the future than the transition probabilities. Because the system is a Markov
chain, knowledge of earlier values,X(t−1), . . ., will not help predict or control
the future. Choosing ξ as a function of X(t) and t is called “feedback control”
or a “decision strategy”. The point here is that the optimal control policy
is a feedback control. That is, instead of trying to choose a whole control
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trajectory, ξ(t) for t = 0, 1, . . . , T , we instead try to choose the feedback
functions ξ(X(t), t). We will write ξ(X, t) for such a decision strategy.

Any given strategy has an expected payout, which we write

Eξ [V (X(T ))] .

Our object is to compute the value of the financial instrument under the
optimal decision strategy:

max
ξ

Eξ [V (X(T ))] , (8.16)

and the optimal strategy that achieves this.
The appropriate collection of values for this is the “cost to go” function

f(x, t) = max
ξ

Eξ [V (X(T ))|X(t) = x]

= max
ξt

max
ξt+1,ξt+2,...,ξT

Eξ [V (X(T ))|X(t+ 1) = y]P (x, y, ξt)

= max
ξ(t)

∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) .

(8.17)

As before, we have “initial data” f(x, T ) = V (x). We need to compute the
values f(x, t) in terms of already computed values f(x, t + 1). For this, we
suppose that the optimal decision strategy at time t is not yet known but
those at later times are already computed. If we use control variable ξ(t) at
time t, and the optimal control thereafter, we get payout depending on the
state at time t+ 1:

E [f(X(t+ 1), t+ 1)|X(t) = x, ξ(t)] =
∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) .

Maximizing this expected payout over ξ(t) gives the optimal expected payout
at time t:

f(x, t) = max
ξ(t)

∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) . (8.18)

This is the principle of dynamic programming. We replace the “multiperiod
optimization problem” (8.17) with a sequence of hopefully simpler “single
period” optimization problems (8.18) for the cost to go function.
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8.6 Examples and Exercises

1. A stationary Markov chain has three states, called A, B, and C. The
probability of going from A to B in one step is .6. The probability of
staying at A is .4. The probability of going from B to A is .3. The
probability of staying at B is .2, and the probability of going to C is .5.
From state C, the probability of going to B is .8 and the probability
of going to A is zero. The payout for state A is 1, for state B is 4, and
for state C is 9.

a. Compute the probabilities that the system will be in state A, B, or
C after two steps, starting from state A. Use these three numbers
to compute the expected payout after two steps starting from state
A.

b. Compute the expected payouts in one step starting from state A
and from state B. These are f(A, 1) and f(B, 1) respectively.

c. See that the appropriate average of f(A, 1) and f(B, 1) agrees with
the answer from part a.

2. Suppose a stock price is a stationary Markov chain with the following
transition probabilities. In one step, the stock goes from S to uS
with probability p and from S to dS with probability q = 1 − p. We
generally suppose that u (the uptick) is slightly bigger than one while d
(the downtick) as a bit smaller. Show that the method for computing
the expected payout is exactly the binomial tree method for valuing
European style options.

3. Formulate the American style option valuation problem as an optimal
decision problem. Choosing the early exercise time is the same as
deciding on each day whether to exercise or not. Show that the dynamic
probramming algorithm discussed above is the binomial tree method
for Amercian style options. The optimization problem (8.18) reduces
to taking the max between the computed f and the intrinsic value.

4. This is the simplest example of the “linear quadratic gaussian” (LQG)
paradigm in optimal control that has become the backbone of tradi-
tional control engineering. Here X(t) is a real number. The transitions
are given by

X(t+ 1) = aX(t) + σG(t) + ξ(t) , (8.19)
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where G(t) is a standard normal random variable and the G(t) for
different t values are independent. We want to minimize the quantity

C =
T∑
t=1

X(t)2 + µ
T−1∑
t=0

ξ(t)2 (8.20)

We want to find a chioce of the control, ξ, that minimizes E(C). Note
that the dynamics (8.19) are linear, the noise is gaussian, and the cost
function (8.20) is quadratic. Define the cost to go function f(x, t) to
be the cost incurred starting at x at time t ignoring the costs that are
incurred at earlier times. Start by computing f(x, T − 1) explicitly by
minimizing over the single variable ξ(T − 1). Note that the optimal
ξ(T − 1) is a linear function of X(T − 1). Using this information,
compute f(x, T − 2) by optimizing over ξ(T − 2), and so on. The
LQG model in control engineering justifies linear feedback control in
much the same way the gaussian error model and maximum likelihood
justifies least squares estimation in statistics.
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Chapter 9

Optimal Control

The purpose of Optimal Control is to influence the behavior of a dynamical
system in order to achieve a desired goal. Optimal control has a huge variety
of applications, such as aerospace, aeronautics, chemical plants, mechani-
cal systems, finance and economics. In this chapter we consider dynamical
systems whose evolution is determined by ordinary stochastic differential
equations, although the derived principles are still valid in more general sit-
uations.

To give some intuition on the subject and to introduce some basic concepts
let us consider a hydro-power generator in a river. Suppose that we are the
owners of such a generator, and that our goal is to maximise our profit by
selling electricity in some local electricity market. This market will offer us
buying prices at different hours, so one decision we have to make is when and
how much electricity to generate. To make this decision may not be a trivial
task, since besides economic considerations, we also have to meet technical
constraints. For instance, the power generated is related to the amount of
water in the reservoir, the turbined flow and other variables. Moreover, if we
want a plan for a period longer than just a few days the water inflow to the
lake may not be precisely known, making the problem stochastic.

We can now state our problem then in optimal control terms as the maxi-
mization of an objective function, the expected profit from selling electricity
power during a given period, with respect to control functions, like the hourly
turbined flow. Observe that the turbined flow is positive and smaller than
a given maximum value, so it is natural to have a set of feasible controls,
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namely the set of those controls we can use in practice. In addition, our
dynamical system evolves according to a given law, also called the dynamics,
which here comes from a mass balance in the dam’s lake. This law tells us
how the state variable, the amount of water in the lake, evolves with time
according to the control we give. Since the volume in the lake cannot be
negative, there exist additional constraints, known as state constraints, that
have to be fulfilled in the optimal control problem.

After introducing the formulation of an optimal control problem the next
step is to find its solution. As we shall see, the optimal control is closely
related with the solution of a nonlinear partial differential equation, known
as the Hamilton Jacobi equation. To derive the Hamilton Jacobi equation
we shall use the dynamic programming principle, which relates the solution
of a given optimal control problem with solutions to simpler problems.

9.1 An Optimal Portfolio

Example 9.1 Assume that the value of a portfolio, X(t), consists of risky
stocks, S(t) = α(t)X(t), and riskless bonds, B(t) = (1 − α(t))X(t), where
α(t) ∈ [0, 1] and

dS = aSdt+ cSdW, (9.1)

dB = bBdt, (9.2)

with 0 ≤ b < a. Define for a given function g the cost function

Ct,x(α) = E[g(X(T ))|X(t) = x].

Then our goal is to determine the Markov control function α(t,X(t)), with
α : [0, T ]×R → [0, 1] that maximizes the cost function. The solution will be
based on the function

u(t, x) ≡ max
α

Ct,x(α),

and we will show that u(t, x) satisfies the following Hamilton-Jacobi equation,

ut + max
α∈[0,1]

{
(aα+ b(1− α))xux +

c2α2

2
x2uxx

}
= 0, (9.3)

u(T, x) = g(x),
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i.e.
ut +H(x, ux, uxx) = 0

for

H(x, p, w) ≡ max
v∈[0,1]

(av + b(1− v)xp+
c2v2

2
x2w).

Example 9.2 Assume that uxx < 0 in the equation (9.3). Determine the
optimal control function α∗.

Solution. By differentiating f(α) = (aα+ b(1− α))xux + c2α2

2
x2uxx in (9.3)

with respect to α and using df/dα = 0, we obtain

α̂ = −(a− b)ux
c2xuxx

.

Then the optimal control α∗ is given by

α∗ =


0, if α̂ < 0
α̂, if α̂ ∈ [0, 1]
1 if 1 < α̂

The optimal value yields in (9.3) the Hamilton-Jacobi equation

ut +H(x, ux, uxx) = 0,

where

H(x, ux, uxx) =


bxux, if α̂ < 0

bxux −
(a− b)2u2

x

2c2uxx
, if α̂ ∈ [0, 1]

axux +
c2x2uxx

2
if 1 < α̂

(9.4)

2

Example 9.3 What is the optimal control function α = α∗ for g(x) =
xr, 0 < r < 1 ?

96



Solution. We have dX = d(αX + (1 − α)X) = dS + dB = (aS + bB)dt +
cSdW = (aαX + b(1− α)X)dt+ cαXdW , so that the Itô formula yields

dg(X) = dXr = rXr−1dX +
r(r − 1)

2
Xr−2(dX)2

= rXr(aα+ b(1− α))dt+ rXrαcdW +
1

2
α2c2r(r − 1)Xrdt.

Taking the expectation value in the above,

E[Xr(T )] = Xr(0) + E

[∫ T

0

rXr

(
aα+ b(1− α) +

1

2
α2c2(r − 1)

)
dt

]
.

Finally, perturb the above equation with respect to ε ∈ R+ provided α =
α∗+εv for some feasible function v, that is α∗+εv ∈ [0, 1] for sufficiently small
ε. Then the optimal control, α∗, should satisfy E[Xr

α∗+εv(T )]−E[Xr
α∗(T )] ≤

0 ∀v. If we make the assumption α∗ ∈ (0, 1), then we obtain

E[

∫ T

0

rXrv(a− b+ α∗c2(r − 1))dt] = 0, ∀v

which implies

α∗ =
a− b

c2(1− r)
.

2

Exercise 9.4 What is the optimal control in (9.3) for g(x) = log x ?

9.2 Control of SDE

In this section we study optimal control of the solution X(t) to the stochastic
differential equation{
dXi = ai(X(s), α(s,X(s)))dt+ bij(X(s), α(s,X(s)))dWj, t < s < T
X(t) = x

(9.5)

where T is a fixed terminal time and x ∈ Rn is a given initial point. Assume
that ai, bij : Rn × A→ R are smooth bounded functions, where A is a given
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compact subset of Rm. The function α : [0, T ] × Rn → A is a control and
let A be the set of admissible Markov control functions t→ α(t,X(t)). The
Markov control functions use the current value X(s) to affect the dynamics
of X by adjusting the drift and the diffusion coefficients. Let us for these
admissible controls α ∈ A define the cost

Ct,x(α) = E[

∫ T

t

h(X(s), α(s))ds+ g(X(T ))]

where X solves the stochastic differential equation (9.5) with control α and

h : Rn × A→ R, g : Rn → R

are given smooth bounded functions. We call h the running cost and g the
terminal cost. Our goal is to find an optimal control α∗ which minimizes the
expected cost, Ct,x(α).

Let us define the value function

u(t, x) ≡ inf
α∈A

Ct,x(α). (9.6)

The plan is to show that u solves a certain Hamilton-Jacobi equation and
that the optimal control can be reconstructed from u. We first assume for
simplicity that the optimal control is attained, i.e

u(t, x) = min
α∈A

Ct,x(α) = Ct,x(α
∗).

The generalization of the proofs without this assumption is discussed in Ex-
ercise 9.7.

9.3 Dynamic Programming and Hamilton-Jacobi

Equations

Lemma 9.5 Assume that the assumptions in section 9.1 hold. Then, the
function u satisfies, for all δ > 0, the dynamic programming relation

u(t, x) = min
α:[t,t+δ]→A

E[

∫ t+δ

t

h(X(s), α(s,X(s)))ds+ u(t+ δ,X(t+ δ))]. (9.7)
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Proof. The proof has two steps: to use the optimal control to verify

u(t, x) ≥ min
α∈A

E[

∫ t+δ

t

h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

and then to show that an arbitrary control yields

u(t, x) ≤ min
α∈A

E[

∫ t+δ

t

h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

which together imply Lemma 9.5.
Step 1: Choose the optimal control α∗, from t to T , to obtain

u(t, x) = min
α∈A

E

[∫ T

t

h(X(s), α(s,X(s)))ds+ g(X(T ))

]
= E[

∫ t+δ

t

h(X(s), α∗(s))ds] + E[

∫ T

t+δ

h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t

h(X(s), α∗(s))ds]

+E

[
E[

∫ T

t+δ

h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
≥ E[

∫ t+δ

t

h(X(s), α∗(s))ds] + E[u(X(t+ δ), t+ δ)]

≥ min
α∈A

E

[∫ t+δ

t

h(X(s), α(s,X(s))ds+ u(X(t+ δ), t+ δ)

]
.

Step 2: Choose the control α+ to be arbitrary from t to t + δ and then,
given the value X(t+ δ), choose the optimal α∗ from t+ δ to T . Denote this
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control by α′ = (α+, α∗). Definition (9.6) shows

u(t, x) ≤ Ct,x(α
′)

= E[

∫ T

t

h(X(s), α′(s))ds+ g(X(T ))]

= E[

∫ t+δ

t

h(X(s), α+(s))ds] + E[

∫ T

t+δ

h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t

h(X(s), α+(s))ds]

+E

[
E[

∫ T

t+δ

h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
= E[

∫ t+δ

t

h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Taking the minimum over all controls α+ yields

u(t, x) ≤ min
α+∈A

E

[∫ t+δ

t

h(X(s), α+(s))ds+ u(X(t+ δ), t+ δ)

]
.

2

Theorem 9.6 Assume that X solves (9.5) with a Markov control function
α and that the function u defined by (9.6) is bounded and smooth. Then u
satisfies the Hamilton-Jacobi equation

ut +H(t, x,Du,D2u) = 0,

u(T, x) = g(x),

with the Hamiltonian function

H(t, x,Du,D2u) ≡ min
α∈A

[
ai(x, α)∂xi

u(t, x) +
bik(x, α)bjk(x, α)

2
∂xixj

u(t, x) + h(x, α)

]

Proof. The proof has two steps: to show that the optimal control α = α∗

yields

ut + a∗i∂xi
u+

b∗ikb
∗
jk

2
∂xixj

u+ h∗ = 0, (9.8)
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where a∗(x) = a(x, α∗(t, x)), b∗(x) = b(x, α∗(t, x)) and h∗(t, x) = h(t, x, α∗(t, x)),
and then that an arbitrary control α+ implies

ut + a+
i ∂xi

u+
b+ikb

+
jk

2
∂xixj

u+ h+ ≥ 0, (9.9)

where a+(x) = a(x, α+(t, x)), b+(x) = b(x, α+(t, x)) and h+(t, x) = h(t, x, α+(t, x)).
The two equations (9.8) and (9.9) together imply Theorem 9.6.

Step 1 : Choose α = α∗ to be the optimal control in (9.5). Then by the
dynamic programming principle of Lemma 9.6

u(X(t), t) = E[

∫ t+δ

t

h(X(s), α∗(s,X(s)))ds+ u(X(t+ δ), t+ δ)],

so that Itô ’s formula implies

−h(t, x, α∗(t, x))dt = E[du(X(t), t)| X(t) = x] (9.10)

= (ut + a∗i∂xi
u+

b∗ikb
∗
jk

2
∂xixj

u)(t, x)dt.

Definition (9.6) shows
u(T, x) = g(x),

which together with (9.10) prove (9.8).
Step 2 : Choose the control function in (9.5) to be arbitrary from time

t to t+ δ and denote this choice by α = α+. The function u then satisfies by
Lemma 9.6

u(t, x) ≤ E[

∫ t+δ

t

h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Hence E[du] ≥ −h(x, α+)dt. We know that for any given α+, by Itô ’s
formula,

E[du(t,X(t))] = E

[
ut + a+

i ∂xi
u+

b+ikb
+
jk

2
∂xixj

u

]
dt.

Therefore, for any control α+,

ut + a+
i ∂xi

u+
b+ikb

+
jk

2
∂xixj

u+ h(x, α+) ≥ 0,

which proves (9.9) 2
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Exercise 9.7 Use a minimizing sequence αi of controls, satisfying

u(t, x) = lim
i→∞

Ct,x(αi),

to prove Lemma 9.6 and Theorem 9.6 without the assumption that the min-
imum control is attained.

Exercise 9.8 LetA+ be the set of all adapted controls {α : [0, T ]×C[0, T ] →
A} where α(s,X) may depend on {X(τ) : τ ≤ s}. Show that the minimum
over all adapted controls in A+ is in fact the same as the minimum over all
Markov controls, i.e.

inf
α∈A+

Ct,x(α) = inf
α∈A

Ct,x(α),

e.g. by proving the dynamic programming relation (9.7) for adapted controls
and motivate why this is sufficient.

9.4 Relation of Hamilton-Jacobi Equations and

Conservation Laws

In this section we will analyze qualitative behavior of Hamilton-Jacobi equa-
tions, in particular we will study the limit corresponding to vanishing noise
in control of stochastic differential equations. The study uses the relation
between the Hamilton-Jacobi equation for V : [0, T ]× R → R

Vt +H(Vx) = 0, V (0, x) = V0(x), (H − J)

and the conservation law for U : [0, T ]× R → R

Ut +H(U)x = 0, U(0, x) = U0(x). (C − L)

Observe that the substitution V (t, x) =
∫ x
−∞ U(t, y)dy, so that U = Vx, and

integration in x from −∞ to x in (C-L) shows

Vt +H(Vx) = H(U(t,−∞)). (9.11)

Combined with the assumptions U(t, x) → 0 as |x| → ∞ and H(0) = 0 we
conclude that V solves (H-J), if U solves (C-L).
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Figure 9.1: Left: Initial condition. Right: Colliding characteristics and a
shock.

The next step is to understand the nature of the solutions of (C-L). Con-
sider the special Burger’s conservation law

0 = Ut + U Ux = Ut + (
U2

2
)x, U(0, x) = U0(x). (9.12)

Let us define a characteristic path X : [0, T ]× R → R by

dX

dt
(t) = U(t,X(t)), X(0) = x0. (9.13)

Thus, if ψ(t) ≡ U(t,X(t)) then dψ
dt

(t) = 0 by virtue of (9.12). This means that
the value of U is constant along a characteristic path. If the characteristics
do not collide into each other we may expect to find a solution using the
initial data U0(x) and the set of characteristics. Unfortunately, this is not
what happens in general, and collisions between characteristics do exist and
give birth to discontinuities known as shocks. For example, this is the case
when U0(x) = − arctan(x) and t ≥ 1.

Exercise 9.9 Show that w(t) = Ux(X(t), t) satisfies w(t) = w(0)/(1 +
w(0)t), t < 1, for Burger’s equation (9.12) with initial data U(x, 0) =
− arctan(x). Hence, w(1) = ∞, for X(0) = 0.

Since the method of characteristics does not work globally we have to find
an alternative way to explain what happens with the solution U(t, x) near
a shock. It is not enough with the concept of strong or classical solution,
since the solution U(t, x) is not differentiable in general. For this purpose,
we define the notion of weak solution. Let V be the set of test functions
{ϕ : (0,+∞) × R → R} which are differentiable and take the value zero
outside some compact set. Then an integrable function U is a weak solution
of (9.12) if it satisfies∫ +∞

0

∫ +∞

−∞

(
U(t, x)ϕt(t, x) +

U2(t, x)

2
ϕx(t, x)

)
dx dt = 0, ∀ϕ ∈ V (9.14)

and ∫ +∞

−∞
|U(t, x)− U0(x)|dx→ 0, as t→ 0 (9.15)
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Figure 9.2: Shock velocity and Rankine Hugoniot condition

Example 9.10 The shock wave

U(t, x) =

{
1 x < t

2
,

0 otherwise.

is a weak solution satisfying (9.14) and (9.15). Observe that for s ≡ 1/2

∂t

∫ b

a

U dx =
U2(t, a)− U2(t, b)

2
= −

[
U2

2

]
,

and

∂t

∫ b

a

U dx = ∂t[(s t− a)U−] + (b− s t)U+] = −s(U+ − U−),

where

[w(x0)] ≡ w+(x0)− w−(x0) ≡ lim
y→0+

w(x0 + y)− w(x0 − y)

is the jump at the point x0. Consequently, the speed s of a shock can be
determined by the so called Rankine Hugoniot condition

s[U ] =

[
U2

2

]
. (9.16)

Exercise 9.11 Verify that the shock wave solution

UI(t, x) =

{
0 x > − t

2
,

−1 otherwise

and the rarefaction wave solution

UII(t, x) =


0 x ≥ 0,
x
t

−t < x < 0,

−1 otherwise

are both weak solutions of Ut + U Ux = 0 with the same initial condition.
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Figure 9.3: UI(t, x)

Figure 9.4: UII(t, x)

The last exercise shows that we pay a price to work with weak solutions: the
lack of uniqueness. Therefore, we need some additional physical information
to determine a unique weak solution. This leads us to the concept of viscosity
limit or viscosity solution: briefly, it says that the weak solution U we seek
is the limit U = limε→0+ U

ε of the solution of the regularized equation

U ε
t + U ε U ε

x = εU ε
xx, ε > 0. (9.17)

This regularized equation has continuous and smooth solutions for ε > 0.
With reference to the previous example, the weak solution UII satisfies UII =
limε→0+ U ε, but UI 6= limε→0+ U

ε. Since a solution of the conservation law
can be seen as the derivative of the solution of a Hamilton-Jacobi equation,
the same technique of viscosity solutions can be applied to

V ε
t +

(V ε
x )2

2
= εV ε

xx, ε > 0. (9.18)

The functions VI(x, t) = −
∫∞
x
UI(y, t)dy, and VII(x, t) = −

∫∞
x
UII(y, t)dy

have the same initial data and they are both candidates of solutions to the
Hamilton-Jacobi equation

Vt +
(Vx)

2

2
= 0.

The shock waves for conservation laws corresponds to solutions with discon-
tinuities in the derivative for Hamilton-Jacobi solutions. Only the function
VII satisfies

VII = lim
ε→0+

V ε, (9.19)

but VI 6= limε→0+ V
ε. It can be shown that the condition (9.19) implies

uniqueness for Hamilton-Jacobi equations. Note that (9.19) corresponds to
the limit of vanishing noise in control of stochastic differential equations.
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9.5 Numerical Approximations of Conserva-

tion Laws and Hamilton-Jacobi Equations

We have seen that the viscous problem

∂tu
ε + ∂xH(uε) = εuεxx for (x, t) ∈ R× (0,+∞), (9.20)

u(x, 0) = u0(x) for x ∈ R,

can be used to construct unique solutions to the conservation law

∂tu+ ∂xH(u) = 0 for (x, t) ∈ R× (0,+∞), (9.21)

u(x, 0) = u0(x) for x ∈ R.

In this section we will develop numerical approximations to the conservation
law (9.21) and the related Hamilton-Jacobi equation

∂tv +H(∂xv) = 0,

based on viscous approximations. We will also see that too little viscosity
may give unstable approximations.

To show the difficulties to solve numerically a problem like (9.21) and
(9.20) we consider a related steady-state problem (i.e. a problem that has
no dependence on t)

∂xw(x)− ε ∂2
xw(x) = 0 for x < 0, (9.22)

lim
x→−∞

w(x) = 1, w(0) = 0,

where ε ≥ 0 is fixed. It is easy to verify that the exact solution is w(x) =
1 − exp(x

ε
), for x ≤ 0. Now, we construct a uniform partition of (−∞, 0]

with nodes xj = j∆x for j = 0,−1,−2, . . ., where ∆x > 0 is a given mesh
size. Denoting by Wj the approximation of w(xj), the use of a second order
accurate finite element method or finite difference scheme method leads to
the scheme

Wj+1 −Wj−1

2∆x
− ε

Wj+1 − 2Wj +Wj−1

(∆x)2
= 0, j = −N + 1, . . . ,−1,

W0 = 0, (9.23)

W−N = 1.
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Assume that N is odd. If ε� ∆x, the solution of (9.23) is approximated by

Wj+1 −Wj−1

2∆x
= 0,

which yields the oscillatory solution W2i = 0 and W2i+1 = 1 that does not
approximate w, instead ‖w − W‖L2 = O(1). One way to overcome this
difficulty is to replace, in (9.23), the physical diffusion ε by the artificial
diffusion ε̂ = max{ε, ∆x

2
}. For the general problem β · ∇u − ε∆u = f take

ε̂ = max{ε, |β|∆x
2
}. Now, when ε � ∆x, we have ε̂ = ∆x

2
and the method

(9.23), with ε replaced by ε̂, yields Wj = Wj−1 for j = −N + 1, . . . ,−1,
i.e. Wj = 1 for j = −N, . . . ,−1, which is an acceptable solution with
‖w −W‖L2 = O(

√
∆x). Another way to cure the problem is to resolve by

choosing ∆x enough small, so that ε̂ = ε.
The Lax-Friedrich method for the problem (9.21), is given by

Un+1
j = Un

j −∆t

[
H(Un

j+1)−H(Un
j−1)

2∆x
− (∆x)2

2∆t
D+D−U

n
j

]
, (9.24)

with

D+Vj =
Vj+1 − Vj

∆x
, D−Vj =

Vj − Vj−1

∆x
and D+D−Vj =

Vj+1 − 2Vj + Vj−1

(∆x)2
·

The stability condition for the method (9.24) is

λ ≡ ∆x

∆t
> max

u
|H ′(u)|· (9.25)

We want to approximate the viscosity solution of the one-dimensional
Hamilton-Jacobi equation

∂tv +H(∂xv) = 0, (9.26)

where v = limε→0+ vε and

∂tv
ε +H(∂xv

ε) = ε ∂2
xv

ε. (9.27)

Setting u = ∂xv and taking derivatives in (9.26), we obtain a conservation
law for u, i.e.

∂tu+ ∂xH(u) = 0. (9.28)
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To solve (9.26) numerically, a basic idea is to apply (9.24) on (9.28) with
Un
i = (V n

i+1 − V n
i−1)/(2∆x) and then use summation over i to approximate

the integration in (9.11). We get

V n+1
j+1 − V n+1

j−1

2∆x
=
V n
j+1 − V n

j−1

2∆x

−∆t

[
H
(
V n

j+2−V n
j

2∆x

)
−H

(
V n

j −V n
j−2

2∆x

)
2∆x

− (∆x)2

2∆t
D+D−

V n
j+1 − V n

j−1

2∆x

]
·

Summing over j and using that V m
−∞ = 0 and H(0) = 0, it follows that

V n+1
j = V n

j −∆t

[
H
(V n

j+1 − V n
j−1

2∆x

)
− (∆x)2

2∆t
D+D−V

n
j

]
, (9.29)

which is the Lax-Friedrich method for (9.26). Note that (9.29) is a second
order accurate central difference approximation of the equation

∂tv +H(∂xv) =
(∆x)2

2∆t

(
1− (

∆t

∆x
H ′)2

)
∂2
xv,

which is (9.27) with artificial diffusion ∆x(λ2 − (H ′)2))/(2λ).
In the two-dimensional case a first order Hamilton-Jacobi equation has

the form

∂tv +H(∂x1v, ∂x2v) = 0. (9.30)

The analogous scheme to (9.29) for that equation is

V n+1
j,k = V n

j,k −∆t

[
H
(V n

j+1,k − V n
j−1,k

2∆x1

,
V n
j,k+1 − V n

j,k−1

2∆x2

)
−(∆x1)

2

4∆t

V n
j+1,k − 2V n

j,k + V n
j−1,k

(∆x1)2

−(∆x2)
2

4∆t

V n
j,k+1 − 2V n

j,k + V n
j,k−1

(∆x2)2

]
which for ∆x1 = ∆x2 = h and λ = h/∆t corresponds to a second order
approximation of the equation

∂tv
h +H(∂x1v

h, ∂x2v
h) =

∆x2

4∆t

∑
i

∂xixi
v −

∑
i,j

∆t

2
∂xi
H∂xj

H∂xixj
v.
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9.6 Symmetric Hyperbolic Systems

We consider the following system of partial differential equations: find u :
Rd × [0,+∞) → Rn satisfying

Lu ≡ A0∂tu+
d∑
i=1

Ai ∂xi
u+B u = f on Rd × (0,+∞), (9.31)

u(x, 0) = u0(x) for x ∈ Rd,

where u0 : Rd → Rn is given initial data, {Ai}di=0 and B are given n × n
matrices, and f is a given n vector. We say that the system (9.31) is a
symmetric hyperbolic system, when the matrices {Ai}di=0 are symmetric and
the matrix A0 is positive definite. We note that, in general, Ai = Ai(x, t, u),
i = 0, . . . , d, B = B(x, t, u) and f = f(x, t, u), and only in the linear case
we have Ai = Ai(x, t), i = 0, . . . , d, B = B(x, t) and f = f(x, t). On what
follows denote the Euclidean inner product x · y =

∑d
i=1 xiyi. Besides this,

we assume the linear case, and in addition that

• A0 is uniformly positive definite, i.e. there are positive constants µa, µb
such that

µa|x|2 ≤ A0x · x ≤ µb|x|2 ∀ x ∈ Rd, ∀t ∈ [0, T ], (9.32)

• all the matrices ∂tA0, B, Ai, ∂iAi, i = 1, . . . , d are uniformly bounded,
i.e. there exist a positive constant K such that if A is any of these
matrices then

|Ax · x| ≤ K|x|2 ∀ x ∈ Rd, ∀t ∈ [0, T ]. (9.33)

Example 9.12 We consider the initial value problem for a multidimensional
wave equation

∂2
t u =

d∑
i,k=1

aik∂xixk
u+

d∑
i=1

bi∂xi
u+ c0∂tu+ d0 u, (9.34)

u(x, 0) = u0(x) and ∂tu(x, 0) = u1(x) for x ∈ Rd,
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where the matrix (aik)
d
i,k=1 is symmetric and positive definite. Introducing

the new variables

vi = ∂xi
u, i = 1, . . . , d, vd+1 = ∂tu, vd+2 = u,

the equation (9.34) is written equivalently as

d∑
k=1

aik ∂tvk −
d∑

k=1

aik ∂xk
vd+1 = 0, i = 1, . . . , d,

∂tvd+1 −
d∑

i,k=1

aik ∂xk
vi −

d∑
i=1

bi vi − c0 vd+1 − d0 vd+2 = 0,

∂tvd+2 − vd+1 = 0,

v(x, 0) = (∂x1u0(x), . . . , ∂xd
u0(x), u0(x), u1(x)) for x ∈ Rd.

Defining the matrices

A0 =


a11 . . . a1d 0 0
...

...
...

...
ad1 . . . add 0 0
0 . . . 0 1 0
0 . . . 0 0 1

 , Ak =


0 . . . 0 −a1k 0
...

...
...

...
0 . . . 0 −adk 0

−a1k . . . −adk 0 0
0 . . . 0 0 0

 , k = 1, . . . , d,

and

B =


0 . . . 0 0 0
...

...
...

...
0 . . . 0 0 0
−b1 . . . −bd −c0 −d0

0 . . . 0 −1 0

 ,

Equation (9.35) takes the form

A0∂tv +
d∑

k=1

Ak∂xk
v +Bv = 0

which is a symmetric hyperbolic system, since {Ai}di=0 are symmetric and A0

is positive definite. 2
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Exercise 9.13 Show that the Maxwell Equations in the vacuum

ε
∂E

∂t
− rotH = 0,

µ
∂H

∂t
+ rotE = 0,

where E(x, t) and H(x, t) ∈ R3, can be written as a symmetric hyperbolic
system.

Example 9.14 Consider the symmetric hyperbolic system in one space di-
mension

∂tu+ A∂xu+Bu = f, t > 0, x ∈ R
u(x, 0) = u0(x) for x ∈ R,

where A is a n × n symmetric matrix. Since A is symmetric it can be
diagonalized by via an orthogonal matrix P (P−1 = P T ), i.e.

P−1AP = Λ = diag(λ1, . . . , λn).

Let w = P−1u. Then, it follows that

f = ∂tu+ A∂xu+Bu

= Pwt + AP∂xw + (Pt + APx +BP )w

which yields

wt + Λ∂xw + Πw = g (9.35)

w(x, 0) = w0(x) ≡ P−1u0(x, 0) for x ∈ R,

where
Π ≡ P−1(Pt + APx +BP ) and g = P−1f.

When the matrix Π is diagonal, i.e., Π = diag(π1, . . . , πn), we can solve
equation (9.35) by the method of characteristics {Xj}nj=1. A characteristic is
the solution of the following the system of ordinary differential equations

d

dt
Xj(x∗; t) = λj(Xj(x∗; t), t) for t > 0, j = 1, . . . , n,

Xj(x∗; 0) = x∗,
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for a given x∗ ∈ R. Solving the equations for the characteristics above we can
obtain a solution of the initial problem (9.35), since we have for j = 1, . . . , n

d

ds
wj(Xj(x; s), s) = ∂twj(Xj(x; s), s) + λj(Xj(x; s), s) ∂xj

w(Xj(x; s), s)

= −πj(Xj(s), s) wj(Xj(x; s), s) + gj(Xj(x; s)), (9.36)

for s > 0, x ∈ R.

Exercise 9.15 Generalize (9.36) to the symmetric hyperbolic systemA0∂tu+
A1∂xu+Bu = f.

Example 9.16 Let us apply the procedure above to the special case of
the wave equation in one space dimension

∂2
t v − ∂2

xv = 0,

v(x, 0) = v0(x), ∂tv(x, 0) = v1(x) for x ∈ R.

Setting u1 = ∂tv, u2 = ∂xv and u = (u1, u2), the equation above is

∂tu+M∂xu = 0

u(x, 0) = (v1(x), ∂xv0(x)) for x ∈ R,

where

M =

[
0 −1
−1 0

]
.

The matrix M has eigenvalues ±1 with corresponding eigenvectors (1,−1)
and (1, 1). The matrix P that diagonalizes M is

P =

√
2

2

[
1 1
−1 1

]
, i.e. P TMP = diag(1,−1).

Then we set w = P−1u and obtain w1(x+ t, t) = w1(x, 0) and w2(x− t, t) =
w2(x, 0). 2

Next we will prove an energy estimate which provides a uniqueness result
for a linear symmetric hyperbolic system. These energy estimate is also the
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Figure 9.5: Space-Time domain Ω where Gauss theorem is applied to obtain
an energy estimate.

basis for an existence proof, first given by Friedrichs based on the construction
in Lax-Milgram’s Theorem. We multiply the linear system (9.31) by u to get

∂t(A0u · u) +
d∑
i=1

∂xi
(Aiu · u) + Cu · u = 2f · u (9.37)

where x · y =
∑d

i=1 xiyi is the standard inner product in Rd and

C = 2B − ∂tA0 −
d∑
i=1

∂xi
Ai. (9.38)

Let us consider a “space-time” cone Ω ⊂ [0, T ] × Rd as shown in Figure
9.5. Observe that ∂Ω = ΩT ∪ ΩL ∪ Ω0 and use the notation Ωt ≡ {(x, s) ∈
Ω : s = t} to describe “time slices” of the domain Ω. Integrating (9.37) in Ω
and using Gauss theorem in Ω yields∫

ΩT

(A0u, u)dx−
∫

Ω0

(A0u, u)dx+

∫
ΩL

(
d∑
i=1

niAiu · u)dS

=

∫
Ω

[
2f · u− Cu · u

]
dxdt.

(9.39)

Recall that the matrix A0 is positive definite, so there are positive con-
stants µa, µb and k0, such that

µa|x|2 ≤ A0x · x ≤ µb|x|2 ∀ x ∈ Rd.

Besides this, Ai, i = 1, . . . , d are both symmetric and uniformly bounded, so
the matrix

n0A0 +
d∑
i=1

niAi

is symmetric positive definite as long as the lateral boundary of the cone,
ΩL, is chosen such that its unitary normal vector satisfies

n0 >
K
√
d

µa

√√√√ d∑
i=1

n2
i .
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Thus, with this choice of the cone Ω, (9.39) yields

E(T ) ≤ E(0) +

∫ T

0

(∫
Ωt

[
2f · u− Cu · u

]
dx

)
dt, (9.40)

where E is the energy of the system (9.31) defined by

E(t) ≡
∫

Ωt

A0(x, t)u(x, t) · u(x, t)dx for t ≥ 0.

Now we estimate the right hand side of (9.40) using the coercitivity of A0

(9.32) and the boundedness (9.33),(9.38), of C, to find a constant k0 such
that

|Cu · u| ≤ k0A0u · u,

and

2|f · u| ≤ µa|u|2 +
1

µa
|f |2

≤ A0u · u+
1

µa
|f |2.

From the relations above, we arrive at

E(t) ≤ E(0) + (1 + k0)

∫ t

0

E(s)ds+
1

µa

∫ t

0

∫
Ωs

|f(x, s)|2dxds, ∀t ∈ [0, T ],

and consequently the Grönwall’s lemma 3.2 yields

sup
s∈[0,T ]

E(s) ≤ exp((k0 + 1)T )
[
E(0) +

1

µa

∫ T

0

∫
Ωs

|f(x, s)|2dxds
]
, (9.41)

which is the basic stability estimate for the linear symmetric hyperbolic sys-
tem (9.31).

Remark 9.17 [ Cones of influence and dependence] Observe that the energy
estimate implies that perturbations travel with finite speed if they satisfy a
linear symmetric hyperbolic system.
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Remark 9.18 [ Uniqueness] Using the stability estimate (9.41), we can
prove uniqueness of the solution to symmetric hyperbolic systems: let u1

and u2 be solutions of a symmetric hyperbolic system with the same ini-
tial condition. Then the function u = u1 − u2 solves the linear initial value
problem

Lu = 0 on Rd × (0, T ),

u(x, 0) = 0 for x ∈ Rd.

Applying the stability estimate (9.41) in Ω we obtain that the energy of each
slice Ωt satisfies E(t) = 0 for t ∈ [0, T ], so u = 0 in Ω and hence u1 = u2 in
Ω. The fact that any bounded region in Rd× [0, T ] is included in a cone like
Ω finishes the argument.

Remark 9.19 [ Estimate] For the particular case with zero initial datum,
i.e. u(·, 0) = 0, the energy estimate (9.41) implies

‖u‖L2(Ω) ≤ Γ
T
‖f‖L2(Ω) = Γ

T
‖Lu‖L2(Ω). (9.42)

with Γ2
T
≡ T exp((1 + k0)T )/µ2

a.

Theorem 9.20 (Existence result for Hyperbolic equations) There ex-
ists a solution of a symmetric hyperbolic system that satisfies the assumptions
(9.32 and 9.33).

Proof. The proof is divided in three steps, namely

1. define the notion of weak solutions for the symmetric hyperbolic sys-
tem,

2. define the adjoint operator and the dual problem, and then

3. apply the Lax Milgram’s theorem to an auxiliary equation which is
related to the original symmetric hyperbolic system.

Step 1: Without loss of generality, let us assume zero initial data, i.e. u0 = 0.
In order to set the notion of weak solutions, we need to introduce the concept
of test functions, which in this case is given by the set

Ṽ =
{v : Rd × [0, T ] → Rd : v ∈ C1([0, T ]× Rd),

v with compact support and v(T, ·) = 0}.
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Step 2: Let us define the adjoint operator by the identity

(Lu, v) =

∫ T

0

∫
Rd

(Lu) · vdx dt = (u, L∗v),∀v ∈ Ṽ , (9.43)

with the inner product (v, w) =
∫ T

0

∫
Rd v · wdx dt. Using the boundary con-

ditions u(0, ·) = v(T, ·) = 0 and integrating by parts the last equation yields

L∗v = −∂t(A0v)−
d∑
i=1

∂i(Aiv)−BTv = −Lv + (CT −BT + 2B)v.

Observe then that−L∗ is a symmetric hyperbolic operator, since the operator
L is symmetric hyperbolic. With the help of the adjoint operator we say that
u ∈ L2(Rd × [0, T ]) is a weak solution of{

Lu =f on Rd × (0, T ),

u(0, ·) =0 on Rd,
(9.44)

if
(u, L∗v) = (f, v), ∀v ∈ Ṽ , (9.45)

something that clearly holds for a classical solution. We leave as an exercise
to verify that (9.45) and the assumption that u is a smooth function imply
that u is a classical smooth solution of (9.44).

Step 3: To conclude we use the Lax Milgram’s theorem. Let us consider the
bilinear form

B(u, v) ≡ (L∗u, L∗v)

and a Hilbert space H which has the bilinear form B as its inner product
and norm ‖v‖H ≡ B(v, v)1/2, so that H is the completion of Ṽ with respect
to the norm ‖ · ‖H . Let us consider the following auxiliary equation

B(z, v) = L(v), ∀v ∈ H,

with L(v) ≡ (f, v) and prove that there exist a solution z ∈ H for it. To this
end, the linear functional L : H → R must be bounded in H, i.e. there exist
a real constant 0 < C <∞ such that

|L(v)| ≤ C‖v‖H , ∀v ∈ H.
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To verify this estimate use the fact that the operator −L∗ is also symmetric
hyperbolic as L, so an application of the estimate (9.42) gives

‖v‖L2(Ω) ≤ Γ′
T
‖L∗v‖L2(Ω) ≤ Γ′

T
‖v‖H , ∀v ∈ H.

Furthermore, since the cone Ω can be arbitrary large and the space H is the
completion of functions with compact support in Rd × [0, T ] we have

‖v‖L2(Rd×[0,T ]) ≤ Γ′
T
‖v‖H , ∀v ∈ H.

Then the functional L is bounded in H with C = Γ′
T
‖f‖L2(Rd×[0,T ]) because

|L(v)| ≤ ‖f‖L2(Rd×[0,T ])‖v‖L2(Rd×[0,T ]) ≤ ‖f‖L2(Rd×[0,T ])Γ
′
T
‖v‖H , ∀v ∈ H.

Thus, from the Lax Milgram’s theorem applied to the space H with norm
‖ · ‖H there exist z ∈ H such that

B(z, v) = L(v), ∀ v ∈ H

and consequently u ≡ L∗z ∈ L2(Rd × [0, T ]) is, according to (9.45) a weak
solution of the symmetric hyperbolic equation since

(v, f) = L(v) = B(z, v) = (L∗z, L∗v) = (u, L∗v),∀v ∈ H.

2

Exercise 9.21 [ ] Under the hypothesis of the previous theorem, show that

‖u‖L2(Rd×[0,T ]) ≤ Γ′
T
‖f‖L2(Rd×[0,T ]).

2

Exercise 9.22 [ ] Show that B(·, ·) is a bilinear symmetric and L2-elliptic
functional which is not L2 continuous.

2
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