
Chapter 5

Stochastic Differential

Equations

We would like to introduce stochastic ODE’s without going first through the
machinery of stochastic integrals.

5.1 Itô Integrals and Itô Differential Equations

Let us start with a review of the invariance principle. Let {ξn}n∈N be a sequence
of i.i.d. random variables such that Eξn = 0, Eξ2

n = 1. Define XN
t by

XN
tn

=

∑n
i=1 ξi√
N

, tn =
n

N
, 0 ≤ n ≤ N (5.1)

and piecewise linear interpolation, then the invariance principle asserts that

XN d→ W (5.2)

in distribution.
Alternatively, we can define {XN

tn
}N

n=1 by the recursion relation

XN
tn+1

= XN
tn

+
√

∆t ξn+1, XN
0 = 0, (5.3)

where ∆t = N−1. We can think of (5.3) as a forward Euler scheme for solving
the differential equation

dXt = dWt (5.4)

Obviously both (5.3) and (5.4) are a bit unusual. In (5.3), the multiplier in front
of ξn+1 is

√
∆t instead of the usual ∆t. In (5.4) we write dXt = dWt instead of

Ẋt = Ẇt. This is because Ẇt is not a standard stochastic process, but rather a
generalized stochastic process as in generalized functions. In fact one can define
Ẇt as a Gaussian process with mean zero and covariance

K(s, t) = δ(t − s).
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42 CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS

This is a very important process called the Gaussian white noise. But its
sample path are not the standard functions, but rather distributions, see [5].

We can now combine (5.4) with standard ordinary differential equation and
study

dXt = b(Xt, t)dt + dWt. (5.5)

One can think of this as the distributional limit of the forward Euler scheme

XN
tn+1

= XN
tn

+ ∆t b(Xtn
, tn) +

√
∆t ξn+1 (5.6)

where as before {ξn}∞n=1 is a sequence of i.i.d. random variables such that
Eξn = 0, Eξ2

n = 1. In fact if we denote by XN
t the process obtained using (5.6)

and the piecewise linear interpolation, then

Theorem 5.1.1. There exists a stochastic process Xt such that

E|XN
t − Xt| ≤ C

√
∆t (5.7)

for t ∈ [0, 1], where C is independent of ∆t = 1/N , and

∣

∣

∣
Eg[XN

[0,1]] − Eg[X[0,1]]
∣

∣

∣
≤ C∆t (5.8)

for any continuous functional g on C[0, 1], where C may depend on g but not
on ∆t.

More generally, we can consider SDE’s of the type

dXt = b(Xt, W[0,t], t)dt + σ(Xt, W[0,t], t)dWt (5.9)

where B and sigma are functions of Xt and t, and functional of W[0,t]. Notice
that they are nonanticipative functional, i.e. the Wiener process up to time t
only enters the right hand-sidde of (5.9). (5.9) is defined it as the limit of the
forward Euler scheme

Xn+1 = Xn + ∆t b(Xn, Wm≤n, tn) +
√

∆t σ(Xn, Wm≤n, tn)ξn+1. (5.10)

where, for simplicity we have used the slightly abusive notation XN
tn

= Xn. We
can also write this as

Xn+1 = Xn + ∆t b(Xn, Wm≤n, tn) + σ(Xn, Wm≤n, tn)(Wn+1 − Wn). (5.11)

where Wt is the Wiener process and Wn = Wtn
.

A special case of (5.9) is stochastic integrals

dXt = f(Wt, t)dWt, X0 = 0, (5.12)

where f is continuous, whose solution can be expressed as

Xt =

∫ t

0

f(Ws, s)dWs. (5.13)



5.1. ITÔ INTEGRALS AND ITÔ DIFFERENTIAL EQUATIONS 43

The meaning of Xt is define as the limit of

Xn+1 = Xn + f(Wn, tn)(Wn+1 − Wn), (5.14)

or in other words

Xn =

n
∑

j=0

f(Wj , tj)(Wj+1 − Wj). (5.15)

We can think of (5.15) as a “Riemann sum” in which the representative point
inside each subinterval is the left-most point. This definition of the stochastic
integral is called the Itô integral.

Itô integrals have several very special properties.

Theorem 5.1.2 (Itô isometry). Itô integrals satisfy

E

∫ t

0

f(Ws, s)dWs = 0,

E
(

∫ t

0

f(Ws, s)dWs

)2

=

∫ t

0

Ef2(Ws, s)ds.

Proof. Let

In =

n
∑

j=0

f(Wj , tj)(Wj+1 − Wj),

then

EIn =

n
∑

j=0

E(f(Wj , tj)(Wj+1 − Wj))

=

n
∑

j=0

Ef(Wj , tj)E(Wj+1 − Wj) = 0,

where we use the fact that Wj and Wj+1 − Wj are independent. Similarly

EI2
n =

n
∑

i,j=0

E(f(Wi, ti)f(Wj , tj)(Wi+1 − Wi)(Wj+1 − Wj))

=

n
∑

j=0

Ef2(Wj , tj)(tj+1 − tj)

where we use the fact that Wi+1 − Wi and Wj+1 − Wj are independent unless
i = j. Taking the limit as ∆t → 0, we obtain the equations in the theorem.

Another important property of Itô integral is that Xt =
∫ t

0
f(Ws, s)dWs is

a martingale, i.e.
EXs

(Xt) = Xs,

where EXs
(Xt) denotes the expectation of Xt conditional on Xs. However since

we will not discuss Martingale theory, we will not pursue this further.
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Theorem 5.1.3 (Itô formula). Let f be a smooth function, assume that Xt

is the solution of the SDE (5.9), then gt = f(Xt, t) satisfies the SDE

df(Xt, t) = ḟ(Xt, t)dt + f ′(Xt, t)dXt + 1
2f ′′(Xt, t)σ

2(Xt, t)dt

= ḟ(Xt, t)dt +
(

f ′(Xt, t)b(Xt, t) + 1
2f ′′(Xt, t)σ

2(Xt, t)
)

dt

+ f ′(Xt, t)σ(Xt, t)dWt,

(5.16)

where ḟ(x, t) = ∂f/∂t, f ′(x, t) = ∂f/∂x.

Itô formula is the analog of chain rule in ordinary differential calculus. How-
ever ordinary chain rule would give

df(Xt) = ḟ(Xt, t)dt + f ′(Xt, t)dXt.

Here because of the non-smooth nature of Xt, we have the additional term that
depends on f ′′.

The proof of Itô formula can be outlined as follows. For simplicity we assume
that f does not depend explicitly on t. We Taylor expand f(Xn+1) − f(Xn)
using (5.10) and keeping terms up to O(∆t) using Wj+1 − Wj = O(

√
∆t):

f(Xn+1) − f(Xn)

= f ′(Xn)(Xn+1 − Xn) + 1
2f ′′(Xn)(Xn+1 − Xn) + · · ·

= f ′(Xn)(Xn+1 − Xn) + 1
2f ′′(Xn)(∆tb(Xn, tn)

+ σ(Xn, tn)(Wn+1 − Wn))2 + O((∆t)3/2)

= f ′(Xn)(Xn+1 − Xn)

+ 1
2f ′′(Xn)σ2(Xn, tn)(Wn+1 − Wn)2 + O((∆t)3/2).

The Itô formula follows in the limit as n → ∞ since

1
2f ′′(Xn)σ2(Xn, tn)(Wn+1 − Wn)2 → 1

2f ′′(Xt)σ
2(Xt, t)dt

as implied by the following lemma which can be written formally as (dWt)
2 = dt.

Lemma 5.1.1. Let Wj = Wtj
with tj = j/N . Then

n
∑

j=1

(Wj − Wj−1)
2 → t a.s.

as n, N → ∞, n/N → t.

Proof. The limit of this sum can be estimated from

1

N

n
∑

j=1

ξ2
j =

n

N

1

n

n
∑

j=1

ξ2
j .

In this last expression n/N → t by assumption; the remainder is the rescaled
sum of the i.i.d random variables ξ2

j with mean equal to one which therefore
converges to 1 as n → ∞ by SLLN.
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Example 5.1.1. We compute
∫ t

0

WsdWs.

Using the definition of Itô integral, this integral is the limit of

∑

j

Wj(Wj+1 − Wj) = 1
2

∑

j

(Wj − Wj+1 + Wj + Wj+1)(Wj+1 − Wj)

= 1
2

∑

j

(W 2
j+1 − W 2

j ) − 1
2

∑

j

(Wj+1 − Wj)
2.

Therefore
∫ t

0

WsdWs = 1
2W 2

t − 1
2 t. (5.17)

This result can also be obtained via a straight forward application of Itô formula
which gives for f(x) = 1

2x2

1
2dW 2

t = WtdWt + 1
2dt (5.18)

Integrating (5.18) we obtain (5.17).

Compared with the standard relation
∫ t

0
f(s)df(s) = 1

2 (f2(t) − f2(0)) for

smooth functions, we see the presence of the extra term − 1
2 t. It is forced to be

there by the relation E
∫ t

0
WsdWs = 0.

We can express (5.17) as

∫ t

0

WsdWs =
1

2!

√

t

2
H2(Wt/

√
2t),

where H2(x) = 4x2 − 2 is the second order Hermite polynomial. In the same
fashion, we have

∫ t

0

(

∫ s

0

WudWu

)

dWs = 1
2

∫ t

0

(W 2
s − s)dWs.

Using Itô formula, we have

∫ t

0

W 2
s dWs = 1

3W 3
t −

∫ t

0

Wsds.

Hence, using
∫ t

0

sdWs = tWt −
∫ t

0

Wsds,

we obtain
∫ t

0

(

∫ s

0

WudWu)dWs =
1

3!

(

t

2

)3/2

H3(Wt/
√

2t),

Jaime
Pencil
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where H3(x) = 8x3 − 12x is the third order Hermite polynomial. As shown
below, we have for n ≥ 2

∫ t

0

dWt1

∫ t1

0

dWt2 . . .

∫ tn−1

0

dWtn
=

1

n!

(

t

2

)n/2

Hn(Wt/
√

2t),

where Hn(x) is the n-th order Hermite polynomial

Hn(x) = (−1)nex2

(

d

dx

)n

e−x2

.

Example 5.1.2. We solve

dNt = αNtdt + βNtdWt (5.19)

Itô’s formula with f(x) = log x gives

d log Nt =
1

Nt
(αNtdt + βNtdWt) −

1

2N2
t

β2N2
t dt.

Integrating we get
Nt = N0 exp

(

αt − 1
2β2t + βWt

)

.

Note that if Wt were smooth, we would have obtained

Nt = N0 exp(αt + βWt).

For N0 = 1 and α = 0, Nt reduces to

Nt = exp
(

− 1
2β2t + βWt

)

Using Rodrigues’ formula,

e2az−a2

=

∞
∑

n=0

Hn(z)an

n!

this can be expressed as

Nt =

∞
∑

n=0

Hn(Wt/
√

2t)

n!

(

t

2

)n/2

βn.

But iteration of the equation for Nt shows that it can also be expressed as

Nt = 1 + βWt +

∞
∑

n=2

βn

∫ t

0

dWt1 · · ·
∫ tn−1

0

dWtn
.

We deduce that

∫ t

0

dWt1 · · ·
∫ tn−1

0

dWtn
=

1

n!

(

t

2

)n/2

Hn(Wt/
√

2t)

as asserted before.
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Example 5.1.3. We solve

dXt = −γXtdt + σdWt (5.20)

This is the Ornstein-Uhlenbeck process. Using Itô formula we have

d(eγtXt) = γeγtXtdt + eγtdXt = σeγtdWt

Therefore we get

Xt = e−γtX0 + σ

∫ t

0

e−γ(t−s)dWs.

This is Duhammel principle applied to (5.20). Let

Qt =

∫ t

0

e−γ(t−s)dWs.

Qt is a Gaussian process with mean and variance

EQt = 0

EQ2
t =

∫ t

0

E(e−γ(t−s))2ds

= e−2γt

∫ t

0

e2γsds =
1

2γ
(1 − e−2γt)

As t → ∞, the variance goes to 1/2γ. Thus as t → ∞

Xt
d→ N

(

0,
σ2

2γ

)

(5.21)

(5.20) is a special case of the so-called Langevin equations. More generally,
Langevin equation with potential function V (x) is given by

dXt = −∇V (Xt)dt + σdWt (5.22)

5.2 Numerical Solutions of SDE’s

We will discuss accuracy and stability issues.

5.2.1 Accuracy

Let {X∆t
t } be the numerical solution of a SDE with time step size ∆t, and {Xt}

be the exact solution. There are two different notions of measuring the error
Xt − X∆t

t . We say that {X∆t
t } converges to {Xt} with strong order α if

max
0≤t≤T

E|X∆t
t − Xt| ≤ C(∆t)α (5.23)
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holds with a constant C independent of ∆t. We say that {X∆t
t } converges to

{Xt} with weak order β if

max
0≤t≤T

|Eg(X∆t
t ) − Eg(Xt)| ≤ C(∆t)β (5.24)

holds with a constant C independent of ∆t but which may depend on the smooth
function g. It can be shown that α ≤ β, since

|Eg(Xt) − Eg(X∆t
t )| ≤ E

(

|Xt − X∆t
t |
∫ 1

0

|g′(Xt + θ(X∆t
t − Xt)|)dθ

)

≤ ME|Xt − X∆t
t |,

where M = max |g′|.
Exercise 5.2.1. Show that α = 1

2 , β = 1 for the forward Euler scheme discussed
earlier.

In order to find numerical schemes that improve the order of accuracy, we
proceed as follows. Consider the SDE

dXt = b(Xt)dt + σ(Xt)dWt (5.25)

From Itô formula, we have

df(Xt) = f ′(Xt)dXt + 1
2f ′′(Xt)σ

2(Xt)dt

= (L1f)(Xt)dt + (L2f)(Xt)dWt

where
(L1f)(x) = f ′(x)b(x) + 1

2f ′′(x)σ2(x)

(L2f)(x) = f ′(x)σ(x)

Integrating, we get

f(Xt+∆t0 − f(Xt) =

∫ t+∆t

t

(L1f)(Xs)ds +

∫ t+∆t

t

(L2f)(Xs)dWs. (5.26)

Apply (5.26) with f(x) = b(x), and f(x) = σ(x) respectively, and use the result
in

Xt+∆t − Xt =

∫ t+∆t

t

b(Xs)ds +

∫ t+∆t

t

σ(Xs)dWs,

we get

Xt+∆t = Xt + ∆tb(Xt) + σ(Xt)(Wt+∆t − Wt)

+

∫ t+∆t

t

∫ s

t

(L1b)(Xτ )dτds +

∫ t+∆t

t

∫ s

t

(L2b)(Xτ )dWτ ds

+

∫ t+∆t

t

∫ s

t

(L1σ)(Xτ )dτdWs +

∫ t+∆t

t

∫ s

t

(L2σ)(Xτ )dWτdWs.

(5.27)
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If we just keep the first two terms at the right hand side, we get Euler scheme.
Out of the four double integrals, the last one is the biggest. Approximate the
last integral by

∫ t+∆t

t

∫ s

t

(L2σ)(Xτ )dWτdWs

≈ (L2σ)(Xt)

∫ t+∆t

t

∫ s

t

dWτdWs

= 1
2 (L2σ)(Xt)

(

(Wt+∆t − Wt)
2 − ∆t

)

.

(5.28)

Since
E(W 2

∆t − ∆t)2 = EW 4
∆t − 2∆tEW 2

∆t + (∆t)2

= 3(∆t)2 − 2(∆t)2 + (∆t)2 = 2(∆t)2,

the term in (5.28) is of order ∆t; we also have

E(W 2
∆t − ∆t) = 0.

So the total error from the final term in (5.27) can be estimated as

E(total error)2 ≈ 1

∆t
O(∆t2) = O(∆t). (5.29)

This suggests that the error for the forward Euler scheme scales as O(
√

∆t).
This analysis also suggests an obvious extension of the forward Euler scheme

that promises to be more accurate.

Xt+∆t = Xt + b(Xt)∆t + σ(Xt)(Wt+∆t − Wt)

+ 1
2 (σσ′)(Xt)((Wt+∆t − Wt)

2 − ∆t).

This is the well-known Milstein scheme.
Despite the fact that Milstein’s scheme is formally more accurate, it also

uses the derivative of σ. This is unpleasant for many applications.

5.2.2 Stability

5.3 Path Integral Representation

We have seen in Chapter 4 that the Wiener measure over [0, T ] can be formally
expressed as

dµW = Z−1 exp

(

− 1
2

∫ T

0

ḣ2(t)dt

)

Dh(·)

The solution of the SDE

dXt = b(Xt, t) + σ(Xt, t)dWt.
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can be viewed as a map between the Wiener path W[0,T ] and X[0,T ]:

W[0,T ]
Φ−→ X[0,T ].

Consequently, Φ induces another measures on C[0, T ], which is nothing but the
distribution of X[0,T ].

We now ask the question how the measure dµW change under the mapping
Φ? Let us first consider the case when σ = I. In this case, we claim the measure
dµX can be formally expressed as

dµX = Z−1 exp

(

− 1
2

∫ T

0

(ḣ(t) − b(h(t), t))2dt

)

Dh(·)

We proceed at the discrete level. The recurrence relation

Xn+1 = Xn + b(Xn, tn)∆t + Wn+1 − Wn, X0 = x,

in principle allows to express Xn as a function of Wm≤n and x, i.e.

Xn = Φn(Wm≤n, x).

Therefore the expectation of any function F (Xn≤N ) can be expressed as

EF (Xn≤N ) = Z−1
N

∫

RN

F (Φn≤N (ym≤n, x)) exp
(

−Itn≤N
(yn≤N )

)

Dyn≤N

where Dyn≤N = dy1 · · · dyN , ZN is a normalization factor, and Itn≤N
(yn≤N ) is

the kernel defined in the last chapter

Itn≤N
(yn≤N ) = 1

2

N
∑

i=1

(yi − yi−1)
2

ti − ti−1
, y0 = t0 = 0

In the expression above, we wish to integrate over

hn = Φn(ym≤n, x),

instead of yn. Since the recurrence relation for Xn implies that

Wn+1 − Wn = Xn+1 − Xn − b(Xn, tn)∆t,

it follows that the kernel Itn≤N
(yn≤N) can be expressed in terms of hn≤N simply

as

Ītn≤N
(hn≤N ) = 1

2

N
∑

i=1

(hi − hi−1 − b(hi−1, ti−1)∆t)2

ti − ti−1
, y0 = t0 = 0

On the other hand, the Jocobian of the transformation for yn≤N to hn≤N is one
because the matrix

∂hn

∂ym
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is a lower triangular matrix (i.e. it has zero element above the diagonal) with
ones on the diagonal and hence has determinant one. Therefore we have

EF (Xn≤N ) = Z−1
N

∫

RN

F (hn≤N ) exp
(

−Ītn≤N
(hn≤N )

)

Dhn≤N

In the limit as ∆t → 0, this expression formally gives

EF [X[0,T ]] =

∫

F [h[0,T ]]dµX [h[0,T ]],

with the measure dµX given before.
Quite remmarkably, we can give a rigorous meaning to these formal manip-

ulations. To see how, notice that the kernel Ītn≤N
(hn≤N ) can be expanded as

(using ti − ti−1 = ∆t)

Ītn≤N
(hn≤N ) = 1

2

N
∑

i=1

(hi − hi−1)
2

∆t
−

N
∑

i=1

b(hi−1, ti−1)(hi − hi−1) + 1
2

N
∑

i=1

b2(hi−1, ti−1)∆t

= Itn≤N
(hn≤N ) −

N
∑

i=1

b(hi−1, ti−1)(hi − hi−1) + 1
2

N
∑

i=1

b2(hi−1, ti−1)∆t.

Therefore we can also express the expectation of EF (Xn≤N ) as the ratio

EF (Xn≤N ) = A/B.

Here

A = Z−1
N

∫

RN

F (hn≤N )eQ(hn≤N ) exp
(

−Itn≤N
(hn≤N )

)

Dhn≤N

= E
(

F (W x
n≤N )eQ(W x

n≤N )
)

,

and

B = Z−1
N

∫

RN

eQ(hn≤N ) exp
(

−Itn≤N
(hn≤N )

)

Dhn≤N

= EeQ(W x
n≤N )

where W x
n = x + Wn and

Q(hn≤N) =

N
∑

i=1

b(hi−1, ti−1)(hi − hi−1) − 1
2

N
∑

i=1

b2(hi−1, ti−1)∆t

Taking the limit as ∆t → 0, we deduce that

EF (X[0,T ]) =
E
(

eQ[W x
[0,T ]]F [W x

[0,T ]]
)

Ee
Q[W x

[0,T ]
]

,
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where W x
t = x + Wt is the shifted Wiener process and

Q[W x
[0,T ]] =

∫ T

0

b(W x
t , t)dWt − 1

2

∫ T

0

b2(W x
t , t)dt.

Quite remarkably, this expression simplify even more because one can show that
EeQ[W[0,T ]] = 1 and hence

EF (X[0,T ]) = E
(

eQ[W x
[0,T ]]F [W x

[0,T ]]
)

This formula is known as the Girsanov formula. To see that EeQ[W x
[0,T ]] = 1, let

Bt =

∫ t

0

b(W x
s , s)dWs − 1

2

∫ t

0

b2(W x
s , s)ds

so that
dBt = b(W x

t , t)dWt − 1
2b2(W x

t , t)dt, B0 = 0,

Therefore

deBt = eBtdBt + 1
2eBtb2(W x

t , t)dt = eBtb(W x
t , t)dWt

and we obtain

eBt = 1 +

∫ t

0

eBsb(W x
s , s)dWs

The first Itô isometry then implies that

EeBt = 1 ∀t

and, in particular, EeB
T = EeQ[W[0,T ]] = 1.

The Girsanov formula asserts that dµX and dµW are absolutely continuous
with respect to each other with Radon-Nikodym derivative given by

dµX

dµW
= exp

(
∫ 1

0

(

b(W x
s , s)dXs − 1

2b2(W x
s , s)ds

)

)

.

A special case of this representation is the Cameron-Martin formula, for the
transformation

Xt = Wt + φ(t) (5.30)

where φ is a smooth function. This can be obtained from SDE with b(X, t) =
φ̇(t). In this case, we get

dµX

dµW
= exp

(
∫ 1

0

(

φ̇(s)dWs − 1
2 φ̇2(s)ds

)

)

.

A slight generalization is the Girsanov formula. Consider two SDE’s:
{

dXt = b(Xt, t)dt + σ(Xt, t)dWt, X0 = x

dYt = (b(Yt, t) + c(Yt, t))dt + σ(Yt, t)dWt, Y0 = x
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(Note that the initial conditions are the same.) Then the distributions of X[0,T ]

and Y[0,T ] are absolutely continuous with respect to each other. Moreover the
Radon-Nikodym derivative is given by

dµY

dµX
[X.] = exp

(

∫ T

0

φ(Xt, t)dWt − 1
2

∫ T

0

|φ(Xt, t)|2dt

)

,

where φ is the solution of

σ(x, t)φ(x, t) = c(x, t).




