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Abstract

We describe a backward error analysis for stochastic differential equations with respect to weak
convergence. Modified equations are provided for forward and backward Euler approximations to It6
SDEs with additive noise, and extensions to other types of equation and approximation are discussed.

1 Introduction

This paper considers the backward error analysis of stochastic differential equations (SDEs), a technique
that has been of great success in interpreting numerical methods for ODEs. It is possible to fit an ODE
(the so called modified equation) to a numerical method to very high order accuracy. Backward error
analysis has been particularly valuable for Hamiltonian systems, where symplectic numerical methods can
be approximated by a modified ODE arising from a perturbed Hamiltonian system, giving an approximate
statistical mechanics for symplectic methods. See the monograph [3] for a review and further references.

It is natural to ask whether such techniques extend to SDEs. I am unaware of any published work that
has addressed this issue. We discuss modified equations for SDEs by perturbing the drift and diffusion
functions by deterministic functions and looking for convergence in the weak sense of average with respect
to smooth test functions. It is possible to determine a modified equation that approximates standard
first order methods to second order accuracy for SDEs with additive noise. It is not possible to examine
the case of SDEs with multiplicative noise, of convergence in the sense of mean square, nor is it possible
to develop modified equations of higher order accuracy by working only with deterministic perturbations
of the drift and diffusion coeflicients. It remains to be seen whether a useful formulation of a modified
equation can be introduced to describe numerical approximations of SDEs in greater generality.

The paper is divided into three, each section presents the main ideas without developing any proofs.
§2 develops the modified equation for a one dimensional SDE, showing that the noise should be additive
and the difficulty of dealing with higher order approximations. Modified equations are derived for the
forward and backward Euler methods. In §3, the extension to higher dimensions is discussed in relation
to a Langevin equation. In §4, we give conclusions and suggest a way of studying backward errors in the
pathwise sense.

2 One dimension
Consider It6 SDEs on the real line

(1) 4X = f(X) dt + o(X) dt),  X(0) =Y,

where f,o0: R — R are smooth functions and §(¢) is a standard Brownian motion. Consider a numerical
approximation Xg, X1,... parameterised by a time step At that converges to the solution X (¢) in the
weak sense: for T > 0,

IE6(X,) — E¢(X (nAb))| = O(At?),  0<nAt<T,
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for ¢ in a space of smooth test functions, where p is known as the weak order of the method. The simplest
example is the forward Euler method (often called the Euler-Maruyama method), given by the iteration

(2) Xny1 = Xo + f(Xn)At + 0(X,) Bn(At), Xo=Y

where B),(At) are independent Gaussian random variables with mean zero and variance A¢. This method
is first order, p = 1, in the weak sense. For a technical statement and proof with a review of other
approximation methods, see [4, 5].

The goal is to modify the SDE (1) to define a process X that better describes the numerical approxi-
mation X,, in the sense that

|E¢(X,) — Eg(X (nAt))| = O(AtPTY), 0< nAt <T,
where ¢ > 0 is the increase in the order of accuracy. We define X as the solution of the modified It6 SDE

(3) aX = [£(X) + F(D)ar] dat+ [o(%) + a(D)ar|ase),  X(©0) =Y,

where f and & are smooth functions to be determined, and look for convergence of one higher order
(4) |Eo(X,) — Eqb(X(nAt))ﬂ = O(AP™Y 0<nAt<T.

The main technical fact we use in studying this problem is as follows. The pth order weak convergence
of a numerical method can be reduced to studying the approximation of moments over one time step.
See Theorem 14.5.2 of [4] or Theorem 9.1 of [5]. The key point is the following consistency condition: to
achieve pth order weak convergence, we must have:

[E¢(X1) — Eo(X(AL))| = O(A#T),
for all polynomials ¢(x) up to degree 2p + 1. Thus to achieve (4), we impose
(5) [E¢(X1) — Eo(X (A1) = O(A"?),

for the monomials ¢(X) = X*, k=1,...,2p+3. This provides 2p + 3 conditions at each initial condition
Y, though the modified equation only has two free variables f(X) and 6(X). We see already the difficulty
in seeking such a modified equation.

Derivation By applying Ito’s formula, with (2) and (3),
$(X (At)) = ¢(X (At))
At

©) [ R [F(R(s) + AR (5))

0

[E—

— &' (X(5))f(X(s))ds + mg
At
+3 A ¢"(X(s)) [U(X'(S))2 + 2At”0(5f(8))5()3'(8))} — ¢"(X(s)) 0(X(5))* ds,

where mg denotes the martingale term. The drift and diffusion terms in (1) and (3) differ by O(AtP)
terms. Hence,

At At

[ S X)X ()ds] + 0@,
At

¢(X())o(X(s))2ds] + O(A¢+2).

Further,



From (6)
E¢(X (At) = E¢(X (A1) + ¢/ (V)AL F(Y) + APH " (V)0 (V)5 (Y) + O(APH2)
and, if p(X) = X*,
(7) EX(At)* = EX(AH)F + kYF LA (V) + AP T R(E — 1)YF26(Y)5(Y) + O(APT2).
Let by(Y) := EXF — EX(At)*. Then,
bi(Y) =EXF — EX(At)* + EX(At)F — EX(At)F
=EXF - EX(A)* + kY* AT (V) + AP (R — )Y 20(Y)a(Y) + O(APT?).

To achieve (5), we require that EXF — EX(At)* = O(AtP™?) for k = 1,...,2p + 3. Equivalently, we
require that

(8) bi(Y) =kYEF AP (V) + AP (k- )Y 20(Y)5(Y) + O(AEPT2)

The conditions for k = 1,2 yield equations for the terms f and 7:

10\ /f(Y) bi(Y) 2
p+1 _ p+
9) At (ZY 20_) (6(Y)> = (bQ(Y) + O(APT=).
It is not clear how to provide for the conditions k = 3,...,2p + 3.

To deal with the remaining k, first note that by row reductions, we can replace the conditions in (8)
for k =3,...,2p+ 3 with the following

(10) be(Y) — kYR 1o (V) — k(k — DY 20(Y) = O(APT?), k=3,...,2p+3.

Assume the following expression of by:

=APt! Z

The terms I';(Y') arise from the drift and diffusion function in a Taylor expansion on b;. Examples where
this holds are presented below. Then

Y’“ IT;(Y) + O(APT?).

k
b(Y) = kYF b (V) = APt Z Yk ITH(Y) + O(APT2)
2
and
k
b(Y) — kY 101 (V) — k(k — 1) Y 20y (Y) = At Z Y’“ IT;(Y) + O(APT2).
3

Thus the condition (10) becomes

St

J:3

Yk T;(Y)=0(At), k=3,...,2p+3.

We will achieve this condition in examples by showing I'x(Y) = 0 for & = 3,...,2p 4+ 3. In this case,
the modified equation may be determined by solving the linear system (9) for f,5. In terms of I';, the

modified terms are 5
fY)=T1(Y), a(Y)=T(Y)/o.

This provides a modified equation (3) that satisfies the one step consistency condition (5) subject to the
conditions I'y(Y) = 0 for kK = 3,...,2p + 3. These conditions are very strong and the modified equation
is only useful in special circumstances. This is best illustrated by looking at an example.



Example: forward Euler To compute the modified equation for the forward Euler method, recall the
following Ito-Taylor expansion (see Appendix A):

E6(X (1)) =0(Y) +¢'(Y)(Y)At + 36" (V)0 (¥)?A
+3A8 (¢ (D)) (V) + 30 (N F(Y ))"amﬂ
+ 1A (" (Vo (Y2 F() + 30" (Vo (V)2) "oV 2] + O(ar?)

If $(X) = X* then

k
E¢(X () =YF+ A2 ) T R yk=ir}
j=1

—J)!
where
Il =(f(V)At+ 3 f' (V) F(Y)A + 1/ (Y)o (Y )2 AL?) /AL,
Iy =(30(Y)2At+ SfF(V)AL + 2/ (V)o (V)2 AL + L(0?) f(YV) AP

+é(0(Y)2)” Y )2At2)/At2,

For the forward Euler method (2),

Eo(X1) =B(Y + f(Y)At + o(Y) B, (A1))*

k
=YF+A2) T
j=1

| .
—iY T+ o),

where
Y =f(Y)/At, T3 = (Gf(Y)?A8* + 0 (Y)?At) /A
=(L3f(MAatta(v)?), T?=(3a()Y), TZ=0.

Now I'; = I‘? — Fjl. Forward Euler is a first order method in the weak sense and, for our modified
equation, we must verify that I'; = 0 for j = 3,...,5. It is clear that I'y = I's = 0. The terms
I's = 1(0(Y)?)" and to achieve I's = 0 we further require that o be constant. In this case,

)= =3 MfY) =1/ (V)e?,  G=—3f(Y)o

and the modified equation for the forward Euler method is

(1) aX = [F(R) = AL (R)FE) + 11" (R)o?)]dt + o (1 = Atf/(%)/2)d5(0).

Under suitable regularity conditions that we do not provide, it is possible to prove using Theorem 14.5.2
of [4] that the forward Euler method approximates the solution of (11) to weak second order accuracy:

|E¢(X,) — E¢(X (nAt))| = O(At?), 0<nAt<T.

Even though the original equation is additive, the modified equation will in general feature multiplica-
tive noise. In particular, we are unable to iterate to gain the next higher order modified equation. The
exception is the linear equation f(x) = vz, which has modified equation

dX = (v — L12A0) Xdt + o(1 — LA dB(2).



Example: backward Euler The backward Euler method or drift implicit scheme is
Xnt1 = Xn + f(Xnt1)At + 0(X,,) Br(Ab), Xo=Y.

By similar techniques, the modified equation for the backward Euler method is
aX = [F(R) + AL (R)FE) + 177 (K)o dt + o (1 + Atf/(R)/2)dB(0).
The modified equation for the linear case f(X) = vX is

dX = (v + 12 A0)Xdt + o (1 + LyAt)dB(t).

3 Multiple dimensions
We look at the following SDE in R?

dX = f(X dt+zmeldﬂl X0)=Y,

=1
where f: R — RY is smooth, o; are constant scalars, e; is the ith unit vector, and 3;(t) are independent
standard Brownian motions. We wish to develop the modified equation
(12) dX = [£(X) + AtF(X ] dt+ZUZezdﬁz Z Até;(X)eds; (1)

1,j=1

We can perform similar calculations to §2 to compute modified drift f and diffusion 0;; terms, by looking
at the consmtency condition on moments E¢(X (At)), where ¢(X) = X; or ¢(X) = X;X; and X =
[X1,...,Xq)T. This leads to modified terms for the forward Euler method of the following form:

(13) f(Y)=-iDf(Y -3 Z O f(Y)o?, 3ij(Y) = =30, f;(Y)oi,

where Df is the Jacobian of f and 9; = 9/0X; and 9? = 9*/0X?. Further it can be shown that all
moments E¢(X), where ¢(X) is any polynomial in X1,..., X, up to order five, equal the corresponding
average for the numerical method to order At? terms (see Appendix B). We expect averages with respect
to the forward Euler method and modified equation (12) to converge with order At?. This however does
not hold in general, as we now present in an example.

Example Consider the following Langevin SDE describing the position ¢ and momentum p of a me-
chanical system with internal energy V(q), dissipation «y, and temperature o2 /2y

(14) dg=pdt, dp= [— p — V'(q)} dt + odf(t).

Rewrite in standard form, with X = [q,p]7,

10 =(_, yg) . =0 m=a

and apply (13): The modified equation for the forward Euler equation is defined by
101 1) o) = (o )
2\-V"(a) —v) \—w—-V'(q) ~V"(@)p ++*p +V'(q)

~ ~ 1 ~ ~
on =0, 02=—370, 012=0, 02 =—0.

and

This modified equation is expected to be weakly second order convergent to the numerical method.



Hamiltonian systems should be solved by symplectic integrators, because the discretised system inherits
many dynamical qualities of the underlying differential equations. It is interesting to consider extending
symplectic method to equations like (14) and find dynamical properties of the Langevin equations that
are inherited by the stochastic numerical methods. A number of interesting papers in this direction are
available [7, 6].

Forward Euler is not symplectic for the Hamiltonian system (case v = o = 0). We consider now a first
order method that does reduce to a symplectic method in the Hamiltonian case. The following generalises
the symplectic Euler method to the case o, # O:

dn+1 =qn + pn+1At

(15)
pn+1 =Pn — (’an + VI(QTL))At + GBH (At)

It can be show that the following modified equation satisfies the consistency conditions for the second
order moments

dq = [(1 — LyAt)p — LAV () |dt — o AtdB(1)
dp = [(—7 + 3A°)p — (V'(q) — AV (q)p) + 379V’ (@) At) | dt
+o(1 +~yAt/2)dB(t).

This system can be written

dq =(Hy,(q,p) — vAtp,/2) dt

16 -
(16) dp=—Hy(q,p)dt —~v(1+ %At'y + %AtV’(q))pdt +o(1+~vAt/2)dB(t),

where the modified Hamiltonian

H(q,p) = 30" + V(q) — AtV (q)p,

as one expects from studying modified equations for the symplectic Euler method.

This numerical and modified equation will not converge weakly with second order. In this case, it can
be shown that the moment Eq(At)p(At)? is incorrect in At? term order (see Appendix C) and therefore
in general weak convergence on a time interval [0, T] is expected only to first order.

4 Conclusions

We have developed a limited form of backward error analysis for SDEs with additive noise, providing weak
second order modified equations for Euler type methods. The analysis does not extend easily to more
general situations. For example, we might like to determine higher order modified equations for the Euler
methods and modified equations for higher order weak methods. This is not possible in general.

The type of expansion given does not have sufficient degrees of freedom to satisfy all the consistency
conditions. It is simple to introduce further degrees of freedom by making f,& random, but I have been
unable to achieve any results with such terms. To study this problem further, a better form for the
expansion should be introduced, but one which is simple enough for the modified equation to provide
understanding of the numerical method. One direction to extend this work is pathwise backward error
analysis. It is possible to approximate Stratonovich SDEs by a non autonomous ODE;, see for example [1,
8]. A pathwise error analysis could be achieved by modifying this approximate ODE and seeing how the
much change is required to describe the numerical method. The approximate ODE technique has been
applied to the numerical analysis of SDEs in [2].

A Expansions in one dimension for exact and forward Euler

We verify the expansions used in §2. Start by expanding the true solution

Bo(X(0)) = o) + B[ [ d(XEIX ) ds+4 [ 0/(X(0)Pa(X ()2 ds]



Now,

and

Meaning that,
B(X (A1) =6(Y) + &' (V) F(Y)AL + 3¢/ (V) (V)22
+ AR (V)FY)) FOV) + 3@ () F(Y ))'amﬂ
+ A2 [(¢" (Vo (1)2) 1Y) + 10" (V)a(Y)2) 'a(V)?]| + O(Ar).
Similarly, if ¢(X) = X7,
G(X (1) + O()
=) +p(Y )L ()A
+3a2 [y
+ 1A% ((p(p — DY)~
+ AL (p(p — (V)P ?
= 1f<Y>At+2p<p—1><Y>p*2o<Y>2At
LAE [p(p = 1Y) 2 F(V)? + (V)7L (V) (V)]
+iAt2[2p<p DY) +pp = 1o — D)2 F(V) +py? L |o(v)?
+ 382 [p(p = Do = 2V PV 4 plp — DY) 2(0(1)?)] (V)

+ AP L(plp - 1)(p—2)(p — 3)o(Y)?

+2pp—1)(p—2)Y"?(a(Y)?) + p(p — 1)Y?*(a(Y)*)")o(Y)?)
=(Y)P +p(Y)P f(Y)AL + ip(p — 1)(Y)p720(y)2ﬁ’5
(Y
)

£ 82 [(5po = DY) + (VP (V) FY)

+ (dp0 = D =20 () + 240 — DYV EFYY + 4V ) o (V)?]
+ a8 (3plp — Vo= YY) + ol — D o0 PY)1)
+ A2 (4p(p— 10— 2)(p ~ VP40 (¥)? + 22p(p — 1o~ 2)Y"(o(V)?)

+1p(p — DY (0(1)?) ) (V)2

2
1p(p — 1)(



Collecting terms, we have
BX(AL) =(V) +p(Y )" (V)AL + L1 FAZ + L1 A%
+p(p—1)(Y)P~2 [2 (V)AL + 3 f2A8% + L(0?) fALC + L(0?)'0? A8 + L f'oa? AL
+plp—1)(p—2)Y*? [%(02)'0%52 +3 RIS fo2At2}
+p(p— 1) - 2)(p - 3" [Lo*A] + O(ar?).
Now, for the forward Euler method,
Eo(X1) =E(Y + f(Y)At + o(Y)N(0, At))?
—E [YP +pYP L (f(Y)At + o(Y)N(0, At))
+ @ YP 2 (F(Y) AL + o(Y)N(0, At))?
+ C’;) Y73 (F(Y) At + o(Y)N(0, At))?

+ (f?) YP(S(Y)AL + o(Y)N(0, Ar))*
=YP 4 pYP (Y
+p( 1H)Y?—?
+p(p—1)(p—2
+p(p—1)(p—2

At

LFYV)?AL + $0(Y)?At)
VP33 (Y)APa(Y)?)
(p = 3)YP~(Fo(Y)*AL).

)
(

~— ~—

B Multiple dimensions—forward Euler

We verify that the modified equation for forward Euler method in multiple dimensions satisfies the moment
conditions up to fifth order. Consider

d
dX = [f(X) + At}(i{)} dt + Y (05 + Atey (X))eidB; (t).

i,j=1

The relevant Ito-Taylor expansion for X (¢) is

Eo(X (1)) =Eo(Y) +tVo(Y) - f(Y)

d
+ %tz oY)+ HV(Ve(Y) - f(Y)) - F(Y)

d
+ 123 G202 (VoY) - F(Y))

i=1
d

+ 32 V(OFA(Y)) - F(Y)o] + 3t Z 07030707 (Y) + O(t%) .
=1

1,j=1

Substitute the modified terms for the forward Euler method,

d
FOY)= 3DV F(Y) = 1D 0?02 f(Y),  6i(Y) = —0:0if;(Y)/2,
=1



to gain
E¢(X (1))
—E¢(Y) +tVo(Y) - (f(¥)+ AtF(Y))
d d
+ %tZaf@l%(Y) + 212 Z 2At0i5ijai2j¢(y)

i=1 ij=1

+ 12 (V%(Y)(ﬁ £ +(VeDFf))

+ t2§j 2((VOR0(Y) - F(Y)) +2(VOd(Y) - O (Y) + (VoY) - 02£(Y)))

+ itQZV(quS(Y)) )o? + 12 Z 07030307 (Y) + O(t%) .
i=1 i,j=1
Note that
d d d
i,j=1 i,j=1 i=1

Thus, we have reduced the expansion to

d
Bo(X (1) =Eo(Y) + 1 Vo(Y) - F(V) + 5t > 02026(Y) + 362 (V26(Y)(f, 1)

P
t2§j 2((Vazo(y) - £(Y)))
+itng(83¢>(Y)) Jo? + tzzafafafa% Y) +0(#)
= Py
~E¢(Y) +tVo(Y) - F(Y) + tzaza% )+ 52 (V26(Y)(£, F)
tQZ 2((VaRo(y) - £(Y)) + tQZafafafaqu Y) + 0.

1,7=1
Remarkably, if ¢(Y') = []¢:(Y), where ¢;(Y) has the form Y/, then
-T[E {(bz } L O,
This is easily verified by multiplying terms together, noting that

E¢i(X (1) =¢:(Y) + 1 0;0:(Y) fi(Y) + $t0202¢;(Y) + 32020 f:(Y)? + 1202036 fi(Y)
+ 3072 000 (Y) fi(Y) + 2010} (V) + O(£) .

C Symplectic Euler—not consistent

We derive the modified terms for the symplectic Euler method, and show they do not satisfy the higher
order moment conditions. Consider the method given in (15),

dn+1 =qn + Pn+1 At
Pn+1 =Pn — (’Vpn + Vl(qn))At + UBn(At)
Thus,
(17) Epni1 =pn — (Ypn + V'(g0)) AL,
(18) Eqgni1 =qn + Eppi1At = gy + pr AL — AtQ(an + V/(Qn))'



Further,

Ep; .1 =(Epny1)® + oAt

=2, = 2(ypn + V' (qn))pn AL + AL (ypn + V' (qn))* + 0° At
Eq} 1 =(Egni1)® + O(AL?)

=qp + 20t qnpn — 20u A (ypn + V' (gn)) + ApP] + O(ALY).

For the cross term, note

Eanrl(InJrl = E(qn + pn+1At)pn+l = QnEanrl + AtEprzerl
and thus
Epni1Gnt1 =n(Pn — (0 — V' (qn))At) + At(pl — 2(vpn + V' (qn) )P At
=qnPn — ’YQTLpnAt - VI(Qn)QHAt + piAt - 2’VpiAt2 - 2V/(Qn)pnAt2~

We now enough information about the moments of the numerical method over one time step, to identify
the terms in the following modified equation

dq =pdt + At fi(q, p)dt + Até12(q, p)dB(t),
dp =(—yp — V'(q))dt + At fo(gq,p)dt + (o + At (q,p))dB(t),

with initial data ¢(0) = go and p(0) = po. We compute the moments over time ¢ and identify the modified
drift and diffusion terms. First,

Eq(t) =0 + / p(s) + At (q(s), p(s)) ds.

—a0+ [ (et [ w0 = V(alr) + Atfalatr) ) dr
+ At f1(qo, po) ds + O(t® 4+ At t?)
=qo + pot + ( —YPo — V’(Qo))tz/z + At fi(qo, po)t + Ot + At t?).

Comparing with (18), we see fl(q,p) = —%('yp +V'(q)).
Ep(t) = —p—V'(¢q))d Atfs(q,p)d
p(t) P0+/0( = V'(a)) S+/0 tf2(q,p)ds

—po + /0 (—v(Po — vp0s — V'(q0)s) — (V/(q0) + V" (q0)p s) ds

t

+ i Atfa(q(s),p(s)) ds + O(t?) + O(t?)

=po — v(pot —ypot® /2 — V’(qo)t2/2) — (V'(g0)t + V" (q0)pt?/2)
+ Att fao(g,p) + Ot + At t?).



Comparing with (17), we see fa(q,p) = —3(v*p +vV"(q) — V" (q)p).
Ep(t)?

=+ [ 20(5)( = w(5) = VV(a() + Atfala(s).ps)) s + 0%

t
+ 3 / 2AtoG (q(s), p(s))ds
0
:po
t
4 [ 2 (0= a0 = V'(@s) (= 20— 5750~ 5V (a0)) — (V'(a0) + V" (a0)pus) ) ds
0
+ 02t + Atoat + 2poAttfo — 2v0%t2 )2 + O(t3 + At t?)
=p5 + 2tpo(—ypo — V' (q0))
+ 2412 (72193 + V' (@)po +°p§ + povV' (q0) — p?JV”(qo))
+ 02t + 2Atoat + 2poAt t fo(qo, po) — 2v0t2/2 + Ot + Att?).
From this we see ¢ = yo/2. And

Ep(t)q(t)

—podo + / a()(=p(s) — V'(a(3)) + Dt fola(s), p(s))) ds
4 / p(s)(p(s) + Atfi(a(s), p(s))) ds + SF120 ALt
=+ | (104 590) (= 2000 =705 =V (@0)9) = (V/la0) + V" @) ) + At o)) s

+ /Ot (po — YPos — V’(qo)S) (Po —ypos — V'(qo)s + Atfl(qo,po)) ds
+ 35120At t+ 07517 + O(t?)
=pogo — ¥qopot — a0V’ (qo)t + 3t (72130(10 +790V"(90) — P — qopoV" (90) — poV'(qO))
+ qo At fa(qo, po) t
+ tpg + %t2( — 2ypg — 2V’(qo)po)) + tAtf1(qo, po)po + 25120 ALt + 07 312,

From which, we glean that 615 = —o. With these terms, the modified equation takes the form

dg =|p = 381900 + V' (@0)|dt = [(1 = $9A0p — FAIV/(40) | dt — o AtdB(2)
dp=[ = = V'(@) + $AHV" ()p — 7% = V" (a)) | dt + o1 + At /2)d5(1)
= [ = (v + 389%)p = (V'(a) — 3AtV"(q)p) + évAtV’(fJ))] dt
+ o (1 4+ vAt/2)dB(t).
We have used the second order moment conditions to assign all the free variables. But to guarantee

convergence we need to assert that all moments up to order five have the correct order. This is not
the case, as can be seen by examining ¢(q,p) = ¢qp? in the case ¥ = 0 and V = 0. Note that with

Pnt1 = pn + 0Bn(Al),
Eqni1pp1 =E|(gn + Atpn“)piﬂ}
=Eqnps 1 + Ep) 1At
(19) =qn(p2 + 02 A) + At(p3 + 3ppoAt).



Now this should match the expansion of E¢(q(t), p(t)) up to second order:
¢ t
E[ap(0] = + | p(s2p(5)ds + [ 20(s)als)(0)ds
0 0
¢ ¢
+ %/0 2q(s) (o + 6 At)% ds + %/0 2p(s)Atodia ds.
Now, Ep(t)? = p§ + 1(6po)o?t + O(t?) . Hence,

E[q(t)p(t)*] =qopf + (vt + 3¢ (3p002))
+ 3(2tqoo® + 3t*2po0? + 2q0205 At t)
+ 2(2poAttéiz0) + O(t?)
=qopi + tqoo” + (30 + G120 + 20?)pot? + 205130 + O(t%) .

We see the coefficient of pgo?t? with the coefficient 519 = —o is 3, which is inconsistent with the coefficient
of 1in (19).
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