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Abstract

We present and analyse two implicit methods for Ito stochastic differential equations
(SDEs) with Poisson-driven jumps. The first method, SSBE, is a split-step extension of
the backward Euler method. The second method, CSSBE, arises from the introduction
of a compensated, martingale, form of the Poisson process. We show that both methods
are amenable to rigorous analysis when a one-sided Lipschitz condition, rather than
a more restrictive global Lipschitz condition, holds for the drift. Our analysis covers
strong convergence and nonlinear stability. We prove that both methods give strong
convergence when the drift coefficient is one-sided Lipschitz and the diffusion and jump
coefficients are globally Lipschitz. On the way to proving these results, we show that a
compensated form of the Euler–Maruyama method converges strongly when the SDE
coefficients satisfy a local Lipschitz condition and the pth moment of the exact and
numerical solution are bounded for some p > 2. Under our assumptions, both SSBE
and CSSBE give well-defined, unique solutions for sufficiently small stepsizes, and
SSBE has the advantage that the restriction is independent of the jump intensity. We
also study the ability of the methods to reproduce exponential mean-square stability
in the case where the drift has a negative one-sided Lipschitz constant. This work
extends the deterministic nonlinear stability theory in numerical analysis. We find
that SSBE preserves stability under a stepsize constraint that is independent of the
initial data. CSSBE satisfies an even stronger condition, and gives a generalization of
B-stability. Finally, we specialize to a linear test problem and show that CSSBE has
a natural extension of deterministic A-stability. The difference in stability properties
of the SSBE and CSSBE methods emphasizes that the addition of a jump term has a
significant effect that cannot be deduced directly from the non-jump literature.
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1 Introduction

We consider jump-diffusion Ito stochastic differential equations (SDEs) of the form

dX(t) = f(X(t−)) dt + g(X(t−)) dW (t) + h(X(t−)) dN(t), t > 0, X(0−) = X0, (1)

where X(t−) denotes lims→t− X(s). Here, f : R
n → R

n, g : R
n → R

n×m, h : R
n → R

n, W (t)
is an m-dimensional Brownian motion and N(t) is a scalar Poisson process with intensity λ.
Such problems arise in a range of scientific, engineering and financial applications. [3, 6, 18].
We consider the case where

f, g, h ∈ C1, (2)

the drift coefficient f satisfies a one-sided Lipschitz condition

〈x − y, f(x) − f(y)〉 ≤ µ|x − y|2, for all x, y ∈ R
n, (3)

and the diffusion and jump coefficients satisfy global Lipschitz conditions

|g(x) − g(y)|2 ≤ Lg|x − y|2, for all x, y ∈ R
n, (4)

|h(x) − h(y)|2 ≤ Lh|x − y|2, for all x, y ∈ R
n. (5)

Here, and throughout, 〈·, ·〉 denotes the scalar product and | · | denotes both the Euclidean
vector norm and the Frobenius matrix norm. We note for later use that the following linear
growth bounds hold, see for example, [9, Section 3.1]:

|〈f(x), x〉| ≤ 1

2
|f(0)|2 + (µ + 1

2
)|x|2, (6)

|g(x)|2 ≤ 2|g(0)|2 + 2Lg|x|2, (7)

|h(x)|2 ≤ 2|h(0)|2 + 2Lh|x|2. (8)

We also assume finite moment bounds for the initial data; that is, for any p > 0 there is a
finite Mp such that

E|X0|p < Mp. (9)

For a given, constant, stepsize ∆t > 0, we define the split-step backward Euler (SSBE)
method for (1) by Y0 = X(0−) and

Y ?
n = Yn + f(Y ?

n )∆t, (10)

Yn+1 = Y ?
n + g(Y ?

n )∆Wn + h(Y ?
n )∆Nn. (11)

Here, Yn is the approximation to X(tn) for tn = n∆t, with ∆Wn := W (tn+1) − W (tn) and
∆Nn := N(tn+1)−N(tn) representing the increments of the Brownian motion and the Pois-
son process, respectively.

A key component in our analysis is the compensated Poisson process

Ñ(t) := N(t) − λt, (12)

which is a martingale. Defining

fλ(x) := f(x) + λh(x) (13)
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we may rewrite the jump-diffusion Ito SDE (1) in the form

dX(t) = fλ(X(t−)) dt + g(X(t−)) dW (t) + h(X(t−)) dÑ(t). (14)

We note that fλ also satisfies a one sided Lipschitz condition with larger constant; that is,

〈x − y, fλ(x) − fλ(y)〉 ≤
(
µ + λ

√
Lh

)
|x − y|2, for all x, y ∈ R

n. (15)

The compensated Poisson process motivates an alternative to the SSBE method in (10)–
11). We define the compensated split-step backward Euler (CSSBE) method for (1) by Y0 =
X(0−) and

Y ?
n = Yn + fλ(Y

?
n )∆t, (16)

Yn+1 = Y ?
n + g(Y ?

n )∆Wn + h(Y ?
n )∆Ñn, (17)

where ∆Ñn := Ñ(tn+1) − Ñ(tn).
Both SSBE and CSSBE are implicit methods, and hence the question of existence and

uniqueness arises. Under our one-sided Lipschitz condition (3), the equation (10) for SSBE
has a unique solution, with probability one, for all

∆tµ < 1, (18)

whereas with the one-sided Lipschitz condition (15), the equation (16) for CSSBE has a
unique solution, with probability one, for all

∆t(µ + λ
√

Lh) < 1, (19)

see, for example, [7, Theorem 14.2].
Our aims in this work are to analyze the strong convergence and stability of the SSBE

and CSSBE methods under the one-sided Lipschtiz condition for the drift. We remark that
the need for pathwise solutions to asset models in mathematical finance provides motiva-
tion for a strong (as opposed to weak) convergence theory, [2]. In section 2 we give some
preliminary analysis for the SDE (1). We show that our assumptions are sufficient to guar-
antee existence of a unique solution and we develop moment bounds. Section 3 establishes
a convergence result, Theorem 1, that is needed in the later analysis. That theorem ap-
plies to a compensated version of the explicit Euler–Maruyama method, and proves strong
convergence in the case where the SDE coefficients are locally Lipschitz. Section 4 gives
our finite-time, strong convergence results, Theorems 2 and 3, for SSBE and CSSBE. In the
case where the one-side Lipschitz constant is negative, it is possible for the SDE solution
to be mean-square stable, and section 5 deals with the corresponding long-time stability of
the numerical methods. We derive a sufficient condition, Theorem 4, for the SDE to have
trajectories that are exponentially contractive in mean-square. We then show in Theorem 5
that under this condition SSBE inherits the contractivity property independently of initial
data for all stepsizes up to a limit that scales inverse linearly with Lhλ

2. For CSSBE, we find
even better behavior. Theorem 6 shows that the method preserves stability for all stepsizes
under the condition for the SDE in Theorem 4. Section 6 focusses on the special case of a
linear test equation. Here, we are able to derive a very strong stability result for CSSBE;
namely a complete generalization of A-stability.

In summary, both methods offer strong convergence, CSSBE has superior nonlinear sta-
bility properties and SSBE has a less restrictive existence condition.
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A key aspect of this work is the reliance on a one-sided Lipschitz assumption (3). This
makes the results relevant to range of nonlinear drift terms, [4, 7, 19]. Previous convergence
theory for jump-diffusion systems has been based on the more restrictive assumption that the
drift satisfies a global Lipschitz property, [8, 12, 13]. The one-sided Lipschitz condition has
proved to be an extremely useful abstraction in deterministic numerical dynamics, and has
led to a large body of important results; see, for example, [4, 7, 19]. The work in [9, 11, 15, 17]
has looked at numerical methods for non-jump SDEs under a one-sided Lipschitz assumption
on the drift, and our work is a natural extension to the jump case. We remark that the one-
sided Lipschitz condition is closely related to the existence of a quadratic Lyapunov function;
a Lyapunov function approach to dealing with non-globally Lipschitz non-jump SDEs is taken
in [16]. Lyapunov functions are also used in [1] for non-jump SDEs with delay. We found
it pleasing that clean and easily interpretable nonlinear stability results can be proved for
SSBE and CSSBE, and we found it surprising that incorporating the compensated process
into a numerical method can make a significant improvement to nonlinear stability.

The SSBE method (10)–(11) is a straightforward generalization of the non-jump split-
step backward Euler method studied in [9, 15]. It was found in [9, 15] that the structure of
the method fits in well with the one-sided Lipschitz condition and allows positive results to
be derived. We find here that the same is true in the jump case. The idea of developing the
CSSBE method (16)–(17) based on the compensated process appears to be new and leads
to clear advantages in terms of nonlinear stability.

2 Existence, Uniqueness and Moment Estimates

By extending the non-jump proof of [14, Theorem 2.3.1], it can be shown that a unique
solution exists for (1) under our assumptions. The essential change to that proof is the
inclusion of the jump term; this can be estimated with the martingale isometry for the
compensated Poisson process:

E

(∫ t

0

F (s−) dÑ(s)

)2

= λ

∫ t

0

E |F (s)|2 ds, (20)

which holds for appropriate integrand functions F (in particular, nonanticipative, if random).
Thereafter such terms are handled in the same way as the Ito integral terms. This leads to
a solution on any bounded time interval [0, T ] with

E|X(t)|2 ≤ C
(
1 + E|X0|2

)
, t ∈ [0, T ],

for some constant C = C(T ).
For later use, we need the following more general moment bound.

Lemma 1 Under the assumptions (2), (3), (4), (5) and (9), for each p > 2 there is a
constant C = C(p, T ) such that

E sup
0≤t≤T

|X(t)|p ≤ C (1 + E|X0|p) .

Proof. A proof is given in the Appendix.
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3 The Euler Method for Locally Lipschitz Coefficients

In this section we prove a convergence result that will be needed later. Considering the SDE
in compensated form, (14), motivates the explicit method

Yn+1 = Yn + fλ(Yn)∆t + g(Yn)∆Wn + h(Yn)∆Ñn, (21)

which we will refer to as the compensated Euler–Maruyama (CEM) method. We denote the
piecewise constant interpolant of the CEM solution by Y (t); so Y (t) = Yn for t ∈ [tn, tn+1).
We then define the “piecewise linear” interpolant by

Y (t) = X0 +

∫ t

0

fλ(Y (s−)) ds +

∫ t

0

g(Y (s−)) dW (s) +

∫ t

0

h(Y (s−)) dÑ(s).

In this section, we suppose that f , g and h satisfy local Lipschitz conditions, that is, for
a = f, g, h, given any R > 0 there exists a constant LR such that

|a(x) − a(y)|2 ≤ LR|x − y|2, for all |x|, |y| ≤ R. (22)

We note that the function fλ in (13) automatically inherits this condition, with a larger LR,
The following result generalizes [9, Theorem 2.2] to the case of jumps.

Theorem 1 Suppose that f , g, h satisfy the local Lipschitz condition (22), and that for
some p > 2 there is a constant A such that

E sup
0≤t≤T

|X(t)|p ≤ A, E sup
0≤t≤T

|Y (t)|p ≤ A.

Then
lim

∆t→0
E sup

0≤t≤T
|Y (t) − X(t)|2 = 0.

Proof. We mention only the key changes that are needed to the proof in [9, Theorem 2.2]
due to the inclusion of the jump integral. In particular, we write θR = τR ∧ ρR, where

τR = inf{t ≥ 0 :
∣∣Y (t)

∣∣ ≥ R}, ρR = inf{t ≥ 0 : |X(t)| ≥ R},
and E(t) = Y (t) − X(t). We start from inequality (2.8) in [9], that is

E sup
0≤t≤T

|E(t)|2 ≤ E sup
0≤t≤T

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 +

2p+1δA

p
+

2(p − 2)A

pδ2/(p−2)Rp
, (23)

for any δ > 0. Now

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 =

∣∣∣
∫ t∧θR

0

fλ(Y (s−)) − fλ(X(s−)) ds

+

∫ t∧θR

0

g(Y (s)) − g(X(s) dW (s)

+

∫ t∧θR

0

h(Y (s−)) − h(X(s−)) dÑ(s)
∣∣∣
2

≤ 4

[
T

∫ t∧θR

0

|fλ(Y (s)) − fλ(X(s))|2 ds

+

∣∣∣∣
∫ t∧θR

0

g(Y (s)) − g(X(s)) dW (s)

∣∣∣∣
2

+

∣∣∣∣
∫ t∧θR

0

h(Y (s−)) − h(X(s−)) dÑ(s)

∣∣∣∣
2
]

.
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From the local Lipschitz property and the Doob martingale inequality applied to the two
martingale integrals we obtain

E sup
0≤t≤τ

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 ≤ 4LR(T + 8)E

∫ τ∧θR

0

|Y (s) − X(s)|2 ds

≤ 8LR(T + 8)

[
E

∫ τ∧θR

0

∣∣Y (s) − Ȳ (s)
∣∣2 ds

+

∫ τ

0

E sup
0≤r≤s

∣∣Y (r ∧ θR) − X(r ∧ θR)
∣∣2 ds

]
. (24)

To bound the first term inside the parentheses we denote by ns the integer for which s ∈
[tns

, tns+1
) and note that

Y (s) − Y (s) = −fλ(Yns
)(s − tns

) − g(Yns
) (W (s) − W (tns

)) − h(Yns
) (Ñ(s) − Ñ(tns

))

and hence that

∣∣Y (s) − Y (s)
∣∣2 ≤ 4

[
|fλ(Yns

)∆t|2 + |g(Yns
)∆Wns

|2 +
∣∣∣h(Yns

)∆Ñns
)
∣∣∣
2
]

.

The local linear growth bounds, the second moments of the martingale increments and the
pth moment bound on the numerical solution yield

E

∫ τ∧θR

0

∣∣Y (s) − Y (s)
∣∣2 ds ≤ C1∆t,

for a constant C1 = C1(R, T, A). Using this bound in (24) and applying the continuous
Gronwall inequality gives

E sup
0≤t≤T

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 ≤ C2∆te8LR(T+8)T ,

for a constant C2 = C2(R, T, A). The rest of the proof then follows as in [9], where for
arbitrary ε > 0, first δ > 0 and then R and finally ∆t > 0 are chosen so that each term on
the left side of (23) is less than ε/3, giving E sup0≤t≤T |E(t)|2 ≤ ε, from which the assertion
of the theorem follows.

4 Strong Convergence of the Backward Euler Methods

It was shown in [9] that the SSBE method for an Ito SDE without jumps is equivalent to the
explicit Euler–Maruyama method applied to a modified SDE. We now show that this extends
to the jump case. As in [9, Lemma 3.4] we define F∆t : R

n → R
n by F∆t(x) = y, where y

satisfies y = x + f(x)∆t. Following (18) and (19), we know that such a y exists uniquely
for all ∆t ∈ (0, ∆t?), where we may take ∆t? = 1/|µ| for SSBE and ∆t? = 1/|µ + λ

√
Lh| for

CSSBE. We then define

f∆t(x) = f(F∆t(x)), g∆t(x) = g(F∆t(x)), h∆t(x) = h(F∆t(x)).

Under the assumptions (3) on f , it follows that that f∆t satisfies an analogous one-sided
Lipschitz condition uniformly in ∆t ∈ (0, ∆t?). Similarly, under (4), (5), there are global
Lipschitz conditions for g∆t and h∆t uniformly in ∆t ∈ (0, ∆t?).

6



It follows by construction that SSBE in (10)–(11) is is equivalent to the explicit Euler–
Maruyama method

Yn+1 = Yn + f∆t(Yn)∆t + g∆t(Yn)∆Wn + h∆t(Yn)∆Nn

applied to the SDE

dX∆t(t) = f∆t(X∆t(t
−))dt + g∆t(X∆t(t

−))dW (t) + h∆t(X∆t(t
−))dN(t), X∆t(0

−) = X0.
(25)

Lemma 1 applies to this SDE to give the following result.

Corollary 1 Under the assumptions (2), (3), (4), (5) and (9), for each p > 2 there is a
constant C = C(p, T ) such that, for the SDE (25),

E sup
0≤t≤T

|X∆t(t)|p ≤ C (1 + E|X0|p) ,

for all ∆t ∈ (0, ∆t?).

In addition we have the following estimate comparing solutions of (1) and (25).

Lemma 2 Under the assumptions (2), (3), (4), (5) and (9), the solutions X(t) in (1) and
X∆t(t) in (25) satisfy

lim
∆t→0

E sup
0≤t≤T

|X∆t(t) − X(t)|2 = 0.

Proof. The proof follows that of [9, Lemma 3.6] with the addition of the jump process
integrals. In particular, we need to include |h∆t(u) − h(u)|2 ≤ KR(∆t) and |h(u) − h(v)|2 ≤
HR|u−v|2 in conditions (3.20) and (3.21) of [9], respectively. Then in the equation following
(3.23) of [9] we add the jump integral term, written as

∫ t∧θR

0

[(
h(X(s−)) − h(X∆t(s

−))
)

+
(
h(X∆t(s

−)) − h∆t(X∆t(s
−))

)]
dN(s).

We then split this into two parts corresponding respectively to the martingale compensated
Poisson process Ñ(t) in (12) and the deterministic integrator λt. Using the growth bounds
on h and h∆t, and applying the Doob inequality on the martingale part for τ ∈ [0, T ], we
obtain

E sup
0≤t≤τ

∣∣∣∣
∫ τ∧θR

0

[(
h(X(s−)) − h(X∆t(s

−))
)

+
(
h(X∆t(s

−)) − h∆t(X∆t(s
−))

)]
dÑ(s)

∣∣∣∣
2

≤ K

(∫ τ

0

E sup
0≤τ≤s

|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds + KR(∆t)

)
,

where, here, and throughout this proof, K is a constant (depending upon T ) that may
change at each occurrence. Similarly, we may use the Cauchy-Schwarz inequality in the
deterministic part to obtain

E sup
0≤t≤τ

∣∣∣∣
∫ t∧θR

0

[(h(X(s)) − h(X∆t(s))) + (h(X∆t(s)) − h∆t(X∆t(s)))] λds

∣∣∣∣
2

≤ K

(∫ τ

0

E sup
0≤t≤s

|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds + KR(∆t)

)
.
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These terms and those for the other integrals add up to give a bound of the form

E sup
0≤t≤τ

|X∆t(t) − X(t)|2 ≤ K

(
KR(∆t) +

∫ τ

0

E sup
0≤t≤s

|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds

)
.

An application of the continuous Gronwall inequality completes the proof.

Similarly, we may extend [9, Lemma 3.7] to show that the moments of the SSBE method
are bounded on any finite time interval.

Lemma 3 Under the assumptions (2), (3), (4), (5) and (9), for each p ≥ 2 there exists a
constant C = C(p, T ) and a ∆t? > 0 such that for SSBE in (10)–(11),

E sup
0≤n∆t≤T

|Yn|2p ≤ C, ∀∆t < ∆t?.

Proof. The result may be proved using a similar approach to that in [9, Lemma 3.7] with

the additional jump increment ∆Nn being split into ∆Ñn + λ∆t.

We now define a continuous time extension Y ∆t(t) of the SSBE method using the fact that
it is equivalent to the explicit Euler method applied to the modified SDE (25). Specifically,
we define

Y ∆t(tn + s) = Yn + sf∆t(Yn) + g∆t(Yn)∆Wn(s) + h∆t(Yn)∆Nn(s), s ∈ [0, ∆t), (26)

where

∆Wn(s) = W (tn + s) − W (tn), ∆Nn(s) = N(tn + s) − N(tn), s ∈ [0, ∆t).

The next lemma extends [9, Corollary 3.8] to the jump case.

Lemma 4 Under the assumptions (2), (3), (4), (5) and (9), for each p ≥ 2 there exists a
constant C = C(p, T ) and a ∆t? > 0 such that

E sup
0≤t≤T

∣∣Y ∆t(t)
∣∣2p ≤ C, ∀∆t < ∆t?.

Proof. For θ = s/∆t we have

Y ∆t(tn + s) = θY ?
n + (1 − θ)Yn + g∆t(Yn)∆Wn(s) + h∆t(Yn)∆Nn(s), s ∈ [0, ∆t).

Using the bound [9, (3.25)] for |Y ?
n |2, it follows that for some constant C that may change

from line to line,

sup
0≤t≤T

∣∣Y ∆t(t)
∣∣2p ≤ sup

0≤n∆t≤T
sup

0≤s≤∆t

∣∣Y ∆t(tn + s)
∣∣2p

≤ sup
0≤n∆t≤T

sup
0≤s≤∆t

C
[
1 + |Yn|2p + |g∆t(Yn)∆Wn(s)|2p + |h∆t(Yn)∆Nn(s)|2p]

≤ C
[
1 + sup

0≤n∆t≤T
|Yn|2p + sup

0≤s≤∆t

N∑

j=0

|g∆t(Yj)∆Wj(s)|2p

+ sup
0≤s≤∆t

N∑

j=0

∣∣∣h∆t(Yj)∆Ñj(s)
∣∣∣
2p

+ sup
0≤s≤∆t

N∑

j=0

|h∆t(Yj)sλ|2p
]
, (27)
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where N is the largest integer with N∆t ≤ T . We then take expectations and apply the
Doob martingale inequality and linear growth bounds to the martingale terms to obtain

E sup
0≤s≤∆t

∣∣∣h∆t(Yj)∆tÑj(s)
∣∣∣
2p

≤ CE

∣∣∣h∆t(Yj)∆Ñj(∆t)
∣∣∣
2p

≤ CE |h∆t(Yj)|2p
E

∣∣∣∆Ñj(∆t)
∣∣∣
2p

≤ C
(
1 + E |Yj)|2p)∆tp ≤ C∆t,

and similarly for the Gaussian increment terms. In addition

E sup
0≤s≤∆t

|h∆t(Yj)sλ|2p ≤ E |h∆t(Yj)|2p λ2p∆t2p ≤ C
(
1 + E |Yj)|2p)∆t2p ≤ C∆t.

Using Lemma 3 in (27), taking expectations and then summing, we obtain the desired result.

We can now prove a strong convergence result for SSBE.

Theorem 2 Under the assumptions (2), (3), (4), (5) and (9), the continuous time extension
Y ∆t(t) in (26) of the SSBE method (10)–(11) satisfies

lim
∆t→0

E sup
0≤t≤T

|Y ∆t(t) − X(t)|2 = 0.

Proof. Corollary 1 and Lemma 4 allow us to invoke Theorem 1 in order to control the differ-
ence lim∆t→0 E sup0≤t≤T |Y ∆t(t) − X∆t(t)|2. Lemma 2 and the triangle inequality complete
the proof.

The same strong convergence result holds for CSSBE.

Theorem 3 Under the assumptions (2), (3), (4), (5) and (9), the CSSBE method (16)–(17)
has a continuous time extension Y ∆t(t) such that

lim
∆t→0

E sup
0≤t≤T

|Y ∆t(t) − X(t)|2 = 0.

Proof. The continuous time extension for CSSBE may be defined in the same way as for
SSBE in (26). A convergence proof goes through in an analogous way.

5 Mean-Square Stability

In the case where we have a negative one-sided Lipschtiz constant µ in (3), it is possible for
the SDE to exhibit mean-square contractivity. This phenomenon has been well studied in the
deterministic and non-jump cases, both for the continuous problem and its discretizations,
[4, 7, 10, 15]. Here we consider the effect of jumps. We begin by giving a sufficient condition
for mean-square contractivity of SDE solutions.

Theorem 4 Under the conditions (3), (4) and (5), any two solutions X(t) and Y (t) of the
SDE (1) with E|X0|2 < ∞ and E|Y0|2 < ∞ satisfy

E|X(t) − Y (t)|2 ≤ E|X0 − Y0|2eαt,

where
α := 2µ + Lg + λ

√
Lh

(√
Lh + 2

)
. (28)

Hence, α < 0 is a sufficient condition for exponential mean-square contraction of trajectories.
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Proof. The two solutions satisfy the larger system

(
dX(t)
dY (t)

)
=

(
f (X(t−))
f (Y (t−))

)
dt +

(
g (X(t−))
g (Y (t−))

)
dWt +

(
h (X(t−))
h (Y (t−))

)
dNt.

Applying Ito’s Lemma [5] to Z(t) = |X(t−) − Y (t−)|2, we have

dZ(t) =
(
2〈X(t−) − Y (t−), f

(
X(t−)

)
− f

(
Y (t−)

)
〉 + |g

(
X(t−)

)
− g

(
Y (t−)

)
|2

+ 2λ〈X(t−) − Y (t−), h
(
X(t−)

)
− h

(
Y (t−)

)
〉 + λ|h

(
X(t−)

)
− h

(
Y (t−)

)
|2

)
dt + M(t),

where M(t) is a martingale. It follows that

d|X(t) − Y (t)|2 ≤
(
2µ|X(t−) − Y (t−)|2 + Lg|X(t−) − Y (t−)|2

+λ
(
2
√

Lh|X(t−) − Y (t−)|2 + Lh|X(t−) − Y (t−)|2
))

dt + M(t),

so that
E|X(t) − Y (t)|2 ≤ E|X0 − Y0|2e(2µ+Lg+

√
Lhλ(2+

√
Lh))t.

For brevity, we will use the phrase “mean-square stability” in place of “exponential
mean-square contraction of trajectories”, and we note that under the additional assumption
f(0) = g(0) = h(0) = 0 this property implies mean-square stability of the zero solution. The
following corollary shows that when the sufficient condition α < 0 for mean-square stability
of the SDE holds, the SSBE and CSSBE method have unique solutions for all ∆t.

Corollary 2 If µ < 0 then the SSBE method (10)–(11) produces a well-defined, unique
solution. If µ + λ

√
Lh < 0 then the CSSBE method (16)–(17) produces a well-defined,

unique solution. In particular, if α < 0 in (28) then both SSBE and CSSBE produce a
well-defined, unique solution.

Proof. The results follow directly from (18) and (19).

Next, we give sufficient conditions for mean-square stability of SSBE and CSSBE.

Theorem 5 Under the conditions (3), (4) and (5), if α < 0 in (28) then for

∆t < − α

Lhλ2
(29)

any two solutions from the SSBE method with E|X0|2 < ∞ and E|Y0|2 < ∞ satisfy

E|Xk − Yk|2 ≤ E|X0 − Y0|2eβ(∆t)k∆t,

where

β(∆t) :=
1

∆t
log

(
1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2

√
Lhλ∆t

1 − 2∆t

)
< 0. (30)

Further,
β(∆t) = α + O(∆t), as ∆t → 0.

10



Proof. Consider two numerical solutions Xn and Yn from SSBE with with different starting
values. From [10, Lemma 4.3] we have

(1 − 2∆tµ)|X?
n − Y ?

n |2 ≤ |Xn − Yn|2. (31)

Now, from (10)–(11),

|Xn+1 − Yn+1|2 = |X?
n − Y ?

n + (g(X?
n) − g(Y ?

n ))∆Wn + (h(X?
n) − h(Y ?

n )) ∆Nn |2
= |X?

n − Y ?
n |2 + |[g(X?

n) − g(Y ?
n )]∆Wn|2 + |[h(X?

n) − h(Y ?
n )]∆Nn|2

+ 2〈X?
n − Y ?

n , [g(X?
n) − g(Y ?

n )]∆Wn〉 + 2〈X?
n − Y ?

n , [h(X?
n) − h(Y ?

n )]∆Nn〉
+ 2〈[g(X?

n) − g(Y ?
n )]∆Wn, [h(X?

n) − h(Y ?
n )]∆Nn〉.

Hence, using (31),

E|Xn+1 − Yn+1|2 ≤
(
1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2

√
Lhλ∆t

)
E|X?

n − Y ?
n |2

≤
(

1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2
√

Lhλ∆t

1 − 2∆tµ

)
E|Xn − Yn|2.

The result now follows.

Theorem 6 Under the conditions (3), (4) and (5), if α < 0 in (28) then for all ∆t > 0 any
two solutions from the CSSBE method with E|X0|2 < ∞ and E|Y0|2 < ∞ satisfy

E|Xk − Yk|2 ≤ E|X0 − Y0|2ebβ(∆t)k∆t,

where

β̂(∆t) :=
1

∆t
log

(
1 + ∆t(Lg + λLh)

1 − 2∆t(µ + λ
√

Lh)

)
< 0. (32)

Further,
β̂(∆t) = α + O(∆t), as ∆t → 0.

Proof. Since fλ has one-sided Lipschitz constant µ + λ
√

Lh, in place of (31) we have
(
1 − 2∆t(µ + λ

√
Lh)

)
|X?

n − Y ?
n |2 ≤ |Xn − Yn|2. (33)

Now, from (16)–(17),

|Xn+1−Yn+1|2 = |X?
n−Y ?

n |2 + |(g(X?
n)−g(Y ?

n ))∆Wn|2 + |(h(X?
n)−h(Y ?

n ))∆Ñn|2 +Mn, (34)

where Mn is a martingale. Using ∆Ñn = ∆Nn − λ∆t, we have

E∆Ñ2
n = E∆N 2

n + 2λ∆tE∆Nn + λ2∆t2

= λ∆t(1 + λ∆t) − 2λ∆tλ∆t + λ2∆t2

= λ∆t. (35)

It is convenient that E∆Ñ2
n does not involve an O(∆t2) term. Taking expectations in (34),

using (35) and (33), we find that

E|Xn+1 − Yn+1|2 ≤ E|X?
n − Y ?

n |2 + ∆tLgE|X?
n − Y ?

n |2 + λ∆tLhE|X?
n − Y ?

n |2
= (1 + ∆t(Lg + λLh)) E|X?

n − Y ?
n |2

≤ 1 + ∆t(Lg + λLh)

1 − 2∆t(µ + λ
√

Lh)
E|Xn − Yn|2.

The result now follows.
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6 Mean-Square Linear Stability

Although the main focus of this work is on nonlinear SDEs, in this section we show that
CSSBE has a very desirable linear stability property. Hence, we consider the scalar, linear
test equation where f(x) = ax, g(x) = bx and h(x) = cx in (1); that is,

dX(t) = aX(t−)dt + bX(t−)dW (t) + cX(t−)dN(t). (36)

Here, a, b, c are real constants and we assume that EX2
0 < ∞ and X0 6= 0 with probability

one. The mean-square stability of a class of implicit methods for this SDE was studied in [8].
That class includes natural generalizations of the trapezoidal and backward Euler methods.
In particular, it was found that no methods in the class were able to reproduce completely
the natural extension of deterministic A-stability.

On the SDE (36), the SSBE method reduces to the standard backward Euer method; that
is, the method of [8, (1.2)] with θ = 1. Hence, the linear mean-square stability properties of
SSBE are described in [8, Theorems 3.2–3.4]. In particular, when c < 0 in (36), SSBE is not
guaranteed to preserve stability for all ∆t > 0.

To analyze the properties of CSSBE, we first recall from [8, (3.3)] that for (36)

lim
t→∞

EX(t)2 = 0 ⇔ 2a + b2 + λc(2 + c) < 0. (37)

We also note in passing that the sufficient condition for mean-square stability derived in
Theorem 4 for the general case matches this necessary and sufficient condition in the linear
case when we take the optimal values µ = a, Lg = b2 and Lh = c2.

We have the following characterization and corollary.

Theorem 7 If 1 − (a + λc)∆t 6= 0 then for CSSBE applied to (36),

lim
n→∞

EY 2
n = 0 ⇔ (a + λc)2∆t > 2a + b2 + λc(2 + c). (38)

Proof. Applying CSSBE to (36) gives

Yn+1 =
1 + b∆Wn + c∆Ñn

1 − (a + λc)∆t
Yn.

Hence,

(1 − (a + λc)∆t)2 Y 2
n+1 =

(
1 + b2∆W 2

n + c2Ñ2
n + Mn

)
Y 2

n ,

where Mn is a martingale that is independent of Yn. So, using (35)

(1 − (a + λc)∆t)2
EY 2

n+1 =
(
1 + b2∆t + c2λ∆t

)
EY 2

n .

It follows that the linear mean-square stability property, limn→∞ EY 2
n = 0, is characterized

by
(1 − (a + λc)∆t)2 > 1 + b2∆t + c2λ∆t,

which simplifies to the inequality in (38).

Corollary 3 shows that CSSBE has the natural extension of A-stability.

Corollary 3 For the SDE (36), if limt→∞ EX(t)2 = 0 then for all ∆t > 0 CSSBE produces
a well-defined solution satisfying

lim
n→∞

EY 2
n = 0.
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Proof. The SDE stability property requires a, b, c to satisfy the inequality in (37). It follows
that a + λc < 0, and hence 1− (a + λc)∆t 6= 0. So CSSBE produces a well-defined solution.
Since (a + λc)2∆t > 0 and 2a + b2 + λc(2 + c) < 0, the stability condition for CSSBE in (38)
is satisfied.

APPENDIX: Proof of Lemma 1

The proof of Lemma 1 involves the Burkholder-Davis-Gundy inequality for martingales,
which in turn requires the following estimate.

Lemma 5 Under the assumptions (2), (3), (4), (5) and (9), for each p ≥ 2 there is a

constant Ĉ = Ĉ(p, t) such that

E|X(t)|p ≤ Ĉ (1 + E|X0|p) , t ∈ [0, T ].

Proof. Our proof is an adaptation of the proof for the case without jumps in [14, Theo-
rem 2.4.1]. Throughout, we use K to denote a generic constant that may change between
occurrences. We apply the Ito formula for the jump-diffusion SDE (1) to the function U(t, x)
= (1 + |x|2)p/2, see [5], to obtain

(
1 + |X(t)|2

)p/2
=

(
1 + |X0|2

)p/2
+ p

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 〈
X(s−), f(X(s−))

〉
ds

+
p

2

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 ∣∣g(X(s−))
∣∣2 ds

+
p(p − 2)

2

∫ t

0

(
1 + |X(s−)|2

)(p−4)/2 ∣∣〈X(s−), g(X(s−))
〉∣∣2 ds

+ p

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

((
1 + |X(s−) + h(X(s−))|2

)p/2 −
(
1 + |X(s−)|2

)p/2
)

dN(s).

Now, using the linear growth bound (8) for h, we have

(
1 + |x + h(x)|2

)p/2 −
(
1 + |x|2

)p/2 ≤
(
1 + 2|x|2 + 2|h(x)|2

)p/2 −
(
1 + |x|2

)p/2

≤ K
(
1 + |x|2

)p/2
,

which can be used in estimates of the deterministic integral part of the jump integral. In
addition, (

1 + |x|2
)p/2 ≤ 2(p−2)/2 (1 + |x|p) ,

which we will use to estimate the initial value.

We need to use stopping times τN := T ∧ inf {t ∈ [0, T ] : X(t) ≥ N}, for which τN →
T as N → ∞ since X(t) is cadlag. We take expectations over the interval [0, τN ∧ t] and
then the limit as N → ∞, using the fact that the expectations of the Ito and compensated
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Poisson integrals vanish (page 60, [14]) as well as the linear growth bounds (6)–(8) and the
Cauchy-Schwarz inequality to obtain

E
(
1 + |X(t)|2

)p/2 ≤ 2(p−2)/2 (1 + E|X0|p) + K

∫ t

0

E
(
1 + |X(s)|2

)p/2
ds.

We omit the details, as similar estimates arise in the next proof, apart from noting that
|〈x, g(x)〉|2 ≤ 1

2
(|x|2 + |g(x)|2) ≤ |g(0)|2 + ( 1

2
+ Lg)|x|2, and similarly for h.

The continuous Gronwall inequality then gives

E
(
1 + |X(t)|2

)p/2 ≤ 2(p−2)/2 (1 + E|X0|p) eKT ,

from which follows

E|X(t)|p ≤ E
(
1 + |X(t)|2

)p/2 ≤ K (1 + E|X0|p) ,

as required.

We may now give a proof of Lemma 1.
Proof. (Of Lemma 1) Our proof follows that of [9, Lemma 3.2] with the inclusion of the
jump terms. We apply the Ito formula [5] for the jump-diffusion SDE (1) to the function
U(t, x) = |x|2 and after splitting the jump term into its martingale and deterministic integral
parts and using the linear growth bounds (6)–(8) we obtain

|X(t)|2 = |X0|2 + 2

∫ t

0

〈X(s), f(X(s))〉 ds

+

∫ t

0

|g(X(s))|2 ds + 2

∫ t

0

〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

(〈
X(s−), h(X(s−))

〉
+ |h(X(s−))|2

)
dÑ(s)

+λ

∫ t

0

(
〈X(s), h(X(s))〉 + |h(X(s))|2

)
ds

≤ |X0|2 + K

∫ t

0

(
1 + |X(s)|2

)
ds + 2

∫ t

0

〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

〈
X(s−), h(X(s−))

〉
dÑ(s) +

∫ t

0

|h(X(s−))|2 dÑ(s),

where K denotes a generic constant that may change between occurrences. There then exists
a constant C = C(p) such that

C−1 sup
0≤τ≤t

|X(τ)|p ≤ |X0|p +

(∫ t

0

(
1 + |X(s)|2

)
ds

)p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), g(X(s−))

〉
dW (s)

∣∣∣∣
p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), h(X(s−))

〉
dÑ(s)

∣∣∣∣
p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0

|h(X(s−))|2 dÑ(s)

∣∣∣∣
p/2

.
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Since E|X(t)|p < ∞ on the interval [0, T ], we can take expectations and apply the Burkholder-
Davis-Gundy inequality to each of the martingale integral terms. Using the linear growth
bound we obtain

E sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), g(X(s−))

〉
dW (s)

∣∣∣∣
p/2

≤ K

∫ t

0

E |〈X(s), g(X(s))〉|p/2 ds

≤ K

∫ t

0

E
(
1 + |X(s)|2

)p/2
ds

≤ K

∫ t

0

(1 + E |X(s)|p) ds

≤ K

∫ t

0

(
1 + E sup

0≤τ≤s
|X(τ)|p

)
ds,

and similarly for the other two integrals.
Combining all of the above estimates we obtain

E sup
0≤τ≤t

|X(τ)|p ≤ K (1 + E|X0|p) + K

∫ t

0

(
1 + E sup

0≤τ≤s
|X(τ)|p

)
ds.

An application of the continuous Gronwall inequality completes the proof.
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