
Derivative Securities – Section 7 – Fall 2004
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences.

Topics in this section: (a) further discussion of SDE’s, including some examples and appli-
cations; (b) reduction of Black-Scholes PDE to the linear heat equation; and (c) discussion
of what happens when you hedge discretely rather than continuously in time.

When I taught this class in Fall 2000 I discussed barrier options at this point. This time
around I prefer to postpone that discussion. But you now have enough background to read
about barrier options if you like; see Section 7 of my Fall 2000 notes, or the discussion in
the “student guide” by Dewynne, Howison, and Wilmott.

********************

Further discussion of stochastic differential equations. Several students requested
more information on examples of SDEs’ and how they can be used. Therefore the discussion
that follows goes somewhat beyond the bare minimum we’ll be using in this class. (Every-
thing here is, however, relevant to financial applications.) For simplicity, we restricted the
discussion to problems with a “single source of randomness,” i.e. scalar SDE’s of the form

dy = f(y(t), t) dt + g(y(t), t) dw (1)

where w is a scalar-valued Brownian motion. The main things we will use about stochastic
integrals and SDE’s are the following:

(1) Ito’s lemma. We discussed in the Section 6 notes the fact that if A is a smooth
function of two variables and y solves (1) then z = A(t, y(t)) solves the SDE

dz = At dt + Ay dy + 1
2Ayy dy dy = (At + Ayf + 1

2Ayyg
2) dt + Ayg dw.

We’ll also sometimes use this generalization: if y1 and y2 solve SDE’s using the same
Brownian motion w, say

dy1 = f1 dt + g1 dw and dy2 = f2 dt + g2 dw,

and A(t, y1, y2) is a smooth function of three variables, then z = A(t, y1(t), y2(t))
solves the SDE

dz = At dt + A1 dy1 + A2 dy2 + 1
2A11 dy1 dy1 + A12 dy1 dy2 + 1

2A22 dy2 dy2

with the understanding that

Aij = ∂2A/∂yi∂yj and dyi dyj = gigj dt.

The heuristic Taylor-expansion-based explanation is exactly parallel to the one sketched
in Section 6.
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(2) A stochastic integral
∫ b
a F dw has mean value zero. We used (and explained) this

assertion at the end of Section 6, but perhaps we didn’t emphasize it enough. The
explanation is easy. The integrand F = F (t, y(t)) can be any function of t and y(t).
(The key point: its value at time t should depend only on information available at
time t.) The stochastic integral is the limit of the Riemann sums∑

F (tj , y(tj))[w(tj+1)− w(tj)]

and each term of this sum has mean value zero, since the increment w(tj+1) − w(tj)
has mean value 0 and is independent of F (tj , y(tj)).

(3) Calculating the variance of a dw integral. We just showed that
∫ b
a F dw has mean

value 0. What about its variance? The answer is simple:

E

(∫ b

a
F (s, y(s)) dw

)2
 =

∫ b

a
E[F 2(s, y(s))] ds. (2)

The justification is easy. Just approximate the stochastic integral as a sum. The
square of the stochastic integral is approximately∑

i,j

F (si, y(si))[w(si+1)− w(si)]

∑
i,j

F (sj , y(sj))[w(sj+1)− w(sj)]


=
∑
i,j

F (si, y(si))F (sj , y(sj))[w(si+1)− w(si)][w(sj+1)− w(sj)] .

For i 6= j the expected value of the i, jth term is 0 (for example, if i < j then [w(sj+1)−
w(sj)] has mean value 0 and is independent of F (si, y(si)), F (sj , y(sj)), and [w(si+1)−
w(si)]). For i = j the expected value of the i, jth term is E[F 2(si, y(si))][si+1 − si].
So the expected value of the squared stochastic integral is approximately∑

i

E[F 2(y(si), si)][si+1 − si],

and passing to the limit ∆s→ 0 gives the formula (2).

The following examples have been extracted from the “Stochastic Calculus Primer” posted
at the top of my Spring 2003 PDE for Finance notes.

Log-normal dynamics with time-dependent drift and volatility. Suppose

dy = µ(t)ydt + σ(t)ydw (3)

where µ(t) and σ(t) are (deterministic) functions of time. What stochastic differential
equation describes log y? Ito’s lemma gives

d(log y) = y−1dy − 1
2y−2dydy

= µ(t)dt + σ(t)dw − 1
2σ2(t)dt.
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Remembering that y(t) = elog y(t), we see that

y(t1) = y(t0)e
∫ t1

t0
(µ−σ2/2)ds+

∫ t1
t0

σdw
.

When µ and σ are constant in time we recover the formula (which we already knew):

y(t1) = y(t0)e(µ−σ2/2)(t1−t0)+σ(w(t1)−w(t0)).

Stochastic stability. Consider once more the solution of (3). It’s natural to expect that if
µ is negative and σ is not too large then y should tend (in some average sense) to 0. This
can be seen directly from the solution formula just derived. But an alternative, instructive
approach is to consider the second moment ρ(t) = E[y2(t)]. From Ito’s formula,

d(y2) = 2ydy + dydy = 2y(µydt + σydw) + σ2y2dt.

Taking the expectation, we find that

E[y2(t1)]− E[y2(t0)] =
∫ t1

t0
(2µ + σ)E[y2]ds

or in other words
dρ/dt = (2µ + σ)ρ.

Thus ρ = E[y2] can be calculated by solving this deterministic ODE. If the solution tends
to 0 as t → ∞ then we conclude that y tends to zero in the mean-square sense. When µ
and σ are constant this happens exactly when 2µ+σ < 0. When they are functions of time,
the condition 2µ(t) + σ(t) ≤ −c is sufficient (with c > 0) since it gives dρ/dt ≤ −cρ.

An example related to Girsanov’s theorem. Suppose γ(t) depends only on information up
to time t. (For example, it could have the form γ(t) = F (t, y(t)) where y solves an SDE of
the form (1).) Then

E

[
e
∫ b

a
γ(s)dw− 1

2

∫ b

a
γ2(s)ds

]
= 1.

In fact, this is the expected value of ez(b), where

dz = −1
2γ2(t)dt + γ(t)dw, z(a) = 0.

Ito’s lemma gives
d(ez) = ezdz + 1

2ezdzdz = ezγdw.

So

ez(b) − ez(a) =
∫ b

a
ezγdw.

The right hand side has expected value zero, so

E[ez(b)] = E[ez(a)] = 1.
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Notice the close relation with the previous example “lognormal dynamics”: all we’ve really
done is identify the conditions under which µ = 0 in (3).

[Comment for those taking Stochastic Calculus: this example is related to Girsanov’s the-
orem, which gives the relation between the measure on path space associated with drift γ
and the measure on path space associated with no drift. The expression

e
∫ b

a
γ(s)dw− 1

2

∫ b

a
γ2(s)ds

is the Radon-Nikodym derivative relating these measures. The fact that it has expected
value 1 reflects the fact that both measures are probability measures.]

The Ornstein-Uhlenbeck process. You should have learned in calculus that the deterministic
differential equation dy/dt + Ay = f can be solved explicitly when A is constant. Just
multiply by eAt to see that d(eAty)/dt = eAtf then integrate both sides in time. So it’s
natural to expect that linear stochastic differential equations can also be solved explicitly.
We focus on one important example: the “Ornstein-Uhlenbeck process,” which solves

dy = −cydt + σdw, y(0) = x

with c and σ constant. (This is not a special case of (3), because the dw term is not
proportional to y.) Ito’s lemma gives

d(ecty) = cectydt + ectdy = ectσdw

so
ecty(t)− x = σ

∫ t

0
ecsdw,

or in other words
y(t) = e−ctx + σ

∫ t

0
ec(s−t)dw(s).

Now observe that y(t) is a Gaussian random variable – because when we approximate the
stochastic integral as a sum, the sum is a linear combination of Gaussian random variables.
(We use here that a sum of Gaussian random variables is Gaussian; also that a limit of
Gaussian random variables is Gaussian.) So y(t) is entirely described by its mean and
variance. They are easy to calculate: the mean is

E[y(t)] = e−ctx

since the “dw” integral has expected value 0. To calculate the variance we use the formula
(2). It gives

E
[
(y(t)− E[y(t)])2

]
= σ2E

[(∫ t

0
ec(s−t)dw(s)

)2
]

= σ2
∫ t

0
e2c(s−t)ds

= σ2 1− e−2ct

2c
.
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We close this example with a brief discussion of the relevance of the Ornstein-Uhlenbeck
process. One of the simplest interest-rate models in common use is that of Vasicek, which
supposes that the (short-term) interest rate r(t) satisfies

dr = a(b− r)dt + σdw

with a, b, and σ constant. Interpretation: r tends to revert to some long-term average value
b, but noise keeps perturbing it away from this value. Clearly y = r − b is an Ornstein-
Uhlenbeck process, since dy = −aydt + σdw. Notice that r(t) has a positive probability of
being negative (since it is a Gaussian random variable); this is a reminder that the Vasicek
model is not very realistic. Even so, its exact solution formulas provide helpful intuition.

*****************

Reduction of the Black-Scholes PDE to the linear heat equation. The linear heat
equation ut = uxx is the most basic example of a parabolic PDE; its properties and solutions
are discussed in every textbook on PDE’s. The Black-Scholes equation is really just this
standard equation written in special variables. This fact is very well-known; my discussion
follows the book by Dewynne, Howison, and Wilmott.

Recall that the Black-Scholes PDE is

Vt + 1
2σ2s2Vss + rsVs − rV = 0;

we assume in the following that r and σ are constant. Consider the preliminary change of
variables from (s, t) to (x, τ) defined by

s = ex, τ = 1
2σ2(T − t),

and let v(x, τ) = V (s, t). An elementary calculation shows that the Black-Scholes equation
becomes

vτ − vxx + (1− k)vx + kv = 0

with k = r/(1
2σ2). We’ve done the main part of the job: reduction to a constant-coefficient

equation. For the rest, consider u(x, t) defined by

v = eαx+βτu(x, τ)

where α and β are constants. The equation for v becomes an equation for u, namely

(βu + uτ )− (α2u + 2αux + uxx) + (1− k)(αu + ux) + ku = 0.

To get an equation without u or ux we should set

β − α2 + (1− k)α + k = 0, −2α + (1− k) = 0.
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These equations are solved by

α =
1− k

2
, β = −(k + 1)2

4
.

Thus,

u = e
1
2 (k−1)x+

1
4(k+1)2τv(x, τ)

solves the linear heat equation uτ = uxx.

What good is this? Well, it can be used to give another proof of the integral formula for the
value of an option (using the fundamental solution of the linear heat equation). It can also
be used to understand the sense in which the value of an option at time t < T is obtained
by “smoothing” the payoff. Indeed, the solution of the linear heat equation at time t is
obtained by “Gaussian smoothing” of the initial data.

********************

Discrete-time hedging. My discussion of this topic follows the beginning of a paper by
H. E. Leland, Option pricing and replication with transaction costs, J. Finance 40 (1985)
1283-1301 (available online through JSTOR). A thoughtful, quite readable discussion of
this topic is the paper by E. Omberg, On the theory of perfect hedging, Advances in Futures
and Options Research 5 (1991) 1-29 (not available online; I’ll put a copy on reserve in the
CIMS library in the green box with my name).

Suppose an investment bank sells an option and tries to replicate it dynamically, but the
bank trades only at evenly spaced time intervals jδt. (Now δt is positive, not infinitesimal).
The bank follows the standard trading strategy of rebalancing to hold φ = ∂V/∂s units of
stock each time it trades, where V is the value assigned by the Black-Scholes theory. As
we shall see in a moment, this strategy is no longer self-financing – but it is nearly so, in a
suitable stochastic sense, in the limit δt → 0.

People often ask, when examining the derivation of the Black-Scholes PDE by examination
of the hedging strategy, “Why do we apply Ito’s lemma to V (s(t), t) but not to ∆, even
though the choice of ∆ also depends on s(t)?” The answer, of course, is that the hedge
portfolio is held fixed from t to t + δt. The following discussion – in which δt is small but
not infinitesimal – should help clarify this point.

OK, let’s return to that investment bank. The question is: how much additional money will
the bank have to spend over the life of the option as a result of its discrete-time (rather than
continuous-time) hedging? We shall answer this by considering each discrete time interval,
then adding up the results.

The bank holds a short position on the option and a long position in the replicating portfolio.
The value of its position just after rebalancing at any time t = jδt is (by hypothesis)

0 = −V (s(t), t)+φs(t)+[V (s(t), t)−φs(t)] = short option + stock position + bond position
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with φ = ∂V
∂s (s(t), t). The value of its position just before the next rebalancing is

−V (s(t + δt), t + δt) + φs(t + δt) + [V (s(t), t)− φs(t)]erδt.

The cost (or benefit) of rebalancing at time t + δt is minus the value of the preceding
expression. Put differently: it is the difference between the two preceding expressions. So
it equals

δV − φδs− [V − φs](erδt − 1).

If we estimate δV by Taylor expansion keeping just the terms one normally keeps in Ito’s
lemma, we get (remembering that φ = ∂V/∂s)

∂V

∂s
δs + 1

2

∂2V

∂s2
(δs)2 +

∂V

∂t
δt− ∂V

∂s
δs− rV δt + rs

∂V

∂s
δt.

Notice that the first and fourth terms cancel. Also notice that the substitution (δs)2 =
σ2s2δt leads to an expression that vanishes, according to the Black-Scholes equation. Thus,
the failure to be self-financing is attributable to two sources: (a) errors in the approximation
(δs)2 ≈ σ2s2δt, and (b) higher order terms in the Taylor expansion. Our task is to estimate
the associated costs.

Collecting the information obtained so far: if the investment bank re-establishes the “repli-
cating portfolio” demanded by the Black-Scholes analysis at each multiple of δt then it
incurs cost

1
2

∂2V

∂s2
(δs)2 +

∂V

∂t
δt− rV δt + rs

∂V

∂s
δt

at each time step, plus an error of magnitude |δt|3/2 due to higher order terms in the Taylor
expansion. Using the Black-Scholes PDE, this cost has the alternative expression

1
2

∂2V

∂s2
[(δs)2 − σ2s2δt] plus an error of order |δt|3/2.

It can be shown that when ds = (µ + 1
2σ2)s dt + σs dw,

δs = σsu
√

δt + (µ + 1
2σ2)sδt plus an error of order |δt|3/2

where u is Gaussian with mean 0 and variance 1 (this is closely related to our our discussion
of Ito’s lemma). Therefore

(δs)2 = σ2s2u2δt plus an error of order |δt|3/2.

Thus neglecting the error terms, the cost of refinancing at any given timestep is

1
2

∂2V

∂s2
σ2s2(u2 − 1)δt

where u is Gaussian with mean value 0 and variance 1. This expression is obviously random;
its expected value is 0 and its standard deviation is of order δt. Moreover the contributions
associated with different time intervals are independent. Notice that the distribution of
refinancing costs is not Gaussian, since it is proportional to u2 − 1 not u.
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Pulling this together: since the expected value of u2 − 1 is zero, the expected cost of refi-
nancing at any given timestep is at most of order |δt|3/2, due entirely to the “error terms.”
However the actual cost (or benefit) of refinancing is larger, a random variable of order δt.
But the picture changes when we consider many time intervals. Over n = T/δt intervals,
the terms 1

2
∂2V
∂s2 σ2s2(u2 − 1)δt accumulate to a sum

n∑
j=1

1
2σ2s2(tj)

∂2V

∂s2
(s(tj), tj)(u2

j − 1)δt

with mean 0 and standard deviation of order
√

nδt2 =
√

Tδt; the sum is still random, but
it’s small, statistically speaking, if δt is close to zero, by a sort of law-of-large-numbers.
(Notice the resemblance of this argument to our explanation of Ito’s lemma. That’s no
accident: we are in essence deriving Ito’s formula all over again.) We’ve been ignoring the
error terms – but they cause no trouble, because they too accumulate to a term of order√

δt, because n(δt)3/2 = T
√

δt.

Final conclusion: the errors of refinancing tend to self-cancel, by a sort of law-of-large-
numbers, since their mean value is 0. The net effect, when δt is small, is random but small
— in the sense that its mean and standard deviation are of order

√
δt.

We have argued that the cost of refinancing tends to zero as δt → 0. A recent article by
A. Lo, D. Bertsimas, and L. Kogan goes further, examining the statistical distribution of
refinancing costs when δt is small. (The relation between their work and the preceding
discussion is like the relation between the central limit theorem and the law of large num-
bers.) The reference is: J. Financial Economics 55 (2000) 173-204 (available online through
sciencedirect.com).
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