Exercise Show that if W(t) is a Wiener process, then

$$B(t) \equiv c W\left(\frac{t}{c^2}\right)$$

is also a Wiener process. Here $c \neq 0$ is a constant.

Approximation and Definition of Stochastic Integrals

Questions on the definition of a stochastic integral

Remark 1 Problem: How to define the stochastic integral $\int_0^T W(t)dW(t)$, where W(t) is the Wiener process.

Can we use the same approach as with Riemann integrals, taking sums

$$\sum_{n=0}^{N-1} W(\xi_n)(W(t_{n+1}) - W(t_n))$$
with $\xi_n \in [t_n, t_{n+1}]$?

As a first step, use the forward Euler discretization

$$\sum_{n=0}^{N-1} W(t_n) \underbrace{(W(t_{n+1}) - W(t_n))}_{=\Delta W_n}.$$

Taking expected values we obtain (why?)

$$E[\sum_{n=0}^{N-1} W(t_n) \Delta W_n] = \sum_{n=0}^{N-1} E[W(t_n) \Delta W_n]$$
$$= \sum_{n=0}^{N-1} E[W(t_n)] \underbrace{E[\Delta W_n]}_{=0}$$
$$= 0.$$

Now let us use instead the backward Euler discretization

$$\sum_{n=0}^{N-1} W(t_{n+1}) \Delta W_n.$$

Taking expected values yields a different re-

sult:

$$\sum_{n=0}^{N-1} E[W(t_{n+1})\Delta W_n]$$

=
$$\sum_{n=0}^{N-1} E[W(t_n)\Delta W_n] + E[(\Delta W_n)^2]$$

=
$$\sum_{n=0}^{N-1} \Delta t$$

=
$$T \neq 0.$$

Moreover, if we use the trapezoidal method the result is

$$\sum_{n=0}^{N-1} E\left[\frac{W(t_{n+1}) + W(t_n)}{2} \Delta W_n\right]$$

=
$$\sum_{n=0}^{N-1} E[W(t_n) \Delta W_n] + E[(\Delta W_n)^2/2]$$

=
$$\sum_{n=0}^{N-1} \frac{\Delta t}{2} = T/2 \neq 0.$$

Conclusion: we need more information to define $\int_0^T W(s) dW(s)$ than to define a deterministic integral!

In fact, limits of the forward Euler define the so called *Itô integral*, while the trapezoidal method yields the so called *Stratonovich integral*.

Strong and weak convergence

Depending on the application, we focus either on

- strong convergence, where approximation of the outcomes of X(T) is relevant,
- or weak convergence, where only the distribution (law) of X(T) needs to be approximated.

Definition. The sequence of random variables $\{Y_n\}_{n \in \mathbb{N}}$ converges *strongly* to the random variable Y if

$$\|Y - Y_n\|_{L^2_P(\Omega)} \equiv \sqrt{E[(Y - Y_n)^2]} \to 0$$

Obs: By Chebychev we have

$$P(|Y - Y_n| \ge \epsilon) \le \frac{E[(Y - Y_n)^2]}{\epsilon^2} \to 0$$

for ay fixed $\epsilon > 0$.

Definition. The sequence of random variables $\{Y_n\}_{n \in \mathbb{N}}$ converges *weakly* to the random variable Y if $E[g(Y)] - E[g(Y_n)] \rightarrow 0$, for all bounded continuous functions g.

Observe: strong convergence \Rightarrow weak convergence, but the converse is in general not true.

Strong and weak convergence

Counterexample. Let random variables $\{Y_n\}_{n \in \mathbb{N}}$ be *iid* in (Ω, \mathcal{F}, P) , and $Y_n \sim N(0, 1), n =$ 1,.... *Verify* that Y_n converges weakly but not strongly!

Proof of (\Rightarrow) for Lipschitz functions:

$$|E[g(X) - g(Y_n)]| \leq E[|g(X) - g(Y_n)|]$$

$$\leq C_g E[|X - Y_n|]$$

$$\leq C_g \sqrt{E[|X - Y_n|^2]} \rightarrow 0.$$

$$= ||X - Y_n||_{L_P^2(\Omega)}$$

37

Obs: The previous estimate may not be optimal. There are cases where the weak error goes to zero much faster than the strong one.

Ito Integrals

Theorem 1 Suppose that there exists C > 0s.t. $f : [0,T] \times \mathbb{R} \to \mathbb{R}$ satisfies

 $|f(t+\Delta t, W+\Delta W)-f(t, W)| \leq C(\Delta t+|\Delta W|)$

then the forward Euler (left point quadrature) approximations

$$I_{\Delta t} = \sum_{n=0}^{N-1} f(t_n, W(t_n)) \Delta W_n,$$

with
$$0 = t_0 < t_1 < \ldots < t_N = T$$
, satisfy
 $\|I_{\Delta t} - I_{\Delta t'}\|_{L^2_P(\Omega)} = E[I_{\Delta t} - I_{\Delta t'}]^{1/2} \leq \mathcal{O}\left(\sqrt{\Delta t_{\max}}\right)$
(12)

Ito integrals

Remark 2 The previous theorem implies that $I_{\Delta t}$ is Cauchy in $L_P^2(\Omega)$ and its limit defines the Ito integral

$$\sum_{n=0}^{N-1} f(t_n, W(t_n)) \Delta W_n$$
$$= \int_0^T f(s, W(s)) dW(s) + \mathcal{O}\left(\sqrt{\Delta t_{\text{max}}}\right)$$

The previous estimate should be understood

as

$$E\left[\left(\sum_{n=0}^{N-1} f(t_n, W(t_n)) \Delta W_n - \int_0^T f(s, W(s)) dW(s)\right)^2\right]$$

= $\mathcal{O}\left(\Delta t_{\text{max}}\right)$

Question: What is the computational work to reach an accuracy ϵ in $L_P^2(\Omega)$ sense using uniform time steps?

Information generated by a process.

Definition 9 The symbol \mathcal{F}_t^W denotes the information generated by W on the interval [0,t]. If, based on the observation of the trajectory $\{W(s), 0 \le s \le t\}$ it is possible to decide if an event $A \in \mathcal{F}$ has occurred or not, then we write $A \in \mathcal{F}_t^W$.

If the value of a random variable Z can be completely determined by the observations $\{W(s), 0 \le s \le t\}$ then we write $Z \in \mathcal{F}_t^W$.

A stochastic process g is called **adapted to the filtration** $\{\mathcal{F}_t^W\}_{t\geq 0}$ if $g(t) \in \mathcal{F}_t^W$ for all $t \geq 0$.

Obs Math Grads: The filtration $\{\mathcal{F}_t^W\}_{t\geq 0}$ is actually an increasing family of σ -algebras. See Øksendal's book, Chapter 3, for precise definition.

Examples

1.
$$A = \{W(10) < 5\}$$

2. $Z = \int_0^1 W(s) ds$
3. $f(t) = \sup_{s \le t} W(s)$

4.
$$g(t) = \sup_{s \le t+1} W(s)$$

Remark 3 (Extension to adapted Itô integration

Itô integrals can be extended to adapted processes. Assume $f : [0,T] \times \Omega \to \mathbb{R}$ is adapted to the filtration $\{\mathcal{F}_t^W\}_{t\geq 0}$ and that there is a constant C such that

$$\sqrt{E[|f(t + \Delta t, \omega) - f(t, \omega)|^2]} \le C\sqrt{\Delta t}.$$
 (13)

Then the proof of Theorem 1 shows that (12) still holds.

Application Let $M(t) \equiv \max_{[0,t]} W(s)$. Then M(t) is adapted to $\{\mathcal{F}_t^W\}_{t\geq 0}$ and

 $0 \le M(t + \Delta t) - M(t) \le \max_{[t,t+\Delta t]} (W(s) - W(t))$

from where*

 $E[(M(t + \Delta t) - M(t))^2] \le \Delta t \underbrace{E[(\max_{[0,1]} W(s))^2]}_{E[W(1)^2]} \le \Delta t$

* Here we use that $P(M(t) \in db) = P(|W(t)| \in db$, see [K-S] p. 96.

Therefore, (13) is verified for

$$\int_0^T M(t) dW(t)$$

and the rate of strong approximation to it by the F. Euler method is still 1/2.

Theorem 2 (Basic properties of Itô integrals)

Suppose that $f, g : [0, T] \times \Omega \to \mathbb{R}$ are Itô integrable, e.g. \mathcal{F}_t^W -adapted and satifying (13), and that c_1, c_2 are constants in \mathbb{R} . Then:

(1)

$$\int_{0}^{T} (c_1 f(s, \cdot) + c_2 g(s, \cdot)) dW(s)$$

= $c_1 \int_{0}^{T} f(s, \cdot) dW(s) + c_2 \int_{0}^{T} g(s, \cdot) dW(s)$

(2) $E\left[\int_0^T f(s,\cdot)dW(s)\right] = 0.$

(3)

$$E\left[\left(\int_0^T f(s,\cdot)dW(s)\right)\left(\int_0^T g(s,\cdot)dW(s)\right)\right]$$
$$=\int_0^T E\left[f(s,\cdot)g(s,\cdot)\right]ds.$$

Problem How can we approximate numerically the object $\int_0^T f(s, W(s)) dW(s)$?

Approximation of $\int_0^1 W(s) dW(s)$:

Question: Which changes are needed to extend the previous code to variable step size, i.e. to approximate *I* based on given points, not necessarily evenly distributed,

$$0 = t_0 < \ldots < t_N?$$

Problem: Write a code to reproduce the previous results.

Question: Does the Wiener process really exist?

Answer: yes, see Example 2.18 in the notes, where we construct it as a limit of piecewise linear stochastic processes.