
Exercise Show that if W (t) is a Wiener pro-

cess, then

B(t) ≡ c W

(
t

c2

)
is also a Wiener process. Here c �= 0 is a

constant.
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Approximation and Definition of Stochas-

tic Integrals

32



Questions on the definition of a stochas-

tic integral

Remark 1 Problem: How to define the stochas-

tic integral
∫ T
0 W (t)dW (t), where W (t) is the

Wiener process.

Can we use the same approach as with Rie-

mann integrals, taking sums

N−1∑
n=0

W (ξn)(W (tn+1) − W (tn))

with ξn ∈ [tn, tn+1]?
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As a first step, use the forward Euler dis-

cretization

N−1∑
n=0

W (tn) (W (tn+1) − W (tn))︸ ︷︷ ︸
=ΔWn

.

Taking expected values we obtain (why?)

E[
N−1∑
n=0

W (tn)ΔWn] =
N−1∑
n=0

E[W (tn)ΔWn]

=
N−1∑
n=0

E[W (tn)]E[ΔWn]︸ ︷︷ ︸
=0

=0.



Now let us use instead the backward Euler

discretization

N−1∑
n=0

W (tn+1)ΔWn.

Taking expected values yields a different re-



sult:

N−1∑
n=0

E[W (tn+1)ΔWn]

=
N−1∑
n=0

E[W (tn)ΔWn] + E[(ΔWn)
2]

=
N−1∑
n=0

Δt

=T �= 0.



Moreover, if we use the trapezoidal method

the result is

N−1∑
n=0

E

[
W (tn+1) + W (tn)

2
ΔWn

]

=
N−1∑
n=0

E[W (tn)ΔWn] + E[(ΔWn)
2/2]

=
N−1∑
n=0

Δt

2
= T/2 �= 0.

�



Conclusion: we need more information to

define
∫ T
0 W (s)dW (s) than to define a deter-

ministic integral!

In fact, limits of the forward Euler define the

so called Itô integral, while the trapezoidal

method yields the so called Stratonovich in-

tegral.

34



Strong and weak convergence

Depending on the application, we focus ei-

ther on

• strong convergence, where approximation

of the outcomes of X(T ) is relevant,

• or weak convergence, where only the dis-

tribution (law) of X(T ) needs to be ap-

proximated.
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Definition. The sequence of random vari-

ables {Yn}n∈N converges strongly to the ran-

dom variable Y if

‖Y − Yn‖L2
P (Ω) ≡

√
E[(Y − Yn)

2] → 0

Obs: By Chebychev we have

P (|Y − Yn| ≥ ε) ≤ E[(Y − Yn)2]

ε2
→ 0

for ay fixed ε > 0.



Definition. The sequence of random vari-

ables {Yn}n∈N converges weakly to the ran-

dom variable Y if E[g(Y )]−E[g(Yn)] → 0, for

all bounded continuous functions g.

Observe: strong convergence ⇒ weak con-

vergence, but the converse is in general not

true.
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Strong and weak convergence

Counterexample. Let random variables {Yn}n∈N

be iid in (Ω,F , P ), and Yn ∼ N(0,1), n =
1, . . ..
Verify that Yn converges weakly but not strongly!

Proof of (⇒) for Lipschitz functions:

|E[g(X) − g(Yn)]| ≤ E[|g(X) − g(Yn)|]
≤ CgE[|X − Yn|]
≤ Cg

√
E[|X − Yn|2]︸ ︷︷ ︸

=‖X−Yn‖L2
P

(Ω)

→ 0.
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Obs: The previous estimate may not be op-

timal. There are cases where the weak error

goes to zero much faster than the strong

one.



Ito Integrals

Theorem 1 Suppose that there exists C > 0

s.t. f : [0, T ] × R → R satisfies

|f(t+Δt, W+ΔW )−f(t, W )| ≤ C(Δt+|ΔW |)
then the forward Euler (left point quadra-

ture) approximations

IΔt =
N−1∑
n=0

f(tn, W (tn))ΔWn,

38



with 0 = t0 < t1 < . . . < tN = T, satisfy

‖IΔt−IΔt′‖L2
P (Ω) = E[IΔt−IΔt′]

1/2 ≤ O
(√

Δtmax

)
(12)



Ito integrals

Remark 2 The previous theorem implies that

IΔt is Cauchy in L2
P (Ω) and its limit defines

the Ito integral

N−1∑
n=0

f(tn, W (tn))ΔWn

=
∫ T

0
f(s, W (s))dW (s) + O

(√
Δtmax

)

The previous estimate should be understood
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as

E
[( N−1∑

n=0

f(tn, W (tn))ΔWn −
∫ T

0
f(s, W (s))dW (s)

)2]
= O (Δtmax)

Question: What is the computational work

to reach an accuracy ε in L2
P (Ω) sense using

uniform time steps?



Information generated by a process.

Definition 9 The symbol FW
t denotes the

information generated by W on the interval

[0, t]. If, based on the observation of the

trajectory {W (s),0 ≤ s ≤ t} it is possible to

decide if an event A ∈ F has occurred or not,

then we write A ∈ FW
t .

If the value of a random variable Z can be

completely determined by the observations

{W (s),0 ≤ s ≤ t} then we write Z ∈ FW
t .
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A stochastic process g is called adapted to

the filtration {FW
t }t≥0 if g(t) ∈ FW

t for all

t ≥ 0.

Obs Math Grads: The filtration {FW
t }t≥0

is actually an increasing family of σ-algebras.

See Øksendal’s book, Chapter 3, for precise

definition.



Examples

1. A = {W (10) < 5}

2. Z =
∫ 1
0 W (s)ds

3. f(t) = sups≤t W (s)

4. g(t) = sups≤t+1 W (s)
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Remark 3 (Extension to adapted Itô integration

Itô integrals can be extended to adapted pro-

cesses. Assume f : [0, T ]×Ω → R is adapted

to the filtration {FW
t }t≥0 and that there is a

constant C such that√
E[|f(t + Δt, ω) − f(t, ω)|2] ≤ C

√
Δt. (13)

Then the proof of Theorem 1 shows that

(12) still holds.
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Application Let M(t) ≡ max[0,t] W (s). Then

M(t) is adapted to {FW
t }t≥0 and

0 ≤ M(t + Δt) − M(t) ≤ max
[t,t+Δt]

(W (s) − W (t))

from where∗

E[(M(t + Δt) − M(t))2] ≤ Δt E[(max
[0,1]

W (s))2]︸ ︷︷ ︸
E[W (1)2]

≤ Δt

∗ Here we use that P (M(t) ∈ db) = P (|W (t)| ∈ db, see
[K-S] p. 96.
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Therefore, (13) is verified for∫ T

0
M(t)dW (t)

and the rate of strong approximation to it by

the F. Euler method is still 1/2.



Theorem 2 (Basic properties of Itô integrals)

Suppose that f, g : [0, T ]×Ω → R are Itô inte-

grable, e.g. FW
t -adapted and satifying (13),

and that c1, c2 are constants in R. Then:

(1) ∫ T

0
(c1f(s, ·) + c2g(s, ·))dW (s)

= c1

∫ T

0
f(s, ·)dW (s) + c2

∫ T

0
g(s, ·)dW (s)

.
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(2) E
[∫ T

0 f(s, ·)dW (s)
]
= 0.

(3)

E

[
(
∫ T

0
f(s, ·)dW (s))(

∫ T

0
g(s, ·)dW (s))

]

=
∫ T

0
E [f(s, ·)g(s, ·)] ds.



Problem How can we approximate numer-

ically the object
∫ T
0 f(s, W (s))dW (s)?
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Approximation of
∫ 1
0 W (s)dW (s):

dt = 1/N;

t = linspace(0,1,N+1);

dW = sqrt(dt)*randn(N,M);

W = cumsum(dW);

W = [zeros(1,M);W];

I = 0.5*(W(N+1,:).^2-t(N+1));

IFE = sum(W(1:N,:).*dW);

Error(J,:) = I-IFE;

mean_Square_Error = mean((Error.^2)’)’;
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Question: Which changes are needed to ex-

tend the previous code to variable step size,

i.e. to approximate I based on given points,

not necessarily evenly distributed,

0 = t0 < . . . < tN?
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Strong approximation for∫ 1
0 W (s)dW (s) = W2(1)−1

2 using F. Euler
with uniform time steps, M = 103.

48



Problem: Write a code to reproduce the

previous results.
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Question: Does the Wiener process really

exist?

Answer: yes, see Example 2.18 in the notes,

where we construct it as a limit of piecewise

linear stochastic processes.
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