Exercise Show that if W(t) is a Wiener pro-
cess, then

B(t) =cW (Ciz)

is also a Wiener process. Here ¢ #= 0 is a
constant.
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Approximation and Definition of Stochas-
tic Integrals

32



Questions on the definition of a stochas-
tic integral

Remark 1 Problem: How to define the stochas-
tic integral [& W (t)dW (t), where W (t) is the
Wiener process.

Can we use the same approach as with Rie-
mann integrals, taking sums

N—-1
> W)W (tpg1) — W(tn))
n=0

with &n € [tn, t4-1]7
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As a first step, use the forward Euler dis-
cretization

N-1
> W(tn) (W(tn+1> — W(tn)) .
n=0 —AWn

Taking expected values we obtain (why?)

N-—1 N-—1
E[ Y W(En)AW,] = Z E[W (tn) AWy]
= -1
= 2> EW(t)] E[AWn]
n=0 —0

=0.



Now let us use instead the backward Euler
discretization

N—-1
> W(tp+1)AWn.

n=0

Taking expected values yields a different re-



Sult:

N-1
Z E[W(tn—l—l)AWn]
n=0
N-1
= Y E[W(tn) AWy] + E[(AWR)?]
n=0



Moreover, if we use the trapezoidal method
the result is

N-1
W (tng 1) + Wta)

nzszE 2 Wn
N—-1
= > E[W(tn) AWn] + E[(AW,)?/2]
n=0
N—-1
n=0 2



Conclusion: we need more information to
define [& W (s)dW (s) than to define a deter-
ministic integrall

In fact, limits of the forward Euler define the
so called Itdo integral, while the trapezoidal
method yields the so called Stratonovich in-
tegral.
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Strong and weak convergence

Depending on the application, we focus ei-
ther on

e Strong convergence, where approximation
of the outcomes of X (T) is relevant,

e Or weak convergence, where only the dis-
tribution (law) of X (T') needs to be ap-
proximated.
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Definition. The sequence of random vari-
ables {Yn },,en cOnverges strongly to the ran-
dom variable Y if

IY = Yall 2.0 = VEIY = Y)2 =0
Obs: By Chebychev we have

E[(Y — Yn)?] .
E2

P(Y =Yy >e) < 0

for ay fixed € > 0.



Definition. The sequence of random vari-
ables {Yn},en converges weakly to the ran-
dom variable Y if E[g(Y)]— FE[g(Yrn)] — O, for
all bounded continuous functions g.
Observe: strong convergence = weak con-
vergence, but the converse is in general not
true.
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Strong and weak convergence

Counterexample. Let random variables {Yn },,cN
be iid in (2,F,P), and Y, ~ N(0,1),n =
1,....

Verify that Y,, converges weakly but not strongly!

Proof of (=) for Lipschitz functions:

|E[g(X) — g(Yn)]] < E[|g(X) — g(Yn)]]
< CyE[|X — Yal]
< CyVEIX — Yal?] — 0.

= || X Y|, 2
LD

(€2)

37



ODbs: The previous estimate may not be op-
timal. There are cases where the weak error
goes to zero much faster than the strong
one.



Ito Integrals

Theorem 1 Suppose that there exists C > 0
s.t. £:]0,T] xR — R satisfies
fA+AL, WHAW)—f(t, W)| < C(At+|AW])

then the forward Euler (left point quadra-
ture) approximations

N-—1
Ing = Z f(tn, W(tn)) AWy,

n=0
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With 0 =tg <t1 <...<ty =T, satisfy

||1At_IAt’HL]%(Q) — E[IAt_IAt/]l/Q <0 (\/ Atmax)
(12)



Ito integrals

Remark 2 The previous theorem implies that
In; is Cauchy in L%(2) and its limit defines
the Ito integral

N-1

> fln, W(tn)) AW,

n=0

_ /O L s W())dW (5) + O (VAtmax)

T he previous estimate should be understood
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as

N—-1 T 2
Bl ftns W(tn)) AW, — /O f(s,W(s)dw (s))”]
n=0

= O (Atmax)

Question: What is the computational work
to reach an accuracy ¢ in L]%(Q) sense using
uniform time steps?



Information generated by a process.

Definition 9 The symbol F}V denotes the
information generated by W on the interval
[0,t]. If, based on the observation of the
trajectory {W(s),0 < s <t} it is possible to
decide if an event A € F has occurred or not,
then we write A € F)V.

If the value of a random variable Z can be
completely determined by the observations
{W(s),0 < s <t} then we write Z ¢ FV.
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A stochastic process g is called adapted to
the filtration {F}V},>q if g(¢t) € 7}V for all
t > 0.

Obs Math Grads: The filtration {F/V};>¢
is actually an increasing family of o-algebras.
See Pksendal’'s book, Chapter 3, for precise
definition.



Examples

1. A={W(10) < 5}
2. Z = [3 W(s)ds

3. f(t) = sups<¢ W(s)

4. g(t) = sups<iy1 W(s)
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Remark 3 (Extension to adapted It6 integratior
Ito integrals can be extended to adapted pro-

cesses. Assume f :[0,T] x 2 — R is adapted

to the filtration {F}V };>0 and that there is a
constant C such that

VEIf(t+ At,w) — f(t,w)[] < CVAL (13)

Then the proof of Theorem 1 shows that
(12) still holds.
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Application Let M(t) = maxg 4 W(s). Then
M(t) is adapted to {F}¥};>0 and

0 < M@+ At) — M) < [t’?ﬁfgt](W(S) - W(t))

from where*

E[(M(t+ At) — M(1))?] < At E[(r[gafow)Q]

E[W(1)2]

7

< At

* Here we use that P(M(t) € db) = P(|W (t)| € db, see
[K-S] p. 96.
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Therefore, (13) is verified for

T
/ M()dW (t)

0
and the rate of strong approximation to it by

the F. Euler method is still 1/2.



Theorem 2 (Basic properties of Ito integrals)

Suppose that f,qg : [0,T]|xQ2 — R are Ito inte-
grable, e.g. F/V-adapted and satifying (13),
and that cq,cp are constants in R. Then:
(1)
T
| (e (s, + e29(s, D)W (s)
T T '
=c1 [ £(s,)aW(s) + ez [ g(s,)aW (s)

44



(2) E|[3 f(s,)dW (s)| = 0.

3)
B 1Gea ) [ ot 2aw )
= [ L5, )95, ds



Problem | How can we approximate numer-

ically the object [& f(s, W(s))dW (s)?
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Approximation of [§ W (s)dW (s):

dt = 1/N;

t = linspace(0,1,N+1);

dW = sqrt(dt)*randn(N,M);

W = cumsum(dW) ;

W = [zeros(1,M);W];

I = 0.5%x(W(N+1,:).72-t(N+1));
IFE = sum(W(1:N,:) .*dW);
Error(J,:) = I-IFE;

mean_Square_Error = mean((Error."2)’)’;
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Question: Which changes are needed to ex-
tend the previous code to variable step size,
i.e. to approximate I based on given points,
not necessarily evenly distributed,

O=tg<...<tnN7
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U.2o

L L L L L L L L L
1 Uz .1 U1z u.z U2 .3 .35 .4 .4 ([
ot

Strong apprzoximation for
fol W(s)dW(s) = W (21>_1 using F. Euler
with uniform time steps, M = 103.
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Problem: Write a code to reproduce the
previous results.
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Question: Does the Wiener process really
exist?

Answer: yes, see Example 2.18 in the notes,

where we construct it as a limit of piecewise
linear stochastic processes.
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