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Abstract. We seek numerical methods for second-order stochastic differential equations that
accurately reproduce the stationary distribution for all values of damping. A complete analysis is
possible for linear second-order equations (damped harmonic oscillators with noise), where the statis-
tics are Gaussian and can be calculated exactly in the continuous-time and discrete-time cases. A
matrix equation is given for the stationary variances and correlation for methods using one Gaussian
random variable per timestep. The only Runge-Kutta method with a nonsingular tableau matrix in
the class that gives the exact steady state density for all values of damping is the implicit midpoint
rule. Numerical experiments comparing the implicit midpoint rule with Heun and leapfrog methods
suggest that the qualitative behavior is similar to the linear case for nonlinear equations with additive
or multiplicative noise.
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1. Introduction. Newton’s law states that acceleration is proportional to force.
Consequently, second-order differential equations are common in scientific applica-
tions, in the guise of “Langevin”, “Monte Carlo”, “Molecular” or “Dissipative parti-
cle” dynamics [1, 2], and the study of methods for second-order ordinary differential
equations is one of the most mature branches of numerical analysis [3]. The most ex-
citing advances in recent decades have been the development of symplectic methods,
capable of exactly preserving an energy-like quantity over very long times [4]. In the
stochastic setting, the long-time dynamics of a typical physical system is governed
by fluctuation-dissipation, so that the amount of time spent in different regions of
phase space is controlled by the stationary density. The stationary density can have
a relatively simple explicit expression even when the dynamics is highly nonlinear [5].
Numerical methods replace continuous-time with discrete-time dynamics, generating
values at times t0, t1, . . .. Usually tn+1 − tn is a fixed number ∆t. The criterion for
a good numerical method that will be examined in this work is that its discrete time
dynamics has a steady-state density as close as possible to that of the continuous-time
system.

The differential equations describing second-order systems contain a parameter
known as damping. The steady-state density is independent of damping, but time-
dependent quantities and the usefulness or otherwise of numerical algorithms are
strongly dependent. As the damping tends to infinity the system becomes first order.
The limit of zero damping, on the other hand, corresponds to Hamiltonian systems
where symplectic methods can be applied. The aim in this paper is to devise methods
capable of accurately reproducing the steady-state density for all values of damping.

We shall consider equations of the following form:

ẍ = f(x)− ηẋ + εξ(t), (1.1)

where
〈
ξ(t)ξ(t′)

〉
= δ(t− t′) and the damping parameter is denoted η. Angled brack-

ets denote mean over realizations. The second-order stochastic differential equation
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(SDE) (1.1) describes the position of a particle subject to deterministic forcing f(x)
and random forcing ξ(t). The deterministic forcing is related to the potential function
V (x) via

f(x) = −V ′(x). (1.2)

The amplitude of the random forcing, ε, is related to the temperature T and damping
coefficient η by the fluctuation-dissipation relation

ε2 = 2ηKT. (1.3)

We can write (1.1) as a pair of first-order equations for Xt and Vt, the position
and velocity variables:

dXt = Vtdt

dVt = −ηVtdt + f(Xt)dt + εdWt, (1.4)

where Wt is a Wiener process satisfying
〈
WtWs

〉
= min(t, s). The probability

density at time t is P (x, v; t), where

P (x, v; t) =
d
dx

d
dv

Prob (Xt < x,Vt < v) . (1.5)

The stationary density, P∞(x, v), defined as

P∞(x, v) = lim
t→∞

P (x, v; t), (1.6)

has the following analytical form:

P∞(x, v) = N exp
(
−v2/2KT − V (x)/KT

)
. (1.7)

Thus the late-time statistics of the velocity are Gaussian and uncorrelated with the
position. It is notable that the stationary density has a closed tractable form for many
nonlinear functions f(x) when analytical study of the full evolution is not possible.

In this paper we examine how faithfully the stationary density is reproduced
by standard timestepping methods for SDEs. These methods produce approximate
values for position Xn and velocity Vn at discrete times t0, t1, . . ., where tn+1−tn = ∆t.
We consider the evolution of Xn and Vn and their statistical properties as tn → ∞,
and compare with the exact form (1.6). In particular, we consider P ∗(y, u; tn), the
discrete-time analogue of (1.5), and compare

P ∗∞(y, u) = lim
tn→∞

P ∗(y, u; tn) (1.8)

with P∞(y, u). In this work we instead base our analysis on linear second-order
equations, where the statistics are Gaussian and completely characterized by three
quantities: the mean-squares of the position and velocity variables, and the correlation
between the position and velocity.

The Euler and Heun methods simply treat (1.4) as a pair of SDEs, without
attempting to take advantage of their special structure due to their origin in a single
second-order differential equation. We shall show that they perform reasonably well
at intermediate values of damping, but fail at high damping, when the equations are
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stiff, and low damping, when it is important to conserve energy-like quantities over
long times.

The Verlet algorithm [1, 8, 9] produces numerical solutions of second order dif-
ferential equations by updating the position variable without reference to the velocity
variable. Extensions of this idea to Langevin equations [9, 10, 11, 15] have proved suc-
cessful, and convergence properties may be analyzed using a second-order difference
equations [11, 12, 13]. The implicit midpoint rule cannot be written as a difference
equation but can be written as a matrix equation [13]. Time-dependent properties
of numerical algorithms for the class of linear equations considered in this paper can
be considered by means of a modified frequency [13] or by the method of modified
equations [16].

Recently, analysis by Mannella [20] of the stationary distribution resulting from
numerical timestepping methods, based on an expansion of the exponent in (1.7),
lead to a proposed modification of the leapfrog method. We shall take this method as
one of our examples and find that it provides a notable improvement on the standard
leapfrog method.

A slightly different system has been studied by Melbo and Higham [21]. They
considered a second-order system, but without a damping term. Rather than ap-
proaching a steady-state density, the sum of the mean squared velocity and position
grows proportional to time. Partitioned methods are superior to the Euler method
for this system.

In Section 2, we consider linear second-order equations, describing harmonic os-
cillators with noise and damping. The statistics for linear systems are Gaussian, de-
scribed by a covariance matrix, and can be calculated exactly in the continuous time
and discrete time cases. A matrix equation is derived for the stationary variances
and correlations resulting from a large class of numerical methods. We then calcu-
late the stationary variances produced by some well-known methods. All methods we
shall consider use one realization per timestep of a Gaussian distribution with mean
zero and variance ∆t, denoted ∆W . This framework includes many methods with
multiple intermediate steps and implicit methods (which are in fact explicit for linear
equations). The Euler and Heun methods are shown to be unstable for sufficiently
small and sufficiently large damping, while leapfrog methods are stable for arbitrarily
small damping. Instability reveals itself in this context as infinite stationary means
or correlations.

In Section 3 we seek “measure-exact” methods for linear second-order SDEs, that
is methods that give the correct late-time mean square of the position and velocity
and absence of correlation between them. In Section 4, we restrict consideration
to Runge-Kutta methods and show that the unique measure-exact method is the
implicit midpoint rule. In Section 5 we report on numerical experiments carried out
on a nonlinear system; in Section 6 we report on numerical experiments carried out
on the same system with multiplicative noise. In both cases the implicit midpoint
rule is the most satisfactory over the full range of values of damping.

2. Linear equation and matrix notation. If f(x) = −gx, then the stationary
density is

P∞(x, v) = N exp
(
−g x2/2KT − v2/2KT

)
.
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The distributions of the position and velocity variables are Gaussian with

lim
t→∞

〈
Xt

2
〉

=
1
g
KT

lim
t→∞

〈
V2

t

〉
= KT (2.1)

lim
t→∞

〈
XtVt

〉
= 0.

In matrix notation, the linear second-order SDE can be written as

d
(
Xt

Vt

)
= Q

(
Xt

Vt

)
dt + ε

(
0
1

)
dWt, (2.2)

where

Q =
(

0 1
−g −η

)
. (2.3)

Numerical methods, single or multistep, for the linear system can be written as(
Xn+1

Vn+1

)
= R

(
Xn

Vn

)
+ εr∆W, (2.4)

where

R =
(

r11 r12

r21 r22

)
and r =

(
r1

r2

)
. (2.5)

Since the numerical evolution is also linear, P ∗∞(x, v) is also Gaussian. Let

Σ =
(

σ2
x µ

µ σ2
v

)
, (2.6)

where

σ2
x = lim

tn→∞

〈
X2

n

〉
σ2

v = lim
tn→∞

〈
V 2

n

〉
(2.7)

µ = lim
tn→∞

〈
XnVn

〉
.

Then

P ∗∞(x, v) =
1
2π
|M∗| 12 exp

(
−1

2
(x, v)M∗

(
x
v

))
,

where M∗ = Σ−1.
The stationary density of a numerical method is defined as being unchanged by

the transformation (2.4). Now, if
(

Xn

Vn

)
is Gaussian with mean zero and correlation

matrix Σ, then R

(
Xn

Vn

)
is Gaussian with mean zero and correlation matrix RΣRT.

Thus the stationary correlation matrix that results from a method of the form (2.4)
satisfies

Σ = RΣRT + ε2rrT∆t
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or

RΣRT = Σ− ε2rrT∆t. (2.8)

In the remainder of this Section, we shall use (2.8) to calculate the σ2
x, µ, and σ2

v

as a function of η and ∆t for various numerical methods. We rewrite (2.8) in a form
suitable for inversion:r2

11 − 1 2r11r12 r2
12

r11r21 r11r22 + r12r21 − 1 r12r22

r2
21 2r21r22 r2

22 − 1

σ2
x

µ
σ2

v

 = −ε2∆t

 b2
1

b1b2

b2
2

 , (2.9)

and consider what happens for some well-known methods.

2.1. Forward Euler method. Under the Euler method, the position and ve-
locity variables are updated as follows:

Xn+1 = Xn + Vn ∆t

Vn+1 = Vn − ηVn∆t + f(Xn) ∆t + ε∆W. (2.10)

With the notation of (2.4), R = RE and r = rE where

RE = 1 + ∆tQ =
(

1 ∆t
−g∆t 1− η∆t

)
, (2.11)

rE =
(

0
1

)
and the solution of (2.8) yields

ΣE =
KT

1− g
η ∆t

(2− η∆t +
1
2
g∆t2)−1

( 1
g (2− η∆t + g∆t2) −∆t

−∆t 2

)
. (2.12)

In Figure 2.1 we display the differences between the stationary variances obtained
by applying the Euler method to the linear equation and the exact values (2.1). We
conclude that the forward Euler method works best at intermediate values of η. It is
unstable for η < g∆t and for η > 2∆t−1+ 1

2g∆t. In Figure 2.2, we plot the correlation
between velocity and position, which is zero in the exact solution but is proportional
to ∆t under the Euler method.

2.2. The Heun method. Under the Heun method, intermediate values are
obtained via the Euler method:

X̂ = Xn + Vn ∆t

V̂ = Vn − ηVn∆t + f(Xn) ∆t + ε ∆W. (2.13)

The update is

Xn+1 = Xn +
1
2
(Vn + V̂ ) ∆t

Vn+1 = Vn −
1
2
η(Vn + V̂ )∆t +

1
2
(f(Xn) + f(X̂))∆t + ε ∆W. (2.14)
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Fig. 2.1. Stationary variances vs damping for the forward Euler method. The differences
between the late-time mean squares and the exact values are plotted against η for fixed ∆t = 0.1,
g = 1 and KT = 1.0. The lines use (2.12). Dots with error bars are obtained from numerical
solution of the linear SDE.

With the notation of (2.4), R = RH and r = rH where

RH = I + ∆tQ +
1
2
∆tQ2 =

(
1− 1

2g∆t2 ∆t− 1
2η∆t2

−g∆t + 1
2ηg∆t2 1− η∆t + 1

2 (−g + η2)∆t2

)
and

rH =
(

1
2∆t

1− 1
2η∆t

)
.

Then the stationary density is characterized by

σ2
x =

KT

g

4− η∆t + 1
2η2∆t2 − 1

8 (gη + η3)∆t3 + 3
16gη2∆t4 − 1

8g2η∆t5 + 1
32g3∆t6(

2− η∆t + (η2 − g)∆t2 − 1
4ηg∆t3 + g2∆t4/8

)
(2− η∆t + g∆t2 − g2∆t3/(2η))

σ2
v = KT

(2− η∆t)2(
2− η∆t + (η2 − g)∆t2 − 1

4ηg∆t3 + g2∆t4/8
)
(2− η∆t + g∆t2 − g2∆t3/(2η))

µ =
∆t2KT

4
(2− η∆t)(2η − g∆t)(

2− η∆t + (η2 − g)∆t2 − 1
4ηg∆t3 + g2∆t4/8

)
(2− η∆t + g∆t2 − g2∆t3/(2η))

.

Compared with the Euler method, the upper limit on η for stability is little changed.
The lower limit is, however, proportional to ∆t3. As ∆t → 0, the Heun method is
stable for

1
4
g2∆t3 < η < 2∆t−1.

The correlation between position and velocity is proportional to ∆t2 under the Heun
method.
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Fig. 2.2. Stationary correlation vs damping for the forward Euler method. The late-time
correlation, µ, obtained using the forward Euler method, is plotted against η for fixed ∆t = 0.1,
g = 1 and KT = 1.0. The line use (2.12). Dots with error bars are obtained from numerical
solution of the linear SDE.

2.3. The leapfrog method. Under leapfrog methods, velocity and position are
updated successively rather than together. The simplest possibility is

X̂ = Xn +
1
2
Vn∆t

Vn+1 = Vn − ηVn∆t + f(X̂)∆t + ε ∆W

Xn+1 = X̂ +
1
2
Vn+1∆t. (2.15)

Under this method, with the notation of (2.4), R = RL and r = rL where

RL =
(

1− 1
2g∆t2 ∆t− 1

2η∆t2 − 1
4g∆t3

−g∆t 1− η∆t− 1
2g∆t2

)
,

and

rL =
(

1
2∆t
1

)
.

The leapfrog method maintains the independence of position and velocity and pro-
duces the exact stationary variance of the position variable. However the error in σ2

v

is an increasing function of η:

Σle = KT

(
1/g 0
0 (1− 1

2η∆t− 1
4g∆t2)−1

)
. (2.16)
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Fig. 2.3. Stationary variances vs damping for the Heun method. The differences between the
late-time mean squares and the exact values are plotted against η for fixed ∆t = 0.1, g = 1 and
KT = 1.0. The lines use (2.15). Dots with error bars are obtained from numerical solution of the
linear SDE.

Mannella [20] has proposed the following modification of the leapfrog method:

X̂ = Xn +
1
2
Vn∆t

Vn+1 = c1

(
c2Vn + f(X̂)∆t + ε ∆W

)
(2.17)

Xn+1 = X̂ +
1
2
Vn+1∆t,

where c1 = 1− 1
2η∆t and c2 = (1 + 1

2η∆t)−1. The corresponding quantities are

RM =
(

1− c2
1
2g∆t2 1

2∆t
(
1 + c1c2 − 1

2c2∆t2
)

−c2g∆t c1c2 − 1
2c2g∆t2

)
,

rL = c2

(
1
2∆t
1

)
,

and

ΣM = KT

(
1/g 0
0 (1− 1

2η∆t− 1
4g∆t2)−1

)
. (2.18)

The only error, in σ2
v , is independent of η.

2.4. The BBK method. Under the BBK method [10], the position variable is
updated without reference to the velocity variable. The two most recent values of the
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position variable need to be retained and the update is

Xn+1 = Xn +
1− 1

2η∆t

1 + 1
2η∆t

(Xn −Xn−1) +
∆t

1 + 1
2η∆t

(f(Xn) + ε ∆W ) . (2.19)

With the definition of velocity Vn∆t = Xn−Xn−1, proposed in [11], the BBK method
can be written in the form (2.4) with [14]

RB =

1− g∆t2

1+ 1
2 η∆t

1− 1
2 η∆t

1+ 1
2 η∆t

∆t

− g∆t
1+ 1

2 η∆t

1− 1
2 η∆t

1+ 1
2 η∆t

 ,

and

rB =
1

1 + 1
2η∆t

(
∆t
1

)
.

Whatever the definition of velocity, we find [11, 13, 16]

σ2
x =

KT

g

1
1− 1

4g∆t2
. (2.20)

However σ2
v and µ do depend on the definition of velocity. Note that, with the velocity

definition 2Vn∆t = Xn+1−Xn−1, the BBK update cannot be put into the form (2.4).

2.5. The implicit midpoint method. Under the implicit midpoint method,
intermediate values are obtained via the implicit procedure

X̂ = Xn +
1
2
V̂ ∆t

V̂ = Vn −
1
2
ηV̂ ∆t +

1
2
f(X̂)∆t + ε ∆W. (2.21)

The update is

Xn+1 = Xn + V̂ ∆t

Vn+1 = Vn − ηV̂ ∆t + f(X̂)∆t + ε ∆W. (2.22)

With the notation of (2.4), R = RI and r = rI where

RI =
(

I − 1
2
∆tQ

)−1(
I +

1
2
∆tQ

)
=
(

1− 1
2g∆t2 α−1∆t

−α−1∆t 2α−1 − 1

)
,

and

rI = α−1

(
1
2∆t
1

)
,

where α = 1 + 1
2η∆t + 1

4g∆t2, then

Σim = KT

(
1/g 0
0 1

)
. (2.23)

Since RI and rI satisfy (2.8), the implicit midpoint method gives the exact stationary
variances for all values of η. Only an algebraic error in Appendix A of [13] prevented
this observation being made by Mishra and Schlick. The behavior of the implicit
midpoint method is explored further in Section 4.
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3. “Measure-Exact” algorithms. The exact covariance matrix is.

Σe = KT

(
g−1 0
0 1

)
. (3.1)

We want to find R and r that satisfy (2.8) with Σ = Σe, that is

R

(
g−1 0
0 1

)
RT =

(
g−1 0
0 1

)
− 2ηrrT∆t. (3.2)

We shall assume Σ is positive definite and let ∆t is be chosen small enough to ensure

G = Σ− rrT∆t

is also positive definite. Matrices Σ
1
2 and G

1
2 can be constructed to satisfy

G = G
1
2

(
G

1
2

)T

,

Σ = Σ
1
2

(
Σ

1
2

)T

.

Let Σ−
1
2 and G−

1
2 be the inverses of Σ

1
2 and G

1
2 . Condition (2.8) can then be rewritten

as

PPT = I,

where P = G−
1
2 RΣ

1
2 and I is the identity matrix. Any n × n orthogonal matrix P

generates a solution of (3.2) as

R = G
1
2 PΣ−

1
2 . (3.3)

A real 2× 2 orthogonal matrix can be written as

P =
(

(1− a2)1/2 a
−a (1− a2)1/2

)
,

for some |a| ≤ 1. This form is convenient because we can take a ∝ ∆t; P reduces to
the identity matrix when a = 0.

With Σ given by (3.1), we can choose

Σ
1
2 = (KT )1/2

(
g−1/2 0

0 1

)
. (3.4)

So

G = Σ− rrT∆t

=
(

KT/g − r2
1∆t −r1r2∆t

−r1r2∆t KT − r2
2∆t

)
,

and

G
1
2 =


(
KT/g − r2

1∆t
) 1

2 0
−r1r2∆t

(KT/g−r2
1∆t)

1
2

(
KT − r2

2∆t + (r1r2∆t)2

KT/g−r2
1∆t

) 1
2

 . (3.5)
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Any measure-exact method, using one Gaussian random variable per timestep,
can be obtained from (3.3) with some choice of a, r1 and r2. For example, we may

obtain a measure-exact Euler-like method by choosing r =
(

0
1

)
. That is,

G1/2 = (KT )1/2

(
g−1/2 0

0 (1− 2η∆t)1/2

)
and

R = G1/2P Σ−1/2 =

(
(1− a2)1/2 ag−1/2

−ag1/2(1− 2η∆t)1/2 (1− a2)1/2(1− 2η∆t)1/2

)
.

If we use the one remaining degree of freedom by choosing a such that the Euler
method is obtained as ∆t → 0,

a = g1/2∆t,

then

R =

(
(1− g∆t2)1/2 ∆t

−g∆t(1− 2η∆t)1/2 (1− g∆t2)1/2(1− 2η∆t)1/2

)
. (3.6)

Notice that the difference between (3.6) and (2.11) is Order ∆t2. This modified Euler
method reproduces the exact stationary density as long as 2η∆t < 1. As a next step,
we may impose agreement of R with exp(∆tQ) to order ∆t2:

R = I + ∆tQ +
1
2
∆t2Q2 + · · · . (3.7)

Then a = g
1
2 ∆t − 1

2g
1
2 η∆t2, r1 = 1

2∆t + · · · and r2 = 1 − η 1
2∆t + · · ·. Methods

constructed in this way will have a stationary density differing from the exact density
by some power of ∆t.

In the next Section we return to the question of solving the condition (3.2) exactly,
yielding an R matrix and corresponding numerical method that reproduces the exact
stationary density.

4. Runge-Kutta methods. Consider the m-dimensional additive noise SDE
[7]

dYt = f(Yt)dt + εHdBt, (4.1)

where Yt and Bt are m×1 column vectors, the entries of Bt are independent Wiener
processes and H is an m × m matrix with constant entries. Let the numerically-
generated approximations be denoted by column vectors yn. Under an s-stage Runge-
Kutta method, yn+1 is obtained from yn as a weighted sum of s evaluations of the
function f at intermediate values Yi:

yn+1 = yn +
s∑

j=1

bjf(Yi)∆t + εH∆Bn, (4.2)

where
∑

j bj = 1. The intermediate values satisfy

Yi = yn +
s∑

j=1

aijf(Yj)∆t + εciH∆Bn. (4.3)
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Let Y = (Y1, Y2, . . . , Ys)T, c = (c1, c2, . . . , cs)T, e = (1, 1, . . . , 1)T and A be the
s × s matrix whose entries are the coefficients in (4.3). For the linear equation (2.2)

with m = 2, H =
(

0 0
0 1

)
and f(y) = Qy,

Y = e⊗ yn + A⊗QY ∆t + εc⊗
(

0
1

)
∆W. (4.4)

If b = (b1, b2, . . . , bs)T , we can write

yn+1 = yn + bTY ⊗Q∆t + ε

(
0
1

)
∆W

= yn + bT ⊗Q (Is ⊗ Im −A⊗Q∆t)−1 (e⊗ yn + εc⊗
(

0
1

)
∆W )

+ε

(
0
1

)
∆W

=
(
Im + bT ⊗Q (Is ⊗ Im −A⊗Q∆t)−1

e
)

yn

+ε
(
Im + bT ⊗Q (Is ⊗ Im −A⊗Q∆t)−1

c
)(0

1

)
∆W. (4.5)

In the notation of (2.4), with r = R1

(
0
1

)
,

yn+1 = R(∆tQ)yn + R1(∆tQ)
(

0
1

)
ε∆W, (4.6)

where, for scalar z,

R(z) = 1 + bTz(Is −Az)−1e, (4.7)

and

R1(z) = 1 + bTz(Is −Az)−1c. (4.8)

Let us now examine the condition for exact stationary measure. We shall take
g = 1, which can always be achieved by rescaling time, so

Σe = KT

(
1 0
0 1

)
The equation to be satisfied is now

RRT − I + 2η∆tR1

(
0 0
0 1

)
RT

1 = 0. (4.9)

Let

R(∆tQ) = I +
∞∑

i=1

αi(∆tQ)i (4.10)

and

R1(∆tQ) = I +
∞∑

i=1

βi(∆tQ)i. (4.11)
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Then (4.9) can be expanded in powers of ∆t as

∆t

(
α1(Q + QT) + 2η

(
0 0
0 1

))
+∆t2

(
α2

1QQT + α2(Q2 + (QT)2) + 2ηβ1(Q
(

0 0
0 1

)
+
(

0 0
0 1

)
QT)

)
+∆t3

(
α3(Q3 + (QT)3) + α1α2(Q2QT + Q(Q2)T) (4.12)

+2η(β2Q
2

(
0 0
0 1

)
+ β2

(
0 0
0 1

)
(QT)2 + β2

1Q

(
0 0
0 1

)
QT)

)
+ · · · = 0.

If this equation is to be satisfied for all ∆t then each coefficient in the expansion must
be zero. It is easily shown that this can hold if and only if

αi = (1/2)i (4.13)

and

βi = αi+1. (4.14)

Thus the family of Runge-Kutta methods that gives the exact stationary density is
characterized by

R(∆tQ) =
(

I − 1
2
∆tQ

)−1(
I +

1
2
∆tQ

)
(4.15)

and

R1(∆tQ) = (∆tQ)−1(R(∆tQ)− 1). (4.16)

Explicitly

rT = ∆t−1

(
−r22 − ηr12

r12

)
.

For example, the Euler method has R = ∆tQ and rT =
(
0 1

)
. While Runge-Kutta

methods with more than one stage can be constructed that have the stability function
given by the above, they all have a singular tableau matrix. The unique Runge-Kutta
method,with a nonsingular tableau matrix, extended with a single Gaussian random
variable per time step, that preserves the exact stationary density of the linear equation
for all values of damping is thus the implicit midpoint method. For the linear equation,
the method is explicit and implemented as follows. We first generate X̂ and V̂ :

V̂ = α−1

(
Vn − gXn

1
2
∆t +

1
2
ε ∆W

)
(4.17)

X̂ = Xn + V̂
1
2
∆t, (4.18)

where α = 1 + 1
2η∆t + 1

4g∆t2. Then

Xn+1 = Xn + V̂ ∆t (4.19)

Vn+1 = Vn − ηV̂ ∆t− gX̂ ∆t + ε∆W. (4.20)

The steps (4.17)–(4.20) can be carried out in the order given.
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5. Double-well systems. The excellent properties of the implicit midpoint and
leapfrog methods for linear second-order SDEs prompt us to investigate its accuracy
for nonlinear equations. In this Section we take as our example the double-well system
(1.4), with

V (x) = −1
2
x2 +

1
4
x4. (5.1)

The steady-state density is given explicitly by (1.7). The statistics of the position
variable is non-Gaussian, but the exact value of σ2

x can be evaluated to arbitrary
accuracy by a numerical integration.

In general, using an implicit method on a nonlinear equation requires an iterative
procedure at each timestep. However, the structure of second-order systems makes a
very simple iteration possible. In the case of (1.4) we proceed as follows. Firstly, the
intermediate value X̂ is generated by repeated evaluation of

X̂ = Xn + (1 +
1
2
η∆t)−1 1

2
∆t

(
Vn +

1
2
∆tf(X̂) +

1
2
ε∆W

)
, (5.2)

by fixed-point iteration with the starting value X̂ = Xn. The rest of the algorithm is
explicit:

V̂ = Vn +
1
2
∆tX̂

Xn+1 = Xn + V̂ ∆t

Vn+1 = Vn − ηV̂ ∆t + f(X̂)∆t + ε∆W.

In practice, only a handful of evaluations of (5.2) are necessary, so the method can
be viewed as an explicit predictor-corrector approach.

In Figure 5.1 we display results obtained at KT = 0.1 using the Heun, leapfrog
and implicit midpoint methods, as a function of η for ∆t = 0.1. The Heun method is
seen to be inaccurate both at large and small values of damping, while the leapfrog
method is accurate for small damping but inaccurate for large damping. The implicit
midpoint method is accurate (but no longer exact) for all values of damping. Not
shown in this figure is Mannella’s modification of the leapfrog method, that performs
almost as well as the implicit midpoint method; it has a small error in σ2

x and σ2
v at

all values of η.
In Figure 5.2 we display results obtained at KT = 0.1 using the Heun, leapfrog

and implicit midpoint methods, as a function of ∆t for η = 1. Both leapfrog and
implicit midpoint methods maintain the independence of position and velocity for all
values of ∆t. The implicit midpoint method also gives the exact value of the late-
time mean square of the velocity variable. All of the methods have an error in σ2

x

proportional to ∆t2.

6. Multiplicative noise system. If the noise amplitude is a function of position
then it is commonly termed “multiplicative”. If the damping coefficient is multiplied
by an appropriate function of position:

ẍ = f(x)− ηs2(x)ẋ + εs(x)ξ(t), (6.1)
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Fig. 5.1. Mean squares and correlation versus η: double well system. Results obtained at
KT = 0.1 using the Heun (circles), leapfrog (larger filled circles) and implicit midpoint (small filled
circles) methods with ∆t = 0.1. The top graph shows the late-time mean square of the position
variable; the exact value is shown as a solid line. The middle graph shows the late-time mean
square of the velocity variable; the exact value is 0.1. The lower graph shows the correlation between
the position and velocity variables.

then the stationary density (1.7) is independent of s(x) [5]. In SDE notation (6.1) is
a pair of equations:

dXt = Vtdt

dVt = −ηs2(Xt)Vtdt + f(Xt)dt + εs(Xt)dWt. (6.2)

Because the coefficient of dWt in the SDE for Vt is a function of Xt only, there
is no difference between the Ito and Stratonovich [5] forms of (6.2). Note that, for
systems of SDEs where there is a difference between Ito and Stratonovich forms, the
implicit midpoint rule will converge to the Stratonovich form. However, it will only
have strong order 0.5 for non-commutative SDEs with more than one noise term, in
which case other approaches are needed to obtain a strong order of 1 [7].

We have performed numerical experiments with s(x) = x. Results for the leapfrog
method are not shown because the method does not converge to the exact result for
this system. In Figure 6.1 we display results obtained at KT = 0.1 using the Heun
method, Mannella’s modification of the leapfrog method and the implicit midpoint
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Fig. 5.2. Mean square and correlation versus ∆t: double well system. Results obtained at
KT = 0.1 using the Heun method (circles), leapfrog method (larger filled circles) and Mannella’s
modification (squares), and the implicit midpoint method (small filled circles) with η = 1. The top
graph shows the late-time mean square of the velocity variable; the exact value is 0.1. The lower
graph shows the correlation between the position and velocity variables.

method, as a function of η for ∆t = 0.1. In terms of the error in σ2
x, Mannella’s

method performs best at all values of η. The implicit midpoint method, however, is
the only one that appears to give the exact value of σ2

v at all values of η. In Figure
6.2 we display numerical results with KT = 0.1 and η = 1, as a function of ∆t.
Mannella’s method is the only one that has second-order convergence in σ2

x, but the
implicit midpoint method is more accurate for µ and σ2

v .
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Fig. 6.1. Mean squares and correlation versus η: double well system with multiplicative noise.
Results obtained at KT = 0.1 and ∆t = 0.1 using the Heun method (circles), the leapfrog method
(larger filled circles), Mannella’s modification of the leapfrog method (squares) and the implicit
midpoint method (small filled circles). The top graph shows the error in the late-time mean square
of the position variable. The middle graph shows the late-time mean square of the velocity variable;
the exact value is 0.1. The lower graph shows the correlation between the position and velocity
variables.
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graph shows the error in the late-time mean square of the position variable; the dotted lines are
0.1∆t, 0.06∆t, and 0.08∆t2. The middle graph shows the late-time mean square of the velocity
variable; the exact value is 0.1. The lower graph shows the correlation between the position and
velocity variables.
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7. Discussion. Exact calculations for linear equations are of interest in their
own right and because the qualitative form of the error as a function of ∆t and η carries
over to the nonlinear equations used as examples here. The implicit midpoint rule
is the only Runge-Kutta method with a nonsingular tableau matrix that reproduces
the exact stationary distribution for the linear equation. It also performs well when
applied to second-order nonlinear equations and is not difficult to implement using a
predictor-corrector approach. However, leapfrog type methods have the advantage of
being fully explicit even for nonlinear equations. Applied to our linear equations, the
simplest leapfrog method gives the exact stationary variance of the position variable
and maintains the independence of position and velocity. The remaining error, in
the variance of the velocity variable, is reduced under Mannella’s modification of the
leapfrog method. The qualitative picture is very similar for the nonlinear double-
well system: the implicit midpoint method and Mannella’s methods are the best, the
former being superior in the error in σ2

v and the latter being superior in the error in
σ2

x.
In the deterministic case when solving separable Hamiltonian problems, explicit

partitioned Runge-Kutta methods can be constructed that are symplectic. We aim
to extend the idea in a stochastic setting to construct explicit partitioned methods
that approximate the stationary correlation matrix with high-order accuracy.
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