1 Definitions

Definition 1.1. European Call Option

It gives holder the right but not the obligation to buy a stock at a fixed (strike) price K at time T. Hence the payoff is

$$payoff = \max[0, X_T - K] \tag{1.1}$$

Definition 1.2. Barrier Option

An option which comes into existence or becomes worthless if the underlying asset reaches some prescribed value before expiry.

Down and out The option expires worthless if the barrier $X_t = b$ is reached from above before expiry. Thus, its domain is $X_t > b$.

Definition 1.3. Lookback Option

An option whose payoff depends on the maximum or minimum realized asset price in some window [0, T].

payoff for minimum type call =
$$\max[0, X_T - Y_T]$$
 (1.2)

where

$$Y_T = \min_{0 \le t \le T} X_t \tag{1.3}$$

2 Pricing Minimum-Type Lookback Options

Given the Black-Scholes partial differential equation

$$\mathcal{L}U = -\frac{\partial U}{\partial t} + r U - r x \frac{\partial U}{\partial x} - \frac{1}{2} \sigma^2 x^2 \frac{\partial^2 U}{\partial x^2} = 0$$
(2.1)

and the minimum stock process is defined earlier in Equation 1.3, the price U(x, y, t) in (x > y, t < T) of a min-type lookback option satisfies

$$\mathcal{L}U = 0; \quad U(x, y, T) = f(x, y); \quad U'(y, y, t) = 0$$
(2.2)

Remark 2.1. The variable *y* plays the role of parameter.

Remark 2.2. Equation 2.2 resembles the PDE satisfied by a down and out barrier option with barrier level x = y.

3 Pricing Barrier Option

Let V(x,t) denote the price of a down and out barrier option with barrier x = b and expiry T payoff F(x). Then V(x,t) satisfies

$$\mathcal{L}V = 0; \quad V(x,T) = F(x); \quad V(b,t) = 0$$
(3.1)

in the domain (x > b, t < T).

This problem can be solved by using method of images.

$$V(x,t) = V_b(x,t) - V_b^*(x,t); \quad x > b$$
(3.2)

$$\mathcal{L}V_b = 0; \quad V_b(x, T) = F(x)\mathbf{1}_{x>b}; \quad V(b, t) = 0$$
 (3.3)

$$V_b^*(x,t) = (\frac{b}{x})^{\beta} V(\frac{b^2}{x}, t), \quad \beta = \frac{2r}{\sigma^2} - 1$$
(3.4)

Remark 3.1. $V_b^*(x,t)$ is the Black-Scholes image of $V_b(x,t)$ relative to x = b. Also, $V_b^*(x,t) = V_b(x,t)$ when x = b.

Theorem 3.1. The equivalent payoff for a minimum-type lookback option with expiry T payoff U(x, y, T) = f(x, y) is given by

$$U_{eq}(x, y, T) = f(x, y) \mathbf{1}_{x>y} + g(x, y) \mathbf{1}_{x

$$(3.5)$$$$

where

$$g(x,y) = f(x,x) - \int_{x}^{y} (f^{*})'(x,\xi)d\xi$$
(3.6)

Proof. If U(x, y, t) solves Equation 2.2 then

$$V(x, y, t) = U'(x, y, t) = \frac{\partial U}{\partial y}$$
(3.7)

In fact the PDE satisfied by V(x, y, t) in (x > y, t < T) will be given in

$$\mathcal{L}V = 0; \quad V(x, y, T) = f'(x, y); \quad V(y, y, t) = 0$$
 (3.8)

This is exactly a PDE for a down and out barrier option with barrier level x = y. By solving this PDE by method of images we obtain

$$V_{eq}(x, y, T) = f'(x, y)\mathbf{1}_{x>y} - (f^*)'(x, y)\mathbf{1}_{x< y}$$
(3.9)

Thus, integrating $V_{eq}(x, y, T)$ with respect to y we obtain the result we are looking for.

$$U_{eq}(x, y, T) = f(x, y)\mathbf{1}_{x>y} + g(x, y)\mathbf{1}_{x$$

4 Binary Option

The analysis for lookback option is further simplified by introducing notation for binary options on which the lookback option prices will ultimately depend.

$$A_{\xi}^{+}(x,0) = x \mathbf{1}_{x>\xi} \text{ and } A_{\xi}^{-}(x,0) = x \mathbf{1}_{x<\xi}$$
 (4.1)

- A_{ξ}^+ denotes the price of a contract that pays 1 unit of the underlying asset at expiry T provided the asset price at expiry is above the exercise price ξ .
- vice versa for A_{ξ}^{-} .
- $B^s_{\xi}(x,\tau)$ is the binary bond with the following expiry payoff

$$B^s_{\xi}(x,0) = x \mathbf{1}_{sx > s\xi} \tag{4.2}$$

By static replication we can express European calls and puts in terms of binaries

$$C_k(x,\tau) = A_{\xi}^+(x,\tau) - kB_{\xi}^+(x,\tau)$$
(4.3)

$$P_k(x,\tau) = -A_{\xi}^-(x,\tau) - kB_{\xi}^-(x,\tau)$$
(4.4)

5 Pricing Minimum Lookback Option in terms of Binary Option

Let us recall Theorem 3.1

$$U_{eq}(x, y, T) = f(x, y)\mathbf{1}_{x>y} + g(x, y)\mathbf{1}_{x(5.1)$$

and

$$g(x,y) = f(x,x) - \int_{x}^{y} (f^{*})'(x,\xi)d\xi$$
(5.2)

Setting f(x, y) = y and f'(x, y) = 1 in Equations 5.1 and 5.2 we obtain the equivalent price of minimum lookback option.

$$m_{eq}(x, y, 0) = y\mathbf{1}_{x>y} + \left[x - \int_{x}^{y} (\frac{\xi}{x})^{\beta} d\xi\right] \mathbf{1}_{x
$$= (1+\alpha)x\mathbf{1}_{xy}^{*}]$$$$

where

$$\alpha = \frac{\sigma^2}{2r} = \frac{1}{1+\beta}.$$

Using the notation in 4.1 and 4.2 for binaries we obtain

$$m(x, y, \tau) = (1 + \alpha)A_y^-(x, \tau) + y[B_y^+(x, \tau) - \alpha B_y^{*+}(x, \tau)]$$
(5.3)