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1. Finite Probability Spaces

The toss of a coin or the roll of a die results in a finite number of possible outcomes.
We represent these outcomes by a set of outcomes called a sample space. For a coin we
might denote this sample space by {H,T} and for the die {1, 2, 3, 4, 5, 6}. More generally
any convenient symbols may be used to represent outcomes. Along with the sample space
we also specify a probability function, or measure, of the likelihood of each outcome. If
the coin is a fair coin, then heads and tails are equally likely. If we denote the probability
measure by P , then we write P (H) = P (T ) = 1

2 . Similarly, if each face of the die is equally
likely we may write P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1

6 .

Defninition 1.1. A finite probability space is a pair (Ω, P ) where Ω is the sample space set

and P is a probability measure:

If Ω = {ω1, ω2, . . . , ωn}, then

(i) 0 < P (ωi) ≤ 1 for all i = 1, . . . , n

(ii)
n∑

i=1

P (ωi) = 1.

In general, given a set of A, we denote the power set of A by P(A). By definition this
is the set of all subsets of A. For example, if A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.
Here, as always, ∅ is the empty set. By additivity, a probability measure on Ω extends to

P(Ω) if we set P (∅) = 0.

Example. For the toss of a fair die, P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1
6 , while

P (toss is even) = P (toss is odd) = 1
2 and P ({2, 4, 6}) = P (2)+P (4)+P (6) = 3 · 1

6 = 1
2 .

The division of {1, 2, . . . , 6} into even and odd, {2, 4, 6} and {1, 3, 5}, is an example of
a partition.

Defninition 1.2. A partition of a set Ω (of arbitrary cardinality) is a collection of nonempty

disjoint subsets of Ω whose union is Ω.

If the outcome of a die toss is even, then it is an element of {2, 4, 6}. In this way
partitions may provide information about outcomes.

Defninition 1.3. Let A be a partition of Ω. A partition B of Ω is a refinement of A if every

member of B is a subset of a member of A.

For example B = {{1, 2}, {3}, {4, 5, 6}} is a refinement of {{1, 2, 3}, {4, 5, 6}}. Notice
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that a refinement contains at least as much information as the original partition.
In the language of probability theory, a function on the sample space Ω is called a

random variable. This is because the value of such a function depends on the random
occurrence of a point of Ω. However, without this interpretation, a random variable is just
a function.

Given a finite probability space (Ω, P ) and the real-valued random variable X : Ω → IR

we define the expected value of X or expectation of X to be the weighted probability of
its values.

Definition 1.4. The expectation, E(X), of the random variable X : Ω → IR is by definition

E(X) =
n∑

i=1

X(ωi)P (ωi)

where Ω = {ω1, ω2, . . . , ωn}.

We see in this definition an immediate utility of the property
n∑

i=1

P (ωi) = 1. If X is

identically constant, say X = C, then E(X) = C.
When a partition of Ω is given, giving more informaiton in general than just Ω, we

define a conditional expectation.

Definition 1.5. Given a finite probability space (Ω, P ) and a partition of Ω, A, we define the

conditional expectation of the random variable X : Ω → IR with respect to the partition A at

the point ω ∈ Ω by

E(X| A)(ω) =

∑
η∈A(ω)

X(η)P (η)

P (A(ω))
.

Here A(ω) is the member of A containing ω and P (A(ω)) =
∑

η∈A(ω)

P (η).

Notice that
E(X|{Ω}) = E(X).

This holds more generally. When iterating conditional expectations it is the smaller or
sparser partition that determines the expected outcomes. A partition A is smaller than B
if B is a refinement of A.

Proposition 1.6. If B is a refinement of A, then

E(X| A) = E(E(X| B)| A)

= E(E(X| A)| B)
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for a random variable X : Ω → IR.

Exercise 1. Prove Proposition 1.6.

Definition 1.7. A random variable X : Ω → IR is measurable with respect to a partition A if

X is constant on each set in A.

So, for example, a function constant on Ω is measurable with respect to any partition of

Ω. On the other hand if X assumes n distinct values on Ω = {ω1, ω2, . . . , ωn} then X is

measurable only with respect to the discrete partition {{ω1}, {ω2}, . . . , {ωn}}.

Proposition 1.8. The conditional expectation, E(X| A), is measurable with respect to

A.

Proof. The proof follows immediately from the definition of E(X| A).

Proposition 1.9. If X is measurable with respect to the partition A, then E(X| A) = X.

Moreoever, if Y is another random variable, then

E(XY | A) = XE(Y | A).

Proof. The proof again follows immediately from the definition of E(X| A).

We give an interpretation of Proposition 1.9. If X is measurable with respect to A,
then the “best guess” of X, given A, is X itself.

Example. Let Ω be the outcomes of a toss of a die and A = {{2, 4, 6}, {1, 3, 5}}. Define

X = 1 if the outcome is even and X = −1 otherwise. Then

E(X| A)(ω) =
X(ω)P (A(ω))

P (A(ω))
= 1

when the outcome is even and −1 otherwise. Notice here the result is the same indepen-

dent of the probabililties of the individual outcomes. The following properites are immediate

consequences of the definition of E(X| A).

Proposition 1.10. Let X and Y be random variables on (Ω, P ).
(a) If a, b ∈ IR, then

E(aX + bY | A) = aE(X| A) + bE(Y | A).

(b) If X ≤ Y , then

E(X| A) ≤ E(Y | A).
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Defninition 1.11. Given a random variable X on Ω, we denote by p(X) the partition generated

by X. This is the smallest (coarsest) partition of Ω such that X is measurable with respect to

p(X). Notice it follows that X is measurable with respect to a partition A if and only if A is

a refinement of p(X).

Defninition 1.12. A filtration (of partitions of Ω) is a sequence of partitions

A1,A2,A3, . . . ,AN

where

At+1 is a refinement of At for t = 1, 2, . . . , N − 1.

Example. If Ω = {ω1, ω2, ω3, ω4}, then A1 = {Ω}, A2 = {{ω1, ω2}, {ω3.ω4}}. A3 =
{{ω1}, {ω2}, {ω3}, {ω4}} is a filtration of Ω.

A sequence of random variables

X1, X2, . . . , XN on Ω

is called a stocastic process or simply a process. We associate a process and a filtration in
the following ways.

Defninition 1.13. A sequence of random variables {Xt}N
t=1 is adapted to the filtration {At}N

t=1

if Xt is measurable with respect to At for all t = 1, 2, . . . , N .

Example. Let Ω = {ω1, ω2, ω3, ω4}. Let A1 = {Ω}, A2 = {{ω1, ω2}, {ω3, ω4}} and A3 =
{{ω2}, {ω2}, {ω3}, {ω4}}. Then {At}3t=1 is a filtration. Let

X1(ωi) = 1, i = 1, 2, 3, 4,

X2(ωi) =
{

1, i = 1, 2
2, i = 3, 4 ,

X3(ωi) = i, i = 1, 2, 3, 4.

The process {Xt}3t=1 is adapted to {At}.

Defninition 1.14. A process {Xt} is predictable with respect to {At} if Xt is measurable

with respect to At−1 for all t.
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We remark that if {Xt} is adapted to {At}, then {Yt}, where Yt = Xt−1, is predictable
with respect to {At} (when suitably defined at the initial time).

Defninition 1.15. A process {Xt} is a martingale with respect to the filtration {At} if

E(Xt| As) = Xs

for 1 ≤ s ≤ t ≤ N . Notice this condition involves the probability measure P on Ω.

Example. Let X be a random variable on (Ω, P ). Define

Yt = E(X| At) for t = 1, 2, . . . , N.

Then, using the law of iterated expectations, Proposition 1.6, we get

E(Yt| As) = E(E(X| At)| As)

= E(X| As)

= Ys

for 1 ≤ s ≤ t ≤ N . As such {Yt} is a martingale with respect to {At}.

We remark that if {Xt} is a martingale with respect to {At}, then {Xt} is adapted to
{At}. Indeed, if we set s = t, then we have

E(Xt| At) = Xt,

which implies that Xt is measurable with respect to At.

Proposition 1.16. A process {Xt} is a martingale with respect to {At} if and only if

E(Xs| As−1) = Xs−1

for all s = 2, 3, . . . , N .

Proof. If {Xt} is a martingale, then the conclusion follows from Definition 1.15.
Conversely,

E(Xt| At−2) = E(E(Xt| At−2)| At−1)

= E(E(Xt| At−1)| At−2)
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by the law of iterated expectations. Hence if E(Xt| At−1) = Xt−1, then

E(Xt| At−2) = E(Xt−1| At−2)

= Xt−2.

Repeating this argument shows that {Xt} is a martingale.

Defninition 1.17. Given two processes {Xt}N
t=1 and {Yt}N

t=1, we define the optional quadratic

covariation process by

[X, Y ]t =
t∑

s=1

∆Xs∆Ys

for 1 ≤ t ≤ N . Here ∆Xs = Xs −Xs−1 and X0 = Y0 = 0.

Exercise 2. Prove the polarization identity

[X, Y ]t =
1
2
([X + Y, X + Y ]t − [X, X]t − [Y, Y ]t).

We remark that the so-called optional quadratic variation process of {Xt}, {[X, X]t}
is an increasing process with respect to t.

Defninition 1.18. The predictable quadratic covariation process is defined by

〈X, Y 〉t =
t∑

s=1

E(∆Xs∆Ys| As−1)

where we also set A0 = {Ω}.

We remark that since each term is conditioned on the previous partition, {〈X, Y 〉t} is
a predictable process.

Proposition 1.19. If {Xt} and {Yt} are martingales (for (Ω, P, {At})), then so are

{XtYt − [X, Y ]t} and {XtYt − 〈X, Y 〉t}.

Proof. We show that

E(XtYt − [X, Y ]t| At−1) = Xt−1Yt−1 − [X, Y ]t−1.

It then follows from Proposition 1.16 that {XtYt−[X, Y ]t} is a martingale. To this purpose
notice that

[X, Y ]t = ∆Xt∆Yt + [X, Y ]t−1.
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Furthermore

[X, Y ]t−1 = X1Y1 + ∆X2∆Y2 + . . . + ∆Xt−1∆Yt−1.

Now since martingales are in particular adapted, we have

E(∆Xs∆Ys| At−1) = ∆Xs∆Ys

for all 1 ≤ s ≤ t− 1. It follows from linearity that

E([X, Y ]t−1| At−1) = [X, Y ]t−1.

We calculate

E(XtYt − [X, Y ]t| At−1) = E(XtYt −∆Xt∆Yt − [X, Y ]t−1| At−1)

= E(Xt−1Yt + XtYt−1 −Xt−1Yt−1| At−1)− [X, Y ]t−1

= Xt−1E(Yt| At−1) + Yt−1E(Xt| At−1)−Xt−1Yt−1 − [X, Y ]t−1.

Here we have used Proposition 1.9. Now since {Xt} and {Yt} are martingales,

E(Yt| At−1) = Yt−1 and

E(Xt| At−1) = Xt−1.

The result follows.

Exercise 3. Show that, under the above assumptions, {XtYt−〈X, Y 〉t} is a martingale.

Defninition 1.20. Two martingales {Xt}, {Yt} are orthogonal if 〈X, Y 〉t = 0 all 1 ≤ t ≤ N .

Theorem 1.21. Two processes {Xt} and {Yt} are orthogonal martingales if and only if

X1Y1 = 0 and {XtYt} is a martingale.

Proof. If we have two orthogonal martingales, then X1Y1 = 〈X, Y 〉1 = 0 and Theorem
1.19 shows that {XtYt} is a martingale.

Conversely, if {XtYt} is a martingale, then

〈X, Y 〉t = XtYt − (XtYt − 〈X, Y 〉t)
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is also a martingale since the conditions in linear. However by construction 〈X, Y 〉t is also
predictable. Now any predictable martingale is necessarily constant in t. Here

E(〈X, Y 〉s| As−1) = 〈X, Y 〉s−1,

since 〈X, Y 〉 is a martingale, and

E(〈X, Y 〉s| As−1) = 〈X, Y 〉s

since 〈X, Y 〉 is predictable. Evidently

〈X, Y 〉N = 〈X, Y 〉N−1

= . . . = 〈X, Y 〉1

= 0

by assumption. This shows that X and Y are orthogonal processes.

We remark that in this proof, for the first time, we have denoted the process {Xt} is
simply by X. The utility is worth the abbreviation. We can distinguish the process X

from a single random variable X by the context.

When an expression involving combinations of random variables is so abbreviated the
tacit time is the same. For example

X2 − [X, X] = {X2
t − [X, X]t}.

Exercise 4. Two martingales X and Y are orthogonal if and only if X1Y1 = 0 and

E(XtYt| As) = E(Xt| As)E(Yt| As)

for all 1 ≤ s ≤ t.

Example. We now condsider the outcomes of the toss of a fair coin three times. As such the

sample space Ω contains 23 = 8 outcomes. Suppose that the toss of a head wins a dollar while

an outcome of a tail looses a dollar. Furthermore, let Xt denote the sum of the winnings at

time t. The following table lists these quantities.
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Ω 1 2 3 X1 X2 X3

ω1 H H H 1 2 3
ω2 H H T 1 2 1
ω3 H T H 1 0 1
ω4 H T T 1 0 −1
ω5 T H H −1 0 1
ω6 T H T −1 0 −1
ω7 T T H −1 −2 −1
ω8 T T T −1 −2 −3

Next we define a filtration

A1 = {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}}

A2 = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8}},

A3 = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}, {ω8}}.

Notice that {Xt}3t=1 is an adapted process with respect to {At}3t=1. Moreover, {Xt} is a
martingale with respect to {At}.

Exercise 5. Show that X is a martingale.

Exercise 6. Calculate X2−[X, X] and X2−〈X, X〉 and show that they are martingales.

Definition 1.22. For any processes X and Y we define the stochastic sum of Y with respect

to X (the discrete stochastic integral) as the process

(Y ·X)t =


0, if t = 0

t∑
s=1

Ys∆Xs,

when the sum is defined.

Proposition 1.23. For processes X and Y ,

∆(Y ·X)t = (Y ·X)t − (Y ·X)t−1

= Yt∆Xt.

Proof. The proof is immediate by definition .
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Theorem 1.24. If X is a martingale and Y is a predictable process, then (Y · X) is a

martingale.

Proof. First,

E((Y ·X)t| At−1) = E(Yt∆Xt| At−1) + E((Y ·X)t−1| At−1).

Since X is a martingale and Y is predictable, in particular both are adapted to the given
filtration. As such E((Y ·X)t−1| At−1) = (Y ·X)t−1. Furthermore, since Y is predictable,
Yt is measurable on At−1 and so E(Yt∆Xt| At−1) = YtE(∆Xt| At−1). Finally, since X is
a martingale, E(∆Xt| At−1) = 0. All together, E((Y · X)t| At−1) = (Y · X)t−1, proving
the assertion.

Proposition 1.25. For processes Y , W and X, we have

(Y · (W ·X)) = (Y W ·X).

(Y · (W ·X))t =
t∑

s=1

Ys∆(W ·X)sProof.

=
t∑

s=1

YsWs∆Xs

where we have used Proposition 1.23.

Proposition 1.26. For processes Y , W and X, we have

[(Y ·X),W ] = (Y · [X, W ]).

Proof. By definition

[(Y ·X),W ]t =
t∑

s=1

∆(Y ·X)s∆Ws

=
t∑

s=1

Ys∆Xs∆Ws.

On the other hand

(Y · [X, W ])t =
t∑

s=1

Ys∆[X, W ]s.
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However ∆[X, W ]s = [X, W ]s − [X, W ]s−1 = ∆Xs∆Ws.

Proposition 1.27. For processes Y , W and X, assuming that Y is predictable,

〈(Y ·X),W 〉 = (Y · 〈X, W 〉).

Exercise 7. Prove Proposition 1.27.

Proposition 1.28. Define the process X− as the right-shift of the process X, that is

X−
t = Xt−1 with X0 = 0. Then

(X− ·X) =
1
2
(X2 − [X, X]).

Proof. One calculates

2
t∑

s=1

X−
s ∆Xs =

t∑
s=1

(X2
s −X2

s−1)−
t∑

s=1

(∆Xs)2.

The first term on the right telescopes to X2
t and the result follows.

Exercise 8. Given two processes X and Y , use the polarization identity of Exercise 2

and Proposition 1.28 to show

(X− · Y ) = XY − (Y − ·X)− [X, Y ].

This is the stocastic summation by parts formula.
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2. Elements of Continuous Probability Theory

We first define σ-fields.

Definition 2.1. Given an arbitrary set Ω, a collection of subsets of Ω, F is a σ-field if the

following properties hold:

(i) φ ∈ F ,

(ii) if A ∈ F , then Ac ∈ F , and

(iii) if {Ai}∞i=1 is a countable sequence of sets in F , then
∞⋃

i=1

Ai ∈ F .

Here Ac = Ω\A is the complement of A. We remark that φc = Ω ∈ F and so (φ,Ω) is
the smallest σ-field for any set Ω. On the other hand, notice that the power set, P(Ω), is
the largest σ-field of Ω.

We remark that σ-fields are used to define integration theory based on measure theory.
In probability theory we also use σ-fields to track information as partitions do in the finite
case.

Combining properties (ii) and (iii) and using de Morgan’s law, we see that, if {Ai}∞i=1 ⊂
F , then

∞⋂
i=1

Ai =

( ∞⋃
i=1

Ac
i

)c

∈ F .

So σ-fields are closed under complementation, countable unions and countable intersec-
tions. Notice in the finite case only finite unions and intersections need be considered. In
the finite case a σ-field is often called simply a field.

Definition 2.2. When G is a nonempty collection of subsets of Ω, we write σ(G) for the σ-field

generated by G. By definition this is the smallest σ-field of Ω containing G.

Exercise 7. Show that σ(G) is unique.

Example. Let Ω = {ω1, ω2, ω3, ω4} and G = {{ω1, ω2}, {ω3, ω4}}. Then σ(G) =
{φ, {ω1, ω2}, {ω3, ω4},Ω}. If H = {{ω1}, {ω2}, {ω3}, {ω4}}, then σ(H) = P(Ω).

Notice that the collections G and H in the above example are partitions of Ω. In the
finite case all σ-fields arise this way.

Theorem 2.3. Let Ω be finite and let F be a σ-field of Ω. There is a unique partition A
of Ω so that σ(A) = F .
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Proof. Partially order F \φ by inclusion. We claim that A = {minimal elements of F \φ}
is a partition of Ω and moreover σ(A) = F . By definition, A ∈ F is minimal if there is no
proper subset of A in F \φ. In other words, if B ∈ F \φ and B ⊂ A, then B = A. Now if
A1 and A2 are minimal then A1 ∩A2 = φ, otherwise A1 = A2 or one contains a nonempty

proper set A1 ∩ A2 ∈ F . Next let A = {A1, A2, . . . , Ak}, then
k⋃

i=1

Ai = Ω. Otherwise(
k⋃

i=1

Ai

)c

is a nonempty set containing a minimal element of F \φ. Hence A is a partition

of Ω.

Exercise 8. Assume that Ω is finite, F is a σ-field and A is the partition of minimal

elements of F \φ under inclusion. Show that σ(A) = F . Moreover if F1 and F2

are two σ-fields of Ω with corresponding partitions A1 and A2 and if F1 = F2, then

A1 = A2.

So in the finite case there is a one-to-one correspondence between partitions of Ω and
σ-fields. However not all σ-fields of infinite sets arise in this way.

An important σ-field of the real numbers is the Borel sets.

Definition 2.4. The Borel subsets of the real line IR is the σ-field generated by the collection

of all open sets of IR. We denote this σ-field by B(IR).

We remark that since every open subset of IR is a countable union of open intervals,
the open intervals also generate B(IR).

Notice that the closed interval [a, b] is a countable intersection of open intervals. Indeed

[a, b] =
∞⋂

n=1

(
a− 1

n
, b +

1
n

)
.

Hence [a, b] ∈ B(IR).

Definition 2.5. The pair (Ω,F), where Ω is a set and F is a σ-field of subsets is called a

measurable space.

Definition 2.6. A measure, µ, defined on the measurable space (Ω,F), is an extended real-

valued set-function defined on sets in F and satisfying:

(i) µ(φ) = 0 and

(ii) if {Ei}∞i=1 is a disjoint collection of subsets of F , then

µ

(
n⋃

i=1

Ei

)
=

n∑
i=1

µ(Ei).
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We call Definition 2.6(ii) countable additivity.

Example. If Ω is finite and P is a probability function on Ω, then, setting P (φ) = 0,

(Ω,P(Ω), P ) is a measure space.

Proposition 2.7. If A ⊂ B are elements of F , then

µ(A) ≤ µ(B).

Proof. Notice B = A ∪ (B ∩Ac) is a disjoint union so that

µ(A) = µ(B)− µ(B ∩Ac) ≤ µ(B).

We now give a brief outline of the construction of Lebesgue measure on the real line
IR. We wish to define a measure on subsets of IR that extend the natural euclidean length
of an interval. To this purpose we define outer measure.

Definition 2.8. For E ⊂ IR, we define the outer measure, m?(E), as follows.

m?(E) = inf
E⊂∪I

∑
I

`(I).

Here the infimum is over all countable collections of open intervals {I} with E ⊂ ∪I.

We have the following properties.

Proposition 2.9.

(i) m? is defined on P(IR),
(ii) m?(E) ≥ 0 all E ⊂ IR.

(iii) if E1 ⊂ E2, then m?(E1) ≤ m?(E2),
(iv) m?(E + y) = m?(E) all E ⊂ IR, y ∈ IR,

(v) m?(A) = 0 for any countable set A ⊂ IR,

(vi) m?(∪Ei) ≤
∑

m?(Ei) for any countable collection {Ei}∞i=1.

Moreover, one can show that

(vii) m?(I) = `(I) for any interval I ⊂ IR.

Exercise 9. Prove Proposition 2.9, (i)–(vi).

It turns out that, even when {Ei} is a disjoint collection, that equalith in (vi) may fail.
Because of this, m? is not a measure on P(IR). However (remarkable) m? is a measure on
a suitable sub-σ-field of P(IR) (which is in fact very large).

Lecture Notes — MAP 5601 map5601LecNotes.tex 14 8/27/2003



Definition 2.10 (Carathéodory). A set E ⊂ IR is Lebesgue measurable if

m?(A) = m?(A ∩ E) + m?(A ∩ Ec)

for all sets A ⊂ IR.

We write L for the collection of Lebesgue measurable sets.

Theorem 2.11. The collection L is a σ-field of IR.

It is easy to see that φ and Ω are in L. From the symmetry in E and Ec, if E ∈ L,
then Ec ∈ L, follows immediately. What is not so clear, but true, is that L is closed under
countable unions. See [R].

Theorem 2.12. The Borel subsets, B(IR), are contained in L.

One only needs to show that an interval is in L. Again, see [R].

Theorem 2.13. The space (IR,L,m), where m = m?|L, is a measure space.

In particular, m? is countably additive on the σ-field L. See [R].

We now discuss integration theory on a general measure space.

Proposition 2.14. Let f : Ω → IR be a real-valued space (Ω,L). The following are

equivalent:

(i) {x|f(x) > α} ∈ F for all α ∈ IR,

(ii) {x|f(x) ≥ α} ∈ F for all α ∈ IR,

(iii) {x|f(x) < α} ∈ F for all α ∈ IR,

(iv) {x|f(x) ≤ α} ∈ F for all α ∈ IR,

Moreover, any of (i)–(iv) implies

(v) {x|f(x) = α} ∈ F for all α ∈ IR,

Definition 2.15. A function f : Ω → IR, with domain a member of F , is measurable with

respect to the σ-field F if (i)–(iv) holds in Proposition 2.14.

Proof of Proposition 2.14. Assume (i). Then {x|f(x) ≤ α} =
⋂
∞n=1An where An =

{x|f(x) < α + 1
n}. This proves (iv). Similarly {x|f(x) < α} =

⋃
∞n=1{x|f(x) ≤ α− 1

n},
so that (ii) implies (i). Also, the sets in (iii) and (iv) are complements of thos in (ii) and
(i). Proposition 2.14 follows.
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INSERT 1 (NOT YET!)

Example. Any real-valued function f : Ω → IR is measurable with respect to the measurable

space (Ω,P(Ω)).

Example. Let Ω = {ω1, ω2, ω3, ω4}, P (ωi) = 1
4 for all i = 1, 2, 3, 4 and A =

{{ω1, ω2}, {ω3, ω4}}. We define two random variables on (Ω, σ(A), P ).

Ω ω1 ω2 ω3 ω4

X1 1 1 −1 −1
X2 1 −1 1 −1

Then X1 is measurable with respect to (Ω, σ(A)). However X2 is not. Notice {ω|X2(ω) >

0} = {ω1, ω3}, which is not an element of σ(A).

Proposition 2.1. A random variable X is measurable with respect to the measurable

space (Ω, σ(A)) where Ω is finite and A is a partition of Ω, if and only if X is measurable

with respect to the partition A (Definition 1.7).

Example. Let f(x) = x. Then {x|f(x) > α} is the open set {x|x > α}. As such f(x) is

measurable with respect to (IR,B(IR),m).

Definition 2.17. A simple function, ϕ, on (Ω,F) is a real-valued function on Ω that assumes

a finite number of distinct nonzero values {a1, a2, . . . , an}. Moreover, Ai = {ω|ϕ(ω) = ai} is

a member of F for all i = 1, 2, . . . , n.

The representation

ϕ(ω) =
n∑

i=1

aiχA(ω)

is called the standard representation of ϕ. Here χA(ω) = 1 if ω ∈ A and 0 otherwise.
Notice that a sinple function on Ω,F) is a measurable function on (Ω,F).

Definition 2.18. When ϕ is a simple function on the measure space (Ω,F , µ), we define the

integral of ϕ, with respect to µ, as∫
ϕ =

∫
Ω

ϕdµ =
n∑

i=1

aiµ(Ai).

Moreover, if E ∈ F we define ∫
E

ϕdµ =
n∑

i=1

aiµ(Ai ∩E).
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Example. Let Ω = {ω1, ω2, ω3, ω4} and P (ωi) = 1
4 . Define a random variable X on

(Ω,P(Ω), P ) by X(ω1) = X(ω2) = 1, X(ω3) = X(ω4) = −1. We calculate,

∫
Ω

XdP = 1 · P ({ω1, ω2}) + (−1) · P ({ω3, ω4})

= 1 · 1
2
− 1 · 1

2

= 0.

This holds more generally.

Proposition 2.19. If X is a random variable on a finite probability space (Ω,P(Ω), P ),
then ∫

Ω

XdP = E(X).

Exercise 10. Prove Proposition 2.19.

Definition 2.20. Suppose that f is a nonnegative measurable function on the measure space

(Ω,F , µ). We define ∫
Ω

fφµ = sup
ϕ≤f

simple

∫
ϕdµ.

Here the supremum is over all simple functions ϕ with ϕ ≤ f .

The following theorem allows us to approximate the integral of a nonnegative measur-
able by a sequence of simple functions increasing to f .

Theorem 2.21 (Monotone Convergence Theorem). Suppose that {fn} is a sequence

of nonnegative measurable functions, lim
n→∞

fn = f almost everywhere and fn ≤ f for all

n. Then ∫
Ω

fdµ = lim
n→∞

∫
Ω

fndµ.

Next, given a nonnegative measurable function f on Ω, we construct simple functions
ϕN such that lim

N→∞
ϕN = f . Notice that the measurability of f allows us to accomplish this
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approximation by partitioning the interval [0, N), N = 1, 2, 3, . . ., into 2N that converges
to zero as N →∞. Because f is measurable,

AN,k =
{

ω|k N

2N
≤ f(ω) < (k + 1)

N

2N

}
is in F for all N = 1, 2, 3, . . . and all k = 0, 1, . . . , 2N − 1. We define the simple functions
ϕN by the first endpoint. That is

ϕN (ω) =
2N−1∑
k=1

k
N

2N
χAN,k

.

By the Monotone Convergence Theorem

lim
N→∞

∫
Ω

ϕNdµ =
∫
Ω

fdµ.

Exercise 11. Show that lim
N→∞

ϕN(ω) = f(ω). We extend the integral a general

f : Ω → IR by the decomposition f = f+ − f−. Here

F + = max(0, f) and f− = max(0,−f).

Exercise 12. Show that if f is measurable, then so is f+ and f−.

Next, in preparation for constructing the conditional expectation, we need the following
concepts.

Definition 2.22. Given a measure space (Ω,F , µ), we say that a second measure on (Ω,F), ν,

is absolutely continuous with respect to µ if the following condition holods. Whenever E ∈ F ,

with µ(E) = 0, we have ν(E) = 0. In other words, sets of measure zero for µ are always sets

of measure zero for ν as well.

When ν is absolutely continuous with respect to µ, we write ν << µ.

Examples.

1. Given (Ω,F , µ) and D ∈ C|{0}, let ν = cµ. Then ν << µ and µ << ν.

2. Let C be coounting measure on (IR,B(IR)). That is C(E) = number of elements in E,

when E is finite and ∞ otherwise. If m is the Lebesgue measure on IR,B(IR)), then

n << C.
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3. Let f be a nonnegative measurable function on (Ω,F , µ) and set

ν(E) =
∫
E

fdµ

for E ∈ F , then ν is a measure on (Ω,F) and moreover ν << µ.

The fact that ν is a measure can be proved from the Monotone Convergence Theorem.
The absolute continuity of ν with respect to µ is clear, since integration of f over a set of
µ-measure zero equals zero.

It turns out that, in σ-finite cases, the third case is typical. Recall that a measure
space (Ω,F , µ) is finite if µ(|Omega). More generally, if Ω =

⋃
∞i=1Ωi, Ωi ∈ F and µ(Ωi)

for all i, then (Ω,F , µ) is called σ-finite. For example, (IR,B(IR),m) is a σ-finite measure

space since IR =
∞⋃

N=1

(−N,N).

Theorem 2.23 (Radon-Nikodym Theorem). Suppose that (Ω,F , µ) is a σ-finite

measure space and ν is another measure defined on F with ν << µ. Then there exists a

nonnegative measurable function f such that

ν(E) =
∫
E

fdµ

for all E ∈ F . Moreover if g is any other such function, then f = g a.e. with respect to µ.

We denote the above function f by dν
dµ and refer to it as the Radon-Nikodym derivative

of ν with respect to µ. This function has the following properties:
1. If ν << µ and f is a nonnegative measurable function, then∫

fdν =
∫

f
dν

dµ
dµ,

2.
d(ν1 + ν2

dµ
=

dν1

dµ
+

dν2

dµ
,

3. If ν << µ << λ, then
dν

dλ
=

dν

dµ

dµ

dλ
,

4. If ν << µ and µ << ν, then
dν

dµ
=

1
dµ
dν

.

Exercise 13. Prove the above assertions 1–4.
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Definition 2.24. A measure space (Ω,F , P ) is a probability space if P (Ω) = 1.

As such, probability spaces are finite measure spaces.

Examples.

1. Ω finite, P probability function and (Ω,P(Ω), P ).
2. ([0, 1],L,m).
3. (IR,L, f(x)m) where f is nonnegative and measurable with

∫
IR

fdm = 1.

Definition 2.25. Given a probability space (Ω,F , P ) and a random variable X we define the

expectation of X as

E(X) =
∫
Ω

XdP.

Recall that this reduces to Definition 1.4 when Ω is finite and F = P(Ω).

Definition 2.26. We are given a measure space (Ω,F , P ), a random variable X and a sub-

σ-field G ⊂ F . The conditional expectation of X with respect to G is a random variable that

we denote by E(X| G). It has the following properties:

1. E(X| G) is measurable with respect to G,

2.
∫
G

XdP =
∫
G

E(X| G)dP for all G ∈ G.

E(X| G) is unique up to sets of measure zero.
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3. Differential Equations

Example. Assume that money deposited in a bank increases with continuously compounded
interest. This means that the rate of growth is proportional to the amount present. Let
M(t) = amount of money present at time t and let r be the proportionality constant. Then
r is the constant interest rate and M(t) satisfies the differential equation

dM

dt
= rM.

To solve this equation we relate the differentials using the chain rule.

dM =
dM

dt
dt

= rM dt.

In this case the variables M and t can be isolated on separate sides of the equation and
the equation can be integrated, ∫

dM

M
=
∫

r dt.

Or
lnM = rt + C.

As such
M = Aert

where A = eC . As such M(t) grows exponentially. Notice the initial amount M(0) = A.
Consider the question: How much must be invested today to achieve the amount E at

the future time T?
To answer this, one sets the amount, M evaluated at time T equal to the desired future

value.
E = AerT .

Solving for A,
A = Ee−rT .

This is referred to as discounting the future value E.

Example. Let us denote by S the price or value of an asset at time t. For a given t1 and t2

we write the change in value by ∆S = S(t2)−S(t1) over the time interval ∆t = t2−t1. The
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relative price change, or return, compares the absolute price change to the initial value. If
the relative price change is proportional to the time interval, then

∆S

S
= µ∆t.

Here µ is a constant called the drift. We can rewrite this as

∆S

∆t
= µS.

Letting ∆t → 0 we obtain an equation of the same form. Namely,

dS

dt
= µS.

These equations are examples of a special type of first-order equations.

Definition 3.1. We here consider y as a function of x. Equations of the form

dy

dx
= f(x)g(y)

are called separable. Here f(x) is a function only of x and g(y) is a function only of y.
The variables can be separated and integrated (provided the integrals exist) as indicated.∫

dy

g(y)
=
∫

f(x) dx.

Another often occurring type of first-order differential equation is the linear equation.
In these equations y and y′ are present, however no other functions of them occur. We
may express such an equation in the form

y′ + p(x)y = q(x).

Here p(x) and q(x) are arbitrary functions of x. We pause to remark that these equations
are separable when q(x) ≡ 0. We call these equations homogeneous. Indeed in this case∫

dy

y
= −

∫
p(x) dx.

Otherwise we solve these equations by multiplying by a so-called integrating factor. Let

I(x) = e
∫ x

p(t) dt.
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We remark that integrating factors are in general not unique. In particular, here any
multiple of I(x) will work. As such the lower limit in the definite integral

∫ x
p(t) dt

is irrelevant and may be presupposed conveniently chosen. Multiplying by I(x) gives
I(x)y′ + I(x)p(x)u = I(x)q(x). The key to this procedure is that the left-hand side is the
derivative of the product of the solution y and the integrating factor I(x). Indeed

d

dx
(I(x)y) = I(x)y′ + y

d

dx
I(x).

However

d

dx
I(x) =

d

dx
exp

(∫ x

p(t) dt

)

= p(x) exp
(∫ x

p(t) dt

)
by the chain rule. As such

d

dx
(I(x)y) = I(x)y′ + p(x)I(x)y.

Integrating with respect to x gives

I(x)u =
∫ x

I(t)q(t) dt

and dividing by I(x) obtains the solution.

Example. Let

y′ +
1
x

y = x2.

Then

I(x) = exp
(∫ x 1

t
dt

)
= exp(lnx)

= x.

We have actually made a choice of multiple here. Multiplying by I(x) gives

xy′ + y = x3.
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So

d

dx
(I(x)y) =

d

dx
(xy)

= x3

and
xy =

x4

4
+ C.

This gives

y =
x3

4
+

C

x
.

Example. Suppose the price of an asset, S, grows at a constant rate C. Then

dS

dt
= C.

This equation is separable and
S = Ct + C1.

Now let’s suppose that there are two contributions to the growth of S. The first is pro-
portional to the asset price and the second a constant rate C. Then

dS

dt
= µS + C,

or
ds

dt
− µS = C.

This is a linear equation and

I(t) = exp
(∫ x

−µdS

)
= e−µt.

So
d

dt

(
e−µtS

)
= Ce−µt

and

S = eµt

[
−C

µ
e−µt + C1

]

= − c

µ
+ C1e

µt.
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Now the initial amount is S(0) = C1 = C/µ, so that C1 is larger than S(0). Notice that
S(t) asymtotically approaches C1e

µt as t →∞.
We now consider solutions to equations of the form

y′′ + p(x)y′ + q(x)y = r(x).

These equations are second order, meaning that y′′ is the highest derivative that is present.
They are linear, meaning that the solution y and its derivatives y′ and y′′ occur only to
first power. Otherwise, p(x), q(x) and r(x) are arbitrary functions of x.

We also consider the so-called associated homogeneous equation:

y′′ + p(x)y′ + q(x)y = 0.

Theorem 3.2.

(i) If y1 and y2 are two solutions to the homogeneous equation, then so is their general

linear combination, namely

y = C1y1 + C2y2

REVISION STOPS HERE

for arbitrary constants C1 and C2.

(ii) If y is a solution to (2.1) and if yh is a solution to (2.2), then the sum y + yh is a

solution to (2.1).

(iii) If u and v are solutions to (2.1), then the difference is a solution to (2.2).

Proof.

(c1y1 + c2y2)′′ + p(x)(c1y1 + c2y2)′ + q(x)(c1y1 + c2y2)(i)

= c1[y′′1 + p(x)y′1 + q(x)y1] + c2[y′′2 + p(x)y′2 + q(x)y2]

= 0.

(y + yh)′′ + p(x)(y + yh)′ + q(x)(y + yh)(ii)

= [y′′ + p(x)y′ + q(x)y] + [y′′h + p(x)y′h + q(x)yh]

= r(x) + 0

= r(x).
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(u− v)′′ + p(x)(u− v)′ + q(x)(u− v)(iii)

= [u′′ + p(x)u′ + q(x)u]− [v′′ + p(x)v′ + q(x)v]

= r(x)− r(x)

= 0.

Notice that it follows from Theorem 2.3(iii) that the most general solution to (2.1) is any

solution to (2.1) plus the general homogeneous solution. ut

We now consider solutions to homogeneous equations with constant real coefficients:

(2.4) y′′ + ay′ + by = 0.

The following technique works for such equations of any order. However, here we restrict
our attention to second-order equations and, because of the homogeneity, may assume that
the coefficient of y′′ is one.

One can prove that there are two solutions to (2.4) which are linearly independent.
Two functions are linearly independent when they are not multipliers of each other or,
what is the same, their ratio is not constant.

Solutions to (2.4) are linear combinations of solutions of the form y = eλx where λ is,
in general, a complex constant. As such, every solution (2.4) is a linear combination of the
two linearly independent solutions. Indeed, upon substitution into (2.4) one obtains

λ2eλx + aλeλx + beλx = 0,

which can only be satisfied if

(2.5) λ2 + aλ + b = 0.

(In fact eλx 6= 0 for any λ or any x.) The solutions to (2.5) are given by

λ =
−a±

√
a2 − 4b

2
.

Of course in some cases (2.5) can be factored by inspection. Since the coefficients, a and
b are assumed real, the solutions to (2.5) and as such to (2.4) fall into three cases.
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Case 1. The roots to (2.5) are real and distinct, say λ1 and λ2. In this case eλ1x and eλ2x

are solutions. Since (2.4) is linear, linear combinations of solutions are again solutions. So

y = c1e
λ1x + c2e

λ2x

is a solution for any constants c1 and c2.

Case 2. The solutions to (2.5) are real and repeated. This happens when the left-hand side
of (2.5) is a perfect square. If the solution is λ, then eλx is a solution. The other, linearly
independent solution to the first, is xeλx. This can be derived from a reduction of otder
argument. As such

y = c1e
λx + c2xeλx

is the general solution. We warn you that a solution of the form xeλx exists only when λ

is a repeated root.

Case 3. The solutions are complex numbers. All complex numbers can be expressed in the
form a + ib where a and b are real numbers and i2 = −1. When λ1 and λ2 are complex
solutions to (2.5) they necessarily are complex conjugates. By this we mean if λ1 = a+ ib,
then λ2 = a− ib. One can see this from the quadratic formula since, with real coefficients,
(−a/2)±(1/2)

√
a2 − 4b are complex conjugate numbers when a2−4b < 0. One can also see

this by conjugating equation (2.5). Often the complex conjugate of λ = a + ib is denoted
λ = a− ib. It is easy to see that conjugation distributes over addition and multiplication
of complex numbers. As such λ2 + aλ + b = 0 or (λ)2 + aλ +b = 0. This show that if λ

is a solution, then so is λ. It follows that e(a+ib)x and e(a−ib)x are solutions to (2.4). It
turns out that general linear combinations of the complex exponentials can be rewritten
equivalently as general linear combinations of functions which are real-valued. Euler’s
equation expresses complex exponentials as complex linear combinations of the sinusodial
functions. Namely, for any real number θ,

(2.6) eiθ = cos θ + i sin θ.

As such

(2.7) eibx = cos bx + i sin bx

and, because the cosine is even and the sine is odd,

(2.8) e−ibx = cos bx− i sin bx.
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Using (2.7) and (2.8), general linear combinations of the complex exponentials can be
rewritten as linear combinations of sine and cosine. (Try it!) In the general solution of
equation (2.4), the real exponentials from the term a remain as factors. As such solutions
have the form

y = c1e
ax cos bx + c2e

ax sin bx.

Example 2.9. The equation
y′′ − 5y′ + 6y = 0

gives rise to the characteristic equation

λ2 − 5λ + 6 = 0.

The roots are λ = −2 and −3. As such

y = c1e
2x + c2e

3x

is the general solution.

Example 2.10. Case 2.

y′′ + 6y′ + 9y = 0.

Here (λ + 3)2 = 0 and λ = −3 is a double real root. As such the general solution is

y = c1e
−3x + c2xe−3x.

Example 2.11. As an example of Case 3 we solve

y′′ + y = 0.

Now λ2 + 1 = 0 and λ = ±i. We can express the general result in terms of real-valued
functions

y = c1 cos x + c2 sinx.

Suppose we compare the solutions to

y′′ + y′ + y = 0.

In this case λ2 + λ + 1 = 0 and λ = − 1
2 ± i

√
3

2 . The solution now has real exponentials
multiplying the sinusoidial solutions

y = c1e
− x

2 cos
√

3
2

x + c2e
− x

2 sin
√

3
2

x.
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3. The Dirac Delta Function

The Dirac delta function is a linear mapping which associates a real number to each
real-valued continuous function. Such a mapping is called a linear functional. If IR denotes
the real line and C(IR) the continuous functions defined on IR, then the δ-function maps
C(IR) onto IR. Given ϕ ∈ C(IR) we define

δ(ϕ) = ϕ(0).

That is δ maps each continuous function to its value at the origin.

We can construct the action of δ by integrating a continuous function ϕ against a
family of functions δε(x) and taking a limit. This gives rise to the view of δ as a “function”.
Translations of the δ function arise naturally in this formalism and the continuous functions
are evaluated in this way at all real values. To this purpose we define

δε(x) =
{

1
2ε , when −ε < x < ε
0, otherwise

for ε > 0. Notice
∞∫

−∞

δε dx = 1

for all ε.

Theorem 3.1. Let ϕ ∈ C(IR). Then

(3.2) lim
ε→0

∞∫
−∞

δε(x)ϕ(x) dx = ϕ(0).

Proof. Notice
∞∫

−∞

δε(x)ϕ(x) dx =

ε∫
−ε

1
2ε

ϕ(x) dx.

On the other hand

ϕ(0) =
1
2ε

ε∫
−ε

ϕ(0) dx.
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Hence ∣∣∣∣∣∣
∞∫

−∞

δε(x)ϕ(x) dx− ϕ(0)

∣∣∣∣∣∣ = 1
2ε

∣∣∣∣∣∣
∞∫

−∞

(ϕ(x)− ϕ(0)) dx

∣∣∣∣∣∣
≤ 1

2ε

ε∫
−ε

|ϕ(x)− ϕ(0)| dx.

Since ϕ is continuous at 0, given η > 0, there exists ε > 0 such that

|ϕ(x)− ϕ(0)| < η

whenever |x| < ε. This proves (3.2). ut
It is useful in calculations to write δ(x) in the integrand and so

∞∫
−∞

δ(x)ϕ(x) dx = ϕ(0).

Notice if a < 0 and b > 0,
b∫

a

δ(x) dx = 1

in particular, and
b∫

a

δ(x)ϕ(x) dx = ϕ(0).

Notice that it follows that
∞∫

−∞

δ(a− x)ϕ(x) dx = ϕ(a)

for all a ∈ IR. Equivalently

∞∫
−∞

δ(x− a)ϕ(x) dx = ϕ(a).

and one may think of δ(x− a) as translating the concentration of the delta function from
the origin to the point a.

Lecture Notes — MAP 5601 map5601LecNotes.tex 30 8/27/2003



Example 3.3. Suppose at time t = 0 the value of an asset is V (0) and this value increases
instantaneously at t = 1 by an amount A. The differential equation

(3.4)
dV

dt
= Aδ(t− 1)

describes this. Integrating (3.4) with respect to t gives

V (t)− V (0) =

t∫
0

dV

dτ
dτ.

=

t∫
0

Aδ(τ − 1) dτ

=
{

0, 0 < t < 1
A, t > 1.

If we define the unit step function

u(x− a) =
{

0, x < a
1, x > a,

then we can write
V (t) = Au(x− a) + V (0).

In this sense we symbolically write

d

dt
u(t− a) = δ(t− a).
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4. The Laplace Transform

Given a function f(t), for t > 0, we define its Laplace transform

(4.1) L(f)(s) =

∞∫
0

f(t)e−st dt.

Notice that the improper integral (4.1) is defined for a wide range of functions f(t) because
when s > 0, e−st is a decaying exponential. In most applications of the Laplace transform
which we will encounter, restricting the domain of the variable s will not cause difficulty.

We offer the following table and discuss some of the calculations. Here, and throughout
this section, we denote the Laplace transform of f(t) by F (s). When the context permits,
we will also represent the Laplace transform of functions denoted by lower case roman
letters, by their capitals.

4.2. A Table of transforms. Here the constant a is, in general, a complex nunmber.

f(t) F (s)

a) tn n!
s(n+1)

b) eat 1
s−a

c) cos at s
s2+a2

d) sin at a
s2+a2

e) cosh at s
s2−a2

f) sinh at a
s2−a2

g) u(t− a) e−as

s

With some practice one remembers this table without having to recompute. We em-
phasize that the Laplace transform is linear. As such

L(af + bg) = aL(f) + bL(g),

for functions f(t), g(t) and constants a and b. The functions 4.2 c), d), e) and f) are linear
combinations of functions of the form eat. Because the Laplace transform is linear, the
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transforms of c), d), e) and f) are linear combinations of 1
s−a . This helps remember the

pattern of transforms in Table 4.2.
The Laplace transform transforms linear ordinary differential equations into algebraic

equations of the transforms. This is the key property that we here exploit.

Theorem 4.3. So that the Laplace transforms exist, we assume that there exists an s > 0
such that lim

t→∞
|f(t)e−st| = 0. Also we assume that f ′(t) exists except perhaps for a finite

number of points in any bounded interval. Then

(4.4) L(f ′)(s) = sL(f)(s)− f(0).

Under appropriate conditions one can iterate (4.4) to get

(4.4)
L(f ′′)(s) = sL(f ′)(s)− f ′(0)

= s2 L(f)(s)− sf(0)− f ′(0).

Notice that the initial conditions f(0) and f ′(0) are in these formulas. As such solutions
to differential equations using the Laplace transform satisfy prescribed initial conditions
which gives values for the integration constants in the general solutions. This aspect of
the Laplace transform is often convenient.

Example 4.6. Solve the differential equation

y′′ − 5y′ + 6y = 0

with initial conditions y(0) = 1 and y′(0) = 0. Using (4.4), (4.5) and the linearity of L we
get

L(y′′)− 5L(y′) + 6L(y) = L(0)
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5. The Fourier Transform
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6. The Diffusion Equation

The one-dimensional diffusion equation (or heat equation) is a partial differential in
two variables x and t. In most applications of the diffusion equation the solution u(x, t) is
a function in the “spatial” variable x and the variable of time, t. The diffusion equation

(6.1)
∂u

∂t
=

∂2u

∂x2

is a parabolic partial differential equation.

Problem 6.2. Solve (6.1) over the real line −∞ < x < ∞ for u = u(x, t) with prescribed
initial condition u(x, 0) = u0(x).

When the integral exists, the solution to Problem 6.2 is given by

(6.3) u(x, t) =
1

2
√

πt

∞∫
−∞

u0(v)e−
(x−v)2

4t dv.

The so-called fundamental solution to Problem 6.2 is the above kernel

(6.4) uδ(x, t) =
1

2
√

πt
e−

x2
4t .

In this case
lim
t→0

uδ(x, t) = δ(x)

in the distributional sense (3.2). As such from (6.3),

lim
t→0

u(x, t) = lim
t→0

1
2
√

πt

∞∫
−∞

u0(v)e−
(x−v)2

4t dv

=

∞∫
−∞

u0(v)δ(x− v) dv

= u0(x).

We give two derivations of (6.3). Because the domain is the entire real line we can directly
apply the Fourier transform.
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1. Applying the Fourier transform to (6.1) we get

(6.5)
∂

∂t
û(s, t) = 4π2s2 û(s, t).

Solving (6.5),
û(s, t) = Ce−4π2s2t

and û(s, 0) = C. On the other hand

(6.6) ûδ(s, t) = e−4π2s2t,

Hence

(6.7) û(s, t) = û0(s) ûδ(s, t).

The convolution theorem ( ) gives

u(x, t) =

∞∫
−∞

u0(v)uδ(x− v, t) dv

= (u0 ? uδ)(x, t).

This is (6.3).

2. It is useful to realize that (6.3) can also be derived from the superposition of so-called
separated solutions. This technique is prevalent when building solutions to linear
equations. To this purpose we set u(x, t) = F (x)G(t). Then substitution into (6.1)
gives F (x)G′(t) = F ′′(x)G(t) or

(6.8)
F (x)
F ′′(x)

=
G(t)
G′(t)

.

Since the left- and right-hand sides of (6.8) depend separately on the independent
variables x and t, they must be constant. We choose this constant to be 1

−p2 . The
solutions in this case will decay as t →∞. As such

(6.9) F ′′(x) + p2F (x) = 0

and

(6.10) G′(t) + p2G(t) = 0.

Lecture Notes — MAP 5601 map5601LecNotes.tex 36 8/27/2003



Solving these equations one gets in general

F (x) = A cos px + B sin px

and
G(t) = Ce−p2t.

As such, for general A and B,

u(x, t) = (A cos px + B sin px)e−p2t

is a solution to (6.1).
Now since (6.1) is linear, a superposition of solutions is also a solution. The integral

is a limit of Riemann sums which are finite superpositions of solutions. Here we can pass
to the limit obtaining

(6.11) U(x, t) =

∞∫
0

(A(p) cos px + B(p) sin px)e−p2t dp.

as a solution to (6.1). Notice that (6.11) is a Fourier integral. In particular

U(x, 0) =

∞∫
0

(A(p) cos px + B(p) sin px) dp

will equal u0(x) if we choose

A(p) =
1
π

∞∫
−∞

u0(v) cos pv dv

and

B(p) =
1
π

∞∫
−∞

u0(v) sin pv dv.

Inserting the formulas for the coefficients A(p) and B(p) into (6.11) we obtain

∞∫
0

 1
π

∞∫
−∞

u0(v) cos pv dv cos px +
1
π

∞∫
−∞

u0(v) sin pv dv sin px

 e−p2t dp

=
1
π

∞∫
0

∞∫
−∞

u0(v)[cos pv cos px + sin pv sin px]e−p2t dv dp.
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Using the summation formula for the cosine (an equation worth remembering, cos(A+B) =
cos A cos B − sinA sinB), we collapse the above integral into

(6.12)
1
π

∞∫
0

∞∫
−∞

u0(v) cos(pv − px)e−p2t dv dp.

We next interchange the order of integration and change variables as follows:

s =
√

t p and 2b
√

t = x− v.

Then (6.12) becomes

(6.13)
1

π
√

t

∞∫
−∞

u0(v)

∞∫
0

e−s2
cos 2bs ds dv.

Since
∞∫
0

e−s2
cos 2bs ds =

√
π

2
e−b2 ,

we again obtain (6.3).
We next show that certain equations of interest can be solved by solving the diffusion

equation.

Proposition 6.14. Solutions to

(6.15)
∂v

∂t
=

∂2v

∂x2
+ a

∂v

∂x
+ bv,

where a and b are constants, are of the form

(6.16) v(x, t) = e[− a
2 x+(b− a2

4 )t]u(x, t).

Here u(x, t) solves the diffusion equation (6.1).

Proof. If v has the form (6.16), then substitution into (6.15) shows that u(x, t) solves (6.1).
Conversely, if v is a solution to (6.15), then e

a
2 x+( a2

4 −b)tv solves (6.1).

Proposition 6.17. For w = w(X, t) suppose that, with A 6= 0,

(6.18)
∂w

∂t
= AX2 ∂2w

∂X2
+ BX

∂w

∂X
+ Cw.

There are solutions to (6.18) of the form v(x, t) = w(X(x), t) where X(x) = ex and v

satisfies (6.15) with

a = (B −A)/A

and

b = C.
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7. The Black-Scholes Equation
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8. An Introduction to Measure and Integration

The concept of measure gives a unifying theory for many mathematical situations
which may at first seem quite different. The discussion below shows how it arises naturally
in the theory of the Lebesgue integral.

Let us first consider the example of a finite probability space. Here X is a set (of
outcomes) called a sample space. A probability function P is defined on the set of all
subsets of X. (This set is called the power set of X and denoted P(X).)

By definition a probability function is a function which associates a nonnegative real
number to a given subset and which satisfies two conditions:

P (X) = 1(8.1)

P (A ∪B) = P (A) + P (B)(8.2)

when A ∩ B = ∅; i.e., A and B are disjoint. Notice that these conditions imply that
P (A) ≤ 1 for any subset A ∈ P(X) since P (X) = P (A) + P (Ac) and in particular,
P (∅) = 0.

Example 8.3. Consider the outcomes of tossing a coin, H for heads, T for tails. The sample
space is

X = {H,T}.

The power set of X is

P(X) = {∅, {H}, {T}, X}.

If the coin is fair, then

P ({H}) = P ({T}) =
1
2

and

P (X) = P ({H} ∪ {T})

= P ({H}) + P ({T})

=
1
2

+
1
2

= 1

Notice that the power set P(X) of any set X, finite or not, trivially satisfies the
properties of an algebra of subsets:
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Definition 8.4. A set of subsets of a set X, A, is an algebra of subsets of X satisfying two
properties

(8.5) If A ∈ A, then Ac = X\A ∈ A,

(8.6) If A,B ∈ A, then A ∪B ∈ A.

Notice A ∪Ac = X and so X ∈ A and so Xc = ∅ ∈ A. Also de Morgan’s law gives

A ∩B = (Ac ∪Bc)c

and so A ∩B ∈ A. Notice that (X, ∅) is the smallest algebra of subsets of X.
In the case of a finite probability space, X, and therefore P(X), is finite. In other cases

X is infinite and it is often necessary to consider sets of subsets of X which are smaller
than P(X) but still retain the properties of an algebra.

Since, when X is infinite, algebras of subsets may also be infinite, it is necessary to
extend (8.3) as follows.

Definition 8.7. A σ-algebra, F , of subsets of X is an algebra of subsets such that

(8.8) If {Ai}∞i=1 is a sequence of sets in F , then their union
∞⋃

i=1

Ai is also in F .

Example 8.9. Let X = IR and A = set of finite unions of half-open intervals. That is, finite
unions of sets of the form [a, b), where −∞ < a ≤ b ≤ ∞, along with the intervals (−∞, a).
Then A is an algebra of subsets of IR.

Example 8.10. Given a collection of subsets C ⊂ P(X) there is a smallest σ-algebra con-
taining C. We call this σ-algebra the σ-algebra generated by C and denote it by σ(C).

For X = IR and A as in Example 8.9, σ(A) is called the Borel subsets of IR and denoted
by B.

The Borel subsets B is also the σ-algebra generated by the open sets of IR, since each
open set is a countable union of open intervals.

Example 8.11. On the other hand consider the collection of intervals of IR, C =
{(−∞, 0), [0,∞)}. Notice the intervals partition IR, that is they are disjoint and IR is
their union. In this case

σ(C) = {∅, (−∞, 0), [0,∞), IR}.
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Also notice that a similar result occurs when C is any partition of IR.

We next discuss the concept of a measure on sets. A probability function on a proba-
bility space is an important example.

We motivate the concepts by outlining the construction of the Lebesgue integral, which
requires Lebesgue measure. To this purpose we first review the Riemann integral.

The Riemann integral, when it exists, is defined to be a limit of so-called Riemann
sums. We now describe these sums.

Suppose that f(x) is defined on a closed interval [a, b]. We partition this interval into
subintervals labeled x0 = a < x1 < x2 < · · · < xn = b. In each subinterval [xi−1, xi] we
choose (sample) a functional value f(x?

i ) where xi−1 ≤ x?
i ≤ xi. This functional value is

used as an approximation to the functional values of f(x) over the subinterval [xi−1, xi].
If the function f actually was constant on these subintervals, the following Riemann sum
would be the Riemann integral of f(x) over [a, b]. In general however, each such sum is an
approximation to the Riemann integral of f(x) over [a, b].

(8.12)
n∑

i=1

f(x?
i )∆xi.

Here f(x?
i ) is the sampled functional value from the subinterval [xi−1, xi] and ∆xi =

xi − xi−1 is the length of the ith subinterval. As such the Riemann sum (8.12) is a finite
sum of areas of rectangles.

A sequence of such Riemann sums is created by subdividing a previous partition and
creating a new Riemann sum. The Riemann integral is, by definition, the limit of these
Riemann sums as n, the number of subintervals tends to infinity with the lengths ∆xi

tending to zero. One way to do this is to use a uniform partition, with ∆xi = 6−a
n for all

n and all i. Elementary calculus texts often use this approach. It turns out that when
such a sequence of Riemann sums has a limit, it is independent of the partitioning or the
sampling. We define the Riemann integral of f(x) over [a, b] as

(8.13)

b∫
a

f(x) dx = lim
∆xi→0

n∑
i=1

f(x?
i )∆xi.

We remark that this limit exists in particular if f is continuous on [a, b], or bounded with a
finite number of discontinuities. In summary, to define the Riemann integral, one partitions
the domain of the functions by functional values. The Lebesgue integral reverses this point
of view. In essence one partitions the range of the function and approximates the function
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by a constant functional value over inverse images of the intervals partitioning the

range.

Definition 8. . Given a probability space (Ω,F , P ) and a function F : Ω → IR (a

random variable) we define the expectation, or average value of F , as

(8. ) E(F ) =
∫
Ω

F (ω)dP (ω).

Notice that P (Ω) = 1. We also need conditional expectation of F . This in

general is another function.

Definition 8. . Given a sub-σ-algebra G ⊂ F, we define E(F | G), the conditional

expectation of F given G. This is any function G such that

1. G is measurable with respect to the σ-algebra G.
2.
∫
A

GdP =
∫
A

FdP for all A ∈ G.

We remark that, in general, the smaller the σ-algebra, the less functions are

measurable. This is because less sets are available to allow the inverse images

of measurable sets to be measurable.

Definition 8. . Let f(x) = x on [0, 1]. Now ([0, 1],L[0, 1],m), where L[0, 1] are

the Lebesgue measurable sets of [0, 1], is a probability space. Notice that the

function

g =
{

1
4 , 0 ≤ x < 1

2
3
4 , 1

2 ≤ x ≤ 1

is measurable with respect to the σ-algebra G = σ([0, 1
2 ), [ 12 , 1]) =

{∅, (0, 1
2 ), ( 1

2 , 1], [0, 1]), but that f(x) is not. (For example, {x ∈ [0, 1]|f(x) > 3
4}

is not measurable with respect to G.)
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9. A Discussion of Brownian Motion
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10. Derivation of the Black-Scholes Equation and Applications
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