Jaime Frade
Computational Finance: Dr. Kopriva
Homework #1

0. Executive Summary

There are several problems being solved in this homework assignment, centralized around one common theme,
how different computers represent and perform operations on numerical values. For future calculations, I must
find what standard my computer(s) was given. I will check if my computer uses the IEE 754 floating point
standard system by comparing the machine epsilon, the largest, and smallest floating point numbers. After
writing a reusable class in C++ that returns the correct floating point constant, I found that my computer uses
the IEEE standard.

1. Statement of Problem

Write a program, in which I will create a reusable class that will return the constants for the machine epsilon, the
largest and smallest floating point number that a computer uses. From here, I will determine if the computations
of my computer use IEEE 754 standard. (For program see appendix)

2. Description of the Mathematics

In order to determine how significant the error in computations due to rounding is, I will need to determine
the relative error due to rounding. Assuming rounding error, because this is at most % of chopping error, the
upper bound on this error, the machine epsilon, €, then
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where (3 be the base, (8 € Z71), and t gives the number of digits of M, the matissa, is.

To check if a computer uses the IEEE standard in single and double precision, I need to determine the upper
and lower bounds of the floating point number, as well as, the machine epsilon.

Assuming IEEE, (=2 and t = 23) and from (1), for the floating point numbers in single precision:

FL(z) = (—1)*2E712"1.M (2)
where the sign (s = 0 or 1) determines the sign and 0 < E < 255. In double precision,

FL(x) = (-1)*2F71921 M (3)

From IEEE 754 floating point standard, the values that are inputed into (2) and (3), for a single precision with
32-bit and double precision having 64-bit storage are as follows:

| SINGLE | DOUBLE

MANTISSA (M) | 23 52
EXPONENT (E) 8 11
SIGN (s) 1 1

e The smallest number in the range in IEEE for single precision, from lecture, is determined F = 1 and
M=0, thus from (2), = 2726 ~ 1.18 x 1038

e The largest number in single precision, F = 254 and M=1, thus from (2),
FL(z) =2127(2-27%) ~ 3.4x10%

e The machine epsilon is computed for using the upper bound on the relative error (1),
e=2"2~1.19x107"

There are exceptions, which IEEE did account for, yet above are not affected.



3. Description of the Algorithm

Besides the numerical methods illustrated in the previous section, there was no other calculations used. In the
computer program, there are built in commands that store the numbers that I need, so I created a reusable
class that returns these numbers.

4. Results
From the program, I found the following which can be compared to the IEEE standard.

SINGLE DOUBLE
Machine Epsilon 1.19209290E-07 2.220446049E-16
Largest Floating pt Number | 3.40282347E+38 | 1.797693134E+308
Smallest Floating pt Number | 1.17549435E-38 | 2.225073858E-308
Significant Digits (SIGFIGS) 6 15

5. Conclusion

The values I obtained are the same values from the IEEE standard to six significant digits for single precision and
fifteen significant digits for double precision. Therefore, I conclude that my machine’s Intel Pentium processor
uses the IEEE standard.



2a. i. Determine the total number of normalized floating point numbers that can be represented in the IEEE single
precision standard.

From lecture, the finite number system of floating point representation of a number is as follows:

t
dy;
FL(x) =Y _ — 8" (4)
im0
where the 3 =base, 0 < dp < (6 — 1, and E = exponent.

In IEEE, the following values are used in (4) in single precision, — (=2, 0 < E < 255, and the length
of the matissa, t = 24, also takes in to account the first place for the hidden bit.

The total number of normalized floating point numbers that can be represented is computed as
2254 -1+ 1)(2— 1)223 + 1 = 4261412865 (5)

ii. What is the smallest spacing between two floating point numbers? What is the largest spacing?

e The smallest spacing between two adjancet points is determined by taking the differece between the
smallest and the next smallest numbers:
(note: the next smallest is calculated by changing the last place in the matissa.) (2723)(27126) =
1.4013F — 45

The largest spacing between two adjancet points is determined bytaking the differece between the largest

and the next largest numbers:

(note: the next largest is calculated by changing the last place in the matissa.) (2723)(2127) = 2.02824E+31
iii. How do the relative spacing for these two results above compare?

Need to calculate the relative spacing between the largest and smallest spacing.

The smallest relative spacing is bounded between the following intervals:

smallest spacing smallest spacing
(2 _ 2723) 2—126 ° 2—126

2—23 _
=
[2—24 ’ 2—23] (6)

The largest relative spacing is bounded between the following intervals:

largest spacing largest spacing
(2 _ 2—23) 9127 7 92127

2—23
et
[2—24 ’ 2—23] (7)

Comparing the results in (6) and (6), can see that the intervals are the same with whichever numbers
chosen.

2b. What are the largest and smallest (nonzero) absolute errors due to rounding in the IEEE number system?

From lecture, in single precision, the largest and smallest absolute errors due to rounding is % of the largest and
smallest spacing.
smallest spacing
2
largest spacing
2

= 7.00649E—46

Smallest abs error =

Largest abs error = = 1.01412F431



3a. Show by example that floating point rounded or chopped arithmetic (unlike real arithmetic!) is not associative.
That is show it is not necessarily true that a + (b+ ¢) = (a + b) + ¢, if a,b, and ¢ are floating point numbers.
Note:

e Associative law of addition: (a + (b+c¢) = (a +b) + ¢)
e Distributive law: (a + b)c = ac + bc
e Let FL(x) be the floating representation for real number z.

e Assume the following for computation in the floating point system.
— 3 =10,t = 3, and rounding for 3a. and 3b.

PROOF: by counterexample
Let a=0.1111, b=0.1111, and ¢=0.6666

FL(a+ FL(b+¢)) = FL(0.1111 + FL(0.1111 + 0.6666))
= FL(0.1111 4+ FL(0.7777))
= FL(0.1111 4 0.778)
= 0.889 (8)

FL(FL(a+b)+c) = FL(FL(0.1111 +0.1111) + 0.6666)
FL(FL(0.2222) + 0.6666))
FL(0.222 + 0.6666)

— FL(0.8886)
= (.8888 (9)
Q.E.D (10)

3b. Is floating point arthmetic distributive?
PROOF: by counterexample
Let a=2.2333, b=-2.2222, and c=1

FL(FL(a +b)c)) = FL(FL(0.0111)1)
FL(0.0111)
= 0.0111 (11)

FL(FL(ab) + FL(ac)) = FL(FL(2.2333) + FL(—2.2222))
FL(2.23 — 2.22))

— FL(0.01)
— 0.0100 (12)
Q.E.D (13)

From (10) and (13, the examples have illustrated how the associative and distributive law do not hold due to
roundoff errors occuring at the place where the calculations are made.



APPENDIX

//Floatpt.h

//Floatpt class definitions
//member functions in Floatpt.cpp
class Floatpt {

public:

double dbl_epsilon();
double dbl_max();

double dbl_min();

float flt_epsilon();

float flt_max() const;
float flt_min(Q);
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//Floatpt.cpp
//member functions for class Floatpt

#include <iostream>
#include "float.h"

#include "Floatpt.h"

double Floatpt::dbl_epsilon()
{

return DBL_EPSILON;

}

double Floatpt::dbl_max()

{

return DBL_MAX;

}

double Floatpt::dbl_min()

{

return DBL_MIN;

}

float Floatpt::flt_epsilon()
{

return FLT_EPSILON;

}

float Floatpt::flt_max() const
{

return FLT_MAX;

}

float Floatpt::flt_min()

{

return FLT_MIN;

}

I111777777777777+++++++///1/1/11111//17



//demonstrating Floatpt function
//compile this program with Floatpt.cpp

//include flt class defintions from Floatpt.h

#include "float.h"

#include "Floatpt.h"

#include <iostream>

using std::cout;

using std::endl;

int main()

{

Floatpt f£;

double macheps, maxdbl, mindbl, flteps, maxflt, minflt;

macheps = f.dbl_epsilon();
cout << "The Machine Epsilon is " << macheps << endl; //remember this one!

cout << endl;

maxdbl = f.dbl_max();
cout << "The Maximum Double is " << maxdbl << endl ;
cout << endl;

mindbl = f.dbl_min();
cout << "The Minimum Double is " << mindbl << endl;
cout << endl;

flteps = f.flt_epsilon();
cout << "The Float Epsilon is " << flteps << endl ;
cout << endl;

maxflt = f.flt_max();
cout << "The Maximum Float is " << maxflt << endl ;
cout << endl;

minflt = f.flt_min(Q);
cout << "The Minimum Float is " << minflt << endl ;
cout << endl;

return O;

}



