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Chapter 1

Introduction

1.1 Importance Sampling Estimator

1.1.1 Problem Statement

The objective of this assignment is to estimate the right tail of an exponential
random variable using ideas from importance sampling and tilted distributions.

The problem to solve for this project is as follows: Let X be an exponential
random varibale with intensity λ (mean 1

λ ). For an constant a > 0, the goal is
to estimate the probability:

θ = Pr{X > a} = λ

∫ ∞
a

e−λxdx (1.1)

Since the event X > a occurs with a very small probability, i.e. 0 is very
small, the use of classical Monte Carlo approach will not be efficient. the usual
approach would be completely inadequate since approximating µ to any reason-
able degree of accuracy would require n to be very large. Using a much smaller
value of n, would lead result in an estimate, θ̂ = 0. Instead, it is better to
use importance sampling with a tilted density serving as the density to sample
from. In this paper, a method to reduce the variance of the esimator will be
presented and numerical calcuations of accuarcy and computation time will be
compared with classical approaches.
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Chapter 2

Methodology

2.1 Importance Sampling: The Importance Sam-
pling Estimator

To estimate θ = E[h(X)], where X has a probability density function of f(x).
Let g(. . .) be another pdf with the property that g(x) 6= 0 whenever f(x) 6= 0.
That is g has the same support as f . Then

θ = E[h(x)] =
∫
h(x)f(x)dx

=
∫
h(x)

f(x)
g(x)

g(x)dx (2.1)

Since g is a pdf, then the expectation with respect to g(. . .) is

θ = E

[
h(X)f(X)
g(X)

]
(2.2)

Using Monte Carlo simulation method generates n samples of X from the
density, f(. . .), and set θ̂n =

∑
h(X)/n. An alternative method is to generate

n vales of X from the density, g()̇, and set

θ̂n,is =
n∑
j=1

h(Xj)f(Xj)
ng(Xj)

(2.3)

then θ̂n,is is the importance sampling estimator of θ.

2.2 Determine the form of the tilted density

For a scalar t > 0, define the tilted density as:

ft(x) =
etxf(x)
M(t)

, where f(x) = λ eλx (2.4)
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Then

M ′(x) =
∫ ∞

0

etxf(x)dx

= λ

∫ ∞
0

etxeλ/,xdx

= e−x(λ−t)dx

= −
(

λ

λ− t

)
(0− 1)

=
(

λ

λ− t

)
(2.5)

Therefore,

ft(x) =
etxf(x)(

λ
λ−t

)
= (λ− t)e−(λ−t)x (2.6)

ft(x), the tilted density, has a exponential distribution with mean = 1
(λ−t) ,

or using the recipical form, the intensity of (λ− t).

2.3 From the tilted density, how to obtain sam-
ples

Will obtain samples by using the inverse transform method. Generate unform
random variables from [0,1] and Xi’s from 1

(λ−t) log(U).

2.4 State the optimal amount of tilt t to esti-
mate θ, for a given a.

From the mean of ft(x) can obtain the t∗, the optimal amount of tilt. The mean
of ft(x) is 1

(λ−t) , which is equal to a. Therefore,

t∗ = λ−
(

1
a

)
(2.7)

2.5 State the expression for θ̃n Monte Carlo es-
timator that uses these samples.

By sampling Xi’s be from the optimally tilted density, say f∗t (x), the Xi’s will
have an exponential distribution with mean 1

(λ−t∗) .
From there, will substitute t∗. This will make the Xi’s have exponential

distribution with mean a. Using the method described above, will generate the
Xi’s to have a density of a log(U).
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Therefore the expression for ,

θ̃n =
λ

n(λ− t∗)

n∑
i=1

I[a,∞)(xi)e−t
∗xi

=
a λ

n

n∑
i=1

I[a,∞)(xi)e
−(λ− 1

a )xi (2.8)

2.6 Compare the θ̃n with θ̂n, the classical Monte
Carlo estimator that uses samples from f(x)
directly.

From θ̂n, the classical Monte Carlo estimator, the Xi’s have an exponential
distribution with mean 1

λ

θ̂n =
1
n

n∑
i=1

I[a,∞)(xi) (2.9)
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Chapter 3

Matlab Code

clear all; clc;
a=8;
lambda = 1;n=10000;
t=lambda -(1/a);
mt= lambda/(lambda-t);
u=rand(1,n);
x1=-log(u);
x = -a*log(u);
%classical estimate
tic
for i=1:length(x1)

flag=0;
if x1(i)>=a
flag=flag+1;

end
if flag==1

gx1(i)=1;
else

gx1(i)= 0;
end
thetahat(i)=(1/i)*sum(gx1);

end
toc
figure(1)
plot(thetahat)
xlabel(’n’);
ylabel(’thetahat’)

%tilted sampling
tic
for i=1:length(x)

flag=0;
if x(i)>=a

flag=flag+1;
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end
if flag==1

gx(i)=exp(-t*x(i));
else

gx(i)= 0;
end
thetatilda(i)=(mt/i)*sum(gx);

end
toc;
figure(2)
plot(thetatilda)
xlabel(’n’);
ylabel(’thetatilda’)

thetahat(i)
thetatilda(i)
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Chapter 4

Results

4.1 Comparing Classical MC and Important-Sampling

4.1.1 Plots of Convergence

Implement the classical and the important-sampling estimators in
Matlab. Compare the two estimators on the basis of: (a) computation
time and (b) accuracy of estimation. In other words, take a sample
size, say n = 10000, and study the computation time and the accuracy
of the two estimators for that value of n. Choose a = 6 and λ = 1 for
this study.

Figure 4.1: Convergence of Classical MC for a=6 and λ = 1

4.1.2 Computation Times

Classical MC 0.566971 seconds
Important-sampling of tilted 0.530406 seconds
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Figure 4.2: Convergence of Tilted Density for a=6 λ = 1

4.1.3 Accuarcy and Consistency

True Estimates 0.0025

Classical MC 0.0033

Important-sampling of tilted 0.0025

4.1.4 Conclusion

Analyzing the graphs, the classical MC approach took longer to converage. Also,
in comparasion with computation time, the important-sampling titled was faster
then the classical estimator. In accuarcy the important-sampling titled estimate
was more accuate (closer to true value) and more consistent then the classical
MC approach.
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4.2 Comparation for different values of a and
λ = 1

Plot the convergence of θ̂n and θ̃n versus n for the following values of
a = 2, 4, 6,and 8, with λ = 1. Plot them in the separate plots and
clearly label your plots. Show your final estimates for these cases in
a table.

4.2.1 a = 2 and λ = 1

Figure 4.3: Convergence of Classical MC for a=2 and λ = 1

Figure 4.4: Convergence of Tilted Density for a=2 λ = 1
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4.2.2 a = 4 and λ = 1

Figure 4.5: Convergence of Classical MC for a=4 and λ = 1

Figure 4.6: Convergence of Tilted Density for a=4 λ = 1
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4.2.3 a = 6 and λ = 1

Figure 4.7: Convergence of Classical MC for a=6 and λ = 1

Figure 4.8: Convergence of Tilted Density for a=6 λ = 1
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4.2.4 a = 8 and λ = 1

Figure 4.9: Convergence of Classical MC for a=8 and λ = 1

Figure 4.10: Convergence of Tilted Density for a=8 λ = 1
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4.2.5 Table of Estimates

a θ̂n θ̃n True value Comutational time θ̂n Comutational time θ̃n
2 0.1377 0.1328 0.1353 0.568419 seconds. 0.530554 seconds.
4 0.0181 0.0185 0.0183 0.478063 seconds. 0.467150 seconds.
6 0.0024 0.0025 0.0025 0.566394 seconds. 0.443624 seconds.
8 4.0000e-004 3.4270e-004 3.34e-004 0.553530 seconds. 0.499536 seconds.
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Chapter 5

Conclusion

In this paper, it was found that the the tilted density esitmator for θ calculated
using importance sampleing techniques was closer to the true value calculated
from the intergral. In comparsion with the classical approach, the Monte Carlo
approach, it was pointed in the tables and plots in the paper that the tilted
density had shorter computational time , the accuracy was more presice , and
converagnce was faster and more stable. For rare events or events with small
probabiltiy, such as the the tail of the exponential density, the method imple-
mented here proved to be a better estimator.
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