Computational Methods in Statistics |

Final Project

prepared by

Tamika Royal
Department of Statistics

Florida State University




Goal

The main purpose of the project is to estimateritpat tail of an exponential random
variable using ideas from importance sampling altedtdistributions. Another aim of
the project is to compare the classical Monte Cadtimator ford with the estimator

using the Importance sampling with tilted distribas for this random variable.

Problem Statement

We are given X which is an exponential random \deiavith mean I or intensityA.

For a constant a > 0, our goal is to estimate thbability:

6=Pr{X>a} = /lj e ™dx Since the event X > a occurs with very smalbjataility, the

use of the Classical Monte Carlo approach is nbtieft, hence, it is better to use

importance sampling with a tilted density servisgle density to sample from.
Introduction

In analyzing the idea behind Importance sampling bas to explore the concept of the
Monte Carlo technique. Many inference problemsloamvritten as integrals under some
given probability measure. In some situations gnbability measure is too difficult to

analytically integrate out therefore leading to tls& of numerical approximations. One
technique for numerical approximation is by samglithat is, to approximate the integral

using samples generated from the given probabifidasure. [2]  This method of



approximating the integral is called the Monte Garlethod where the main goal is to

estimated where:

6= [g() f ()dx = E(g(x))

For a random variable X which has distribution digrnfsinction f(x); g(x) is any function

on R such that and Eg(Xj are bounded. Suppose we sample.XX, ~iid f(x) then

one can approximaté@ by én :EZ a(Xx,) ; én Is an estimator o because E@n) =
ni=

6. The variance oén is 1/n*Var(g(X)).

It is possible to reduce the variance of the edbmiay various methods which will not be
ventured into for purposes of this project. Ondhwoé of reducing variance in Monte
Carlo methods is the importance sampling. The gémdea behind importance sampling
will be explored in the methodology section as tflente Carlo Method sets the

foundation for it.

Methodology:

(a) Importance sampling

Importance sampling is a general technique for estimating the propertif a particular

distribution, while only having samples generatenhf a different distribution rather than
the distribution of interest. Importance samplisgdifferent from the Monte Carlo

methods in that instead of sampling from f(x) oamples from another density h(x) and



computes the estimate of using averages of g(x)f(x)/h(x) instead of g(x) lexaéed on

those samples. The distribution &@fhow becomes:

o [ 900 (90k=] g();)(f)(x)h(x)dx

h(x) can be any density function as long as thepsrtipof h(x) contains the support of

().

The idea is to generate sampleg Xs....... X, from the density h(x) and compute the

estimate:

9(X,)f(X,)
"Z h(X,)

i=1

2
The mean of § is 6 and itsvariance is: E(E{%} —62). The choice of
n

h(x) usually reduces the estimator variance belbat of the classical Monte Carlo

estimator.

Tilted Sampling: is a specific case of importance sampling whdre sampling
distribution is a tilted version of the originalrégty function. The idea behind this is that
there may be cases where one is interested in asignthe tail probabilities of a
distribution. It may be useful to tilt the densiile raising the tail probability in cases
where the tails are negligible. This is the ideshind the project as the goal is to

estimate the tail of the exponential random vagabith mean (14) but because X > a



occurs with small probability then instead of usihg classical Monte Carlo we use

Importance sampling with a tilted density.

(b) In application to the project question, fascalar t > 0, the tilted density is defined as

follows:

e f (x)
M (t)

f.(x) = where f(x) =1e™™

= ” o = T X a=Ax = i —x(A-1) :—L - :L
m(t) joe f (x)dx /]{e e ™dx /]{e dx A_t[o 1] p

B etx f (X) B eter—/b(

— — — _ —(A-t)x
ft (X) M (t) % L (A t)e

From above we see that the tilted density has exqaal distribution with mear% _t

or intensity A -t .

We can sample from the tilted density by usingltheerse Transform Method where we

generate U ~ [0,1] and Xi's ~%] _t log(U).
(c) The optimal amount of tilt t to estimafkis such that the mean gfX) is equal to a.

Since the mean of(k) = % _t then a :% _t which implies that t* =14 - (1/ a)



(d) Xi ~ f=(x) from the optimally tilted density. Thereforg X exponential distribution

with mean% —t* or intensity A -t*.  Therefore substituting t* 1 — (1/a then Xi ~

exponential distribution with mean a or intensitg.1

We can sample from the; Xy the Inverse Transform Method by generating UH[@nd

Xi’'s ~ a*log(U).
= M(t*) on e
Therefore the expression fék = 24_111am](xi).e
n =
SinceM(t*):/‘)l*= A 1 =al
a0
a
—(/l—i)xi

Therefored, = %Ziﬂ:ﬁa,w] (x)e

The Classical Monte Carlo estimator ién:lz.n_ll[aw](xi) where the Xs ~
n="="

exponential with mean (4/) or intensityl .



Experimental Results

Comparing the Classical MC and Important Sampling @ Computation time and

accuracy.
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Accuracy of Estimates

Classical estimator = 0.0018 and the tilted = P0The true estimate is 0.0025 which
indicates that the tilted estimate is more accutlaém the classical estimator since it is
closer in value to the true value. Also the tilestimate was more consistent than the

tilted estimator.

Computation Time

classical = 3.3017

tilted =3.2006

The tilted takes a shorter computation time thae ttassical estimator and from
observance of the convergence graphs one can geé thkes longer for the classical

estimator to converge.



Plotting Convergence for the Classical MC estimatorand the Tilted

estimator

For a=2 and lambda=1:

True value=0.1353

Convergence of Classical MC for a=2&\=1

0.35
0.3r b
0.25 B

0.2+ B

0.05+ B

0 I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Convergence of Tilted Density for a=2 &\=1

0.16

0.14

0.12

0.1r b

0.08 b

0.06 b

0.04 b

0.02- h

0 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000




For a=4 and lambda=1:

True value=0.0183
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For a=6 and lambda=1:

True value=0.0025
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For a=8 and lambda=1:

True value =3.35e-004
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Table of final Estimates

Constanta | g _ Classical MC | g, Tilted Density True value

2 0.1317 0.1366 0.1353

4 0.0193 0.0183 0.0183

6 0.0018 0.0025 0.0025

8 4.0000e-004 3.3617e-004 3.35e-004
Conclusion

From the results of the final estimates (see Tathe) can conclude that the tilted density

estimator is a better estimator féras the values are closer to the true values of the

integral which indicates that it is more accurdtattthe classical estimator.

The

computational time is shorter for the tilted estionaand the convergence graphs indicate

that the tilted estimator is more stable and coge®rquickly to a value while the

classical graph is less stable and takes a lommgertb converge. The tilted density is a

better estimator for the tail of the exponentiahlgley as seen from the convergence at the

different values of a and is it's accuracy and sfrocomputational time gives it a clear

advantage over the classical method.
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Appendix

Matlab Commands

clear all; clc;
a=6;
| anbda = 1;
n=10000;
%=1/ (| anbda-t);
t=l anbda -(1/a);
nt = | anbda/ (| anbda-t);
u=rand(1, n);
%l assical estinmate
tic
for i=1:n
%u(i) = rand;
x1(i) = -log(u(i));
if x1(i)>=a
gx1(i)=1;
el se
gx1(i)= 0;
end
thetahat (i)=(1/i)*sum(gx1(1:i));
end
cl assi cal =t oc;
t het ahat (i)
pl ot (t het ahat)

%ilted sanpling

tic
for i=1:n
%u(i) = rand,
x(i) = -a*log(u(i));
if x(i)>=a
gx(i)=exp(-t*x(i));
el se
gx(i)=0;
end
thetatilda(i)=(mt/i)*sumgx(1l:i));
end
tilted=toc;

thetatilda(i)

pl ot (thetatil da)
cl assi cal
tilted
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Commands — Part 4(b)
clear all; clc;
for a=2:2:8;
| ambda = 1;
n=10000;
%=1/ (1 ambda-t);
t=l anbda -(1/a);
nt = | anbda/ (| anbda-t);
u=rand(1, n);
%l assi cal estinmate
for i=1:n
x1(i) = -log(u(i));
if x1(i)>=a
gx1(i)=1;
el se
gx1(i)= 0;
end
thetahat (i,a)=(1/i)*sumgx1(1l:i));

end

%ilted sanpling

for i=1:n
x(i) = -a*log(u(i));
if x(i)>=a
gx(i)=exp(-t*x(i));
el se
gx(i)= 0;
end
thetatilda(i,a)=(nt/i)*sum(gx(1l:i));
end
end

pl ot (t hetahat (:, 2))
pl ot (thetahat(:,4))
pl ot (t hetahat (:, 6))
pl ot (t hetahat(:, 8))

t het ahat (i, 2)
t hetahat (i, 4)
t het ahat (i, 6)
t het ahat (i, 8)

plot(thetatilda(:,2))
plot(thetatilda(:,4))
plot(thetatilda(:,6))
plot(thetatilda(:,8))
thetatil da(i, 2)
thetatil da(i, 4)
thetatil da(i, 6)
thetatil da(i, 8)

t het ahat (i, 2)

t het ahat (i, 4)

t het ahat (i, 6)

t het ahat (i, 8)



