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Abstract

In this paper we develop a new approach to Value-at-Risk estimating
the betas of the assets in the portfolio with the Kalman filter. This tech-
nique is applied to a portfolio of assets of an insurance company and is
compared with the performances of two traditional methodologies: the
approach based on the variance-covariance matrix of returns and the ap-
proach based on OLS Sharpe betas. The back testing analysis shows that
the proposed technique is able to capture the dynamics of financial mar-
kets and is flexible enough to match the hedging purposes of a financial
institution.
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In questo articolo si sviluppa un nuovo approccio per il calcolo del
Value-at-Risk che utilizza il filtro di Kalman per stimare il beta dei titoli
di un portafoglio. Tale tecnica viene applicata al portafoglio azionario
di una società assicurativa e confrontata con i metodi tradizionali basati
sulla matrice di varianza-covarianza dei rendimenti e il beta di Sharpe sti-
mato con i minimi quadrati ordinari. L’analisi di back testing evidenzia
che la metodologia proposta è in grado di cogliere la dinamica del mer-
cato finanziario e di adattarsi con flessibilità alle esigenze di copertura di
un’istituzione finanziaria.
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1 Introduction

One of the main objective of risk management consists in identifying and eval-
uating the measure of risk arising from both the operational and financial ac-
tivities of the company. In order to satisfy these needs, many information and
measurement instruments have been developed; one of them is Value-at-Risk
(VaR). As far as financial risk is concerned, the VaR expresses in percentage
terms the maximum loss which is likely to be exceeded on the portfolio, given
a certain probability and time horizon. Many approaches to VaR estimation
have been developed: non parametric and parametric, Jorion [9]. In the first
class we find methods that imply the full generation of returns distribution:
Historical Simulation and Monte Carlo Simulation. The Historical Simulation
refers to the past empirical distribution of returns in order to simulate their
future realizations. Considering a single asset: the first simulation consists in
assuming that tomorrow asset return will equal the return we registered in the
first day of the considered historical series; the second simulation consists in
assuming that tomorrow asset return will equal the return we registered in the
second day of the same historical series; and so on, Jorion [9] and Alexander
[2]. In this way we build up a distribution for future returns; VaR is determined
as a quantile of this distribution. The main negative aspect of this approach is
that it can not account for currently likely events that never happened in the
past. This is not a good assumption especially when we are dealing with market
structural breaks. When we use Monte Carlo Simulation we assign probability
distributions to some risky factors, which are usually the prices of the assets
of the portfolio, and generate N hypothetical values for the factors. From the
risky factors simulated values we derive returns and consequently a return dis-
tribution. Then VaR is determined as quantile of the distribution, Jorion [9]
and Alexander [2]. In this approach, the choice of the model for the risky factor
plays a key role.
Other approaches are more recent: the Filtered Historical Simulation method,
Barone-Adesi [1], which combines Historical Simulation with the estimation of
volatility using a GARCH model and with a bootstrap approach on the stan-
dardized residuals to generate new scenarios; the Extreme Value Theory (EVT)
based approach, Embrechts [6], Kllezi [11], McNeil [12] and Neftci [13]. This sec-
ond technique is based on the estimation of the Generalized Pareto Distribution
to describe the behavior of the extreme values since it is proved, empirically, that
distribution of returns is affected by fat tails. The parametric methods make
the measure of risk (which is strictly related to the volatility of the portfolio
through the VaR calculation) depending on the estimation of a single parame-
ter. With regard to portfolios of equities, one parametric approach requires the
estimation of the variance-covariance matrix of asset returns; in this case, the
main problem is represented by the extremely ill-conditioned var-cov matrix. A
second approach is the Diagonal Model of Sharpe, [14], which uses the ordinary
least square (OLS) technique to estimate the parameter beta, i.e. the regression
coefficient relating the single asset returns to the returns on the market index,
Morgan [10]. However, as we will show below, the empirical evidence shows
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that the relation linking asset returns among them or the single asset return
to the corresponding index return are actually time varying. Given this evi-
dence, in this work we apply an alternative technique to estimate the parameter
beta: the Kalman filter. The application of this methodology concerns the eq-
uity portfolio of an insurance company1. The portfolio composition is observed
weekly during the period 31/12/99 - 12/04/01. This period experiences high
volatility and the sharp increase in market values. The portfolio Value-at-Risk
is daily calculated using i) the variance-covariance approach, ii) the parametric
Sharpe beta approach with ordinary least square technique and iii) the Kalman
filter estimation technique. Carrying out a back testing analysis we evaluate the
performances of the three different estimation methods for Value-at-Risk. The
VaR estimated with the Kalman filter appears to be more effective than the
other two methods in capturing market volatility changes. The structure of the
paper is the following. The second and the third sections review the literature
of both classical variance-covariance and parametric Sharpe beta approaches to
the estimation of Value-at-Risk. We test the instability of the parameter beta
and provide a justification to the use of the Kalman filter for its estimation. In
section 4 we describe the Kalman filter methodology and review applications of
this technique to the estimation of the parameter beta. In section 5 we show
the results of VaR calculation and back testing analysis. Finally, section 6 con-
tains some concluding remarks. In the appendix we show the procedure for
aggregating the VaRs.

2 Classical Approach to Value-at-Risk Estima-
tion

This method focuses on the estimation of the portfolio standard deviation. The
model is based on two main assumptions: the distribution of returns is normal
and portfolio returns are linear with respect to the portfolio risk factors. These
two combined hypothesis imply a normal distribution for the portfolio returns.
Since the portfolio returns have normal distribution and their mean is zero, the
σp parameter, which is the standard deviation of returns of portfolio, describes
the distribution itself and consequently determines the VaR value. The normal
distribution assumption allows us to say, for example, that a negative return
of the portfolio equal to −1.65σp will be exceeded with a 5% probability. We
can introduce a diagram to better explain this point (see figure 1). Considering
the past returns of a generic portfolio, we can plot their frequency in a diagram
and show their empirical distribution; we sum up the probability of the better
realizations (so starting from the left of the diagram) until we get a cumulative
probability equal to (1 − α) where α is the confidence level we choose for the
calculation of our VaR. The value that corresponds to that confidence level is
the α% Value-at-Risk. Therefore, we are able to determine the VaR of the
portfolio. Given the second assumption of a linear relation between changes in

1Data have been provided by RAS S.p.A.
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portfolio value and changes in the risk factors, the portfolio return will also be
itself normally distributed and therefore its variance would represent the whole
risk. In the simplest case, the portfolio risk factors coincide with the assets in
the portfolio. In matrix terms, the variance of the portfolio returns is equal to
σ2

p = x′Σx and the Value-at-Risk, in percentage terms, is equal to

V aR = z
√

x′Σx
√

∆t, (1)

where x is the vector of weights, ∆t is the time horizon and Σ is the variance-
covariance matrix of asset returns. The main problem related with the classical
approach to the VaR estimation is that the var-cov matrix is extremely ill-
conditioned. The Sharpe Diagonal Model, which is presented in the following
section, provides a simpler structure for the estimation of the variance of port-
folio.

3 The OLS-based Approach

The basic assumption underlying the OLS-based approach is that asset returns
depend on a single common factor which is represented by the market. The
model (called Sharpe Diagonal Model) is based on linear regression of asset
returns against market index returns:

Ri = αi + βiRm + εi;

where Ri is the single asset return, Rm is the return of the market index in
which the asset is traded, αi is an additive constant, βi is the beta coefficient
which indicates the sensitivity of Ri to changes in Rm, εi is the error component
(a random variable, with mean zero and variance equal to σ2

ε , which assumes
independently and identically distributed values). The model assumes that the
risk of the portfolio can be divided into two components: the first component
can be reduced by the mean of diversification; the second component depends on
market risk. The parameter βi can be interpreted as a measure of the riskiness
of the single asset in the portfolio. The coefficient can also be interpreted as
representing the relationship between the riskiness of the single asset and the
market index volatility; as it is given by the covariance between the respective
returns over the variance of the index returns. The estimation of the betas is
obtained by means of the ordinary least square (OLS) method, which consists
in minimizing the squared differences between observed and estimated values.
It is possible to demonstrate that, when the number of assets in the portfolio
increases, the variance of the portfolio converges to σ2

p → (x′ββ′x)σ2
m; the

variance depends on the only risky factor σm. The VaR of the portfolio can
consequently be calculated as follows:

V aR = z
√

x′ββ′xσ2
m

√
∆t, (2)

z is the quantile of the normal distribution that corresponds to the confidence
level we choose (1,65 in the example of the previous section); x is the portfolio
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weight vector; β is the vector of estimated parameters; σ2
m is the estimated

market index variance2.

3.1 Evidence on the Instability of the Beta Parameter

The OLS method is static since it implicitly gives the same weight to each ob-
servation and the estimated value may significantly depend on the length of
the series we use. For example, using the last 250 observations, as it is usu-
ally done in practice, we implicitly assume that there are significant changes
in the parameter value every year. Moreover, the betas represent the correla-
tion between the single asset and the market index. Structural breaks occur
in the financial markets due to many possible factors. Political events, for ex-
ample, can stress the economic equilibrium of a country and determine some
consequences on financial equilibrium. Abrupt changes in the economic cycle,
unexpected changes in the macroeconomic factors that drive the economy, and
many other microeconomic and social factors, can have some influence on the
financial markets equilibrium. Given this, since the beta parameter that we are
examining represents the correlation between the single asset (that is related
to a real economic activity) and the market index, it is likely that this rela-
tion will not stay constant through time, Wells [15]. To test the stability of
the estimated parameter we can use a recursive least square analysis. Plotting
the values of the parameters calculated in this way, we can observe significant
changes in the values of the betas. As an example, we show in figure 2 the path
of the beta values recursively estimated from April 1996 to February 2000 for
the asset Siemens which is included in the Dax market index; clearly a structural
break has occurred around the end of May 1997 in the asset or in the market
behavior. The value of beta for the asset Siemens has jumped from a value of
approximately 0.73 up to 0.87, within few months, around the date of 30 May
1997. To detect when the break has occurred, we use the CUSUM test (Brown,
Durbin and Evans [5]) that is based on the comparison between the cumulated
sum of residuals generated by a recursive regression process and a confidence
bound corresponding to the 5% of probability. If values of the cumulated sum
cross over the confidence interval, we conclude that the parameter is not stable.
Figure 3 shows the results of the CUSUM test applied to the Siemens stock:
the presence of a break is clear.

The Chow’s breakpoint test can also be used to test the statistical signifi-
cance of the date we want to interpret as a break. The test consists in comparing
the sum of squared residuals coming from the regression of a single equation on
the entire sample with the sum of squared residuals coming from the regression
of the same equation on two sub samples. A significant difference between the
two values shows there has been a structural break in the relation between the
variables we consider. The null hypothesis is the absence of structural breaks.

2The relationship between the variance-covariance model and the Sharpe beta model is
represented by the following equation: β = ΣX

X′ΣX
. X is the weight vector, Σ is the variance-

covariance matrix.
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Table 1 reports the results of the test in terms of p-value and clearly shows that
the null hypothesis has to be rejected.

4 A New Approach based on the Kalman Filter

In this section, we develop a new procedure for the VaR calculation which is
based on the estimate of the betas using the Kalman filter. The Kalman filter
is a recursive algorithm which allows one to upgrade model estimates using new
information, Hamilton [7] and Harvey [8]. Wells ([15]) applied this estimation
technique to stock markets and estimated beta parameters of Stockholm ex-
change equities.
The Kalman filter is based on the representation of the dynamic system with
a state space regression. Since we accept the hypothesis that the beta is not
constant, we model its dynamics assuming an autoregressive process. In brief
the Kalman filter algorithm can be summarized as follows. Let yt be the vector
(n× 1) of observed variables at time t whose dynamics depend on the possible
observations of the state vector ξt of dimension (r × 1). The state-space repre-
sentation of the dynamics of yt is given by the following system of equations:

yt = A′xt + H ′ξt + wt (3)

ξt = Fξt−1 + vt; (4)

F , A′ and H ′ are matrixes of parameters of dimensions (r×r), (n×k) and (n×r),
respectively, and xt is a vector of predetermined exogenous variables. Equation
4 is defined as state equation and the equation 3 as observation equation. The
ξt vector is the state vector. vt (r × 1) and wt (n× 1) are white noises, vectors
of random variables with zero mean and variance covariance equal to

E(vtv
′
t) =

{
Q for t = τ
0 for t 6= τ

(5)

E(wtw
′
t) =

{
R for t = τ
0 for t 6= τ

(6)

Q and R are matrixes of dimensions (r × r) and (n × n), respectively. We
assume that errors are not correlated. The objective of state space formulation
is to define the state vector ξt in a way that guarantees the minimization of
the number of elements and the comprehension of all the available information
at time t. To estimate the model we use the Maximum Likelihood technique.
Casual starting values are assigned to the ξt vector and to the F , A′ and H ′

matrixes of parameters and the estimation procedure maximizes the likelihood
function.

In this work we apply the Kalman filter technique to the estimation of the
Sharpe beta of a linear regression model. In the specific case, the state space
model has this form:

Rt = αi + (β + βt) + εt
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βt = θβt−1 + wt.

Specifying the state space in this way we can use the Kalman filter to esti-
mate the beta parameter as if it was an unobservable variable. We assume the
beta parameter follows a first order autoregressive process; a mean value for the
beta parameter is also estimated as stated in the first equation; this means that
we assume the parameter to be mean reverting towards β, see Hamilton [7] and
Harvey [8].

5 An Empirical Application

5.1 Data

The application is developed on a portfolio of equities of an insurance com-
pany3; the portfolio composition is observed during the period 31/12/1999 -
12/04/2001. The portfolio composition and the percentage weight of the assets
are weekly refreshed. The average number of assets in the portfolio, during the
observation period is 100. To estimate the Value-at-Risk of the portfolio, we
use, for each asset, daily series of one year length (250 observations). For each
methodology we calculate a VaR with different confidence levels and time hori-
zons. The financial markets involved are those of: Finland, France, Germany,
Italy, Japan, Netherlands, Spain, Sweden, Switzerland, U.K., U.S.A.. We create
different groups of equities on the basis of the markets in which they are traded.

For each market we consider one or more indexes. For example, the IBM
American shares are contained in the Dow Jones index and the American Intel
shares are part of the NASDAQ index, so we relate them to the two different
indexes respectively. For every group of equities we calculate the related VaR
(V aRindex,i). Since the portfolio is denominated in more than one currency, in
order to take into consideration the related risk effect, we also consider the series
of exchange rates against Euro for: American Dollar, Japanese Yen, Swedish
Crown, Swiss Franc, U.K. Sterling; so we also calculate a VaR for each currency
(V aRcurrency,i).

The aggregation of VaRs is described in details in the next section of the
paper (see equations 7 and 8 and following part of the text).

We create a procedure which is able to recursively update the database of
daily series of assets, markets and exchange rates. The procedure estimates the
VaR every day for the three different methodologies.

5.2 Procedure

VaR is estimated for the period 31/12/1999 - 12/4/2001. Hence we obtain 325
values for each estimation approach, with confidence levels 95%, 97.5% and 99%
and time horizons of one, five and ten days. The estimation approaches we apply
have already been described: classical method based on the variance-covariance

3Data have been provided by RAS S.p.A.
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matrix; ordinary least square method estimating the Sharpe beta with a linear
regression; the Kalman filter method which, with a recursive process, estimates
a time varying beta parameter. First of all, from the series of quotations we
generate the series of daily returns:

rt = ln(Pt/Pt−1).

Second, we record the percentage weights of every asset through time for
every day in which we want to calculate the VaR. As regards the classical ap-
proach, we estimate a variance-covariance matrix Σ for each group of equities,
the group being created as described in the previous section; we apply equa-
tion 1 to each market and estimate the VaR for different confidence levels and
time horizons. The VaR for currencies is calculated following this equation:
V aRcurrency = zσx

√
∆t, where σ is the standard deviation of the series of per-

centage variations of the exchange rate, and x is the percentage of portfolio
invested in that currency. Using the OLS methodology, we estimate the beta
vector for each market and applying equation 2 we obtain the VaR for each
group of assets. The OLS beta is estimated with a moving window of 250 data.
The Kalman beta is also estimated with a moving window of 250 data and the
same is for the var-cov matrix. The procedure of VaR estimation is repeated for
325 days, for all the three different methodologies, no comparative advantage is
given to any of the three.

The estimation of the betas with the Kalman filter methodology is based on
the assumption that they follow an autoregressive process with constant mean
as we specified at the end of section 4.

We first calculate the VaR of the portfolio disregarding the diversification
effect between market indexes and currencies: this means that we add up all
the VaR components that we have calculated (V aRindex,i and V aRcurrency,i) as
reflecting a conservative assumption of zero correlation between market indexes
and between currencies. Then we derive a diversified VaR estimating the corre-
lation matrixes both among market indexes Θindexes and currencies Θcurrencies.
The choice is justified considering Basel Committee on Banking Supervision [3]
and [4].

Then we apply the following equations according to Morgan [10]:

V aRequity =
√

V aR′ΘindexesV aR; (7)

for each market index and methodology we discussed; the currency VaR is given
by:

V aRcurrency =
√

V aR′ΘcurrenciesV aR. (8)

Finally, the total VaR for the trading days between 31/12/1999 and 12/04/2001
is calculated as V aRtotal = V aRequity + V aRcurrency, according to Basel Com-
mittee on Banking Supervision [4] and [3].

The whole procedure is discussed, more in detail, in appendix A.
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5.3 Back Testing Analysis

The back testing analysis consists in testing the reliability of a Value-at-Risk
model by evaluating the difference between the values estimated by the VaR
system and the ex-post mark-to-market portfolio value. For example, in the
case of a VaR with one day horizon and 95% confidence interval, the back
testing analysis verifies whether daily losses above the VaR estimate occur only
in the 5% of the cases. The same analysis is applied to the VaR calculated with
the OLS and the variance-covariance matrix approaches in order to allow us a
comparative analysis of the Kalman methodology. The Basle Committee has
published a document (Basel Committee on Banking Supervision [4]) about the
use of back testing which aimed at encouraging the use of this technique. The
Basle Committee recommends a daily estimation of the Value-at-Risk. When
the time horizon is five or ten trading days, it is not possible to disregard the
fact that the portfolio composition may change in the mean time.

Usually the portfolio return is daily recorded and an historical series is cre-
ated; this historical series can not be used for a back testing analysis. For this
reason, for our back testing analysis, we assume that the composition of the
portfolio remains unchanged from the moment in which we estimate Value-at-
Risk for the five or ten days after the evaluation. This allows us to appropriately
compare the VaR estimation with the return of the unchanged portfolio.

The back testing analysis can be interpreted as a static statistical test on
the validity of the Value-at-Risk estimation methodology. Recognizing that this
test has a limited power in distinguishing well specified models from not well
specified ones, the Basle document provides a table for the interpretation of
the back testing results: the number of errors made by the VaR method is
associated with a cumulated probability to encounter that number of errors.
The probability is divided into different ”zones” on the base of which the VaR
model can be: accepted as correct (”green zone”, up to a cumulated probability
of 95%), refused as not correct (”red zone”, cumulated probability higher than
99,99%), be in an intermediate zone where it is not possible to conclude the
model is correct or not (”yellow zone”, cumulated probability between 95% and
99,99%) (table 2). The zones are determined as to balance the two kind of
statistical errors: first type error - the VaR model is classified as incorrect while
it is not; second type error - the VaR model is classified as correct when it is
badly specified.

5.3.1 Results

The results of the back testing analysis are reported in tables 3 and 4; the num-
ber of errors we have registered for every type of VaR is expressed as percentage
over the total number of VaR estimations. The result we should obtain is a 1%,
2.5% and 5% of errors for the 99%, 97.5% and 95% VaR respectively.

We define as VarCov the variance-covariance method, OLS the method
that estimates static betas, Kalman the method that estimates betas using
the Kalman filter. In the case of the diversified VaR, the estimates obtained
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applying the Kalman method appear to be, in terms of back testing, consider-
ably more accurate than the OLS and VarCov estimates: the percentage error
is lower if we consider the diversified VaR are a one day horizon (99%) and
higher if we consider the diversified VaR on a ten day horizon (95%), but in
both cases it is nearer to the target value. The diversified one day horizon, 99%
confidence interval Kalman VaR is the only one included in the ”green zone” of
table 2, with a percentage error of 1,54%; it can consequently be considered a
well specified model; OLS and VarCov, instead, are in the ”yellow zone”, which
means that they are not completely well specified.

If we consider the non-diversified VaR in the case of one day-horizon, 95%
and 97.5%, five day-horizon, 95% and 97.5%, ten day-horizon 97.5%, the Kalman
and OLS estimation techniques give approximately the same results and seem
to be better than the VarCov method; in all the other cases, the three methods
exhibit almost the same percentages of error and it is impossible to draw con-
clusions. We observe that, when the time horizon lengthen, the percentage of
errors of the three methods tends to decrease considerably; this fact is probably
due to the fact that the relation between the daily volatility and the volatility
for a longer time period is smaller than the coefficient

√
∆t which is commonly

used. In general, we observe that VarCov presents percentages of error more
distant from the target values of 1%, 2.5% and 5%. The empirical analysis above
has been carried out for a particular period characterized by high volatility and
decreasing quotations following a boom of the market. Figures 4 and 5 provide
evidence of the changes in the portfolio composition: it has been adjusted as to
assume a more defensive position on the market; the beta of the portfolio has
gradually and clearly decreased. We observe that the paths of Kalman and OLS
portfolio’s betas are similar, but the first plot is smoother than the second one.
This is due to the fact that the Kalman beta is more sensitive to the market
variations and faster in reacting to them.

The series generated by the Kalman VaR show higher volatility. OLS and
Kalman VaRs are characterized by a smoother trend if compared with the Var-
Cov series (figures 6-9). The difference in mean between VarCov and Kalman
in the case of non-diversified, one day-horizon, 99% confidence interval VaR is
equal to 0.38% and the maximum gap is 0.62%. The mean difference, if we
consider VarCov and OLS, is equal to 0.42% and the maximum gap is 0.72%.

The three methods are different also in terms of volatility of estimations. The
standard deviation of Kalman beta series is 0.0664, the standard deviation for
the OLS beta of portfolio is 0.0468. The higher volatility of Kalman betas, for
equation 2, has consequences on the VaR estimations, as it is clear from figures
6-9. With a 99% confidence interval and a one day unwind period, the non-
diversified Kalman VaR has a standard deviation of 0.17, the non-diversified
OLS VaR of 0.14. The estimate with the Kalman filter methodology, as we
expect, is characterized by a higher volatility affecting the VaR calculation; this
is particularly clear in the case of diversified VaR with one day-horizon, 99%
confidence level.
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6 Conclusions

In this paper we have developed a methodology to calculate VaR based on
the Kalman filter approach for the estimation of portfolio betas. The empirical
analysis provides evidence that this approach is more sensitive to market volatil-
ity changes than alternative methods using OLS betas or variance-covariance
matrices. This is particularly true in periods characterized by high market
volatility, as the one considered in our empirical work. Therefore, the technique
advanced in the paper seems to provide significant improvements with respect
to more ”traditional” approaches and might be employed to better control daily
changes in the risk of the portfolio. An interesting extension of the approach
would consist in the dynamic estimation of the correlation matrices through the
use of stochastic volatility models. This is an interesting direction for future
research.
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A Aggregating Value at Risk

Define the portfolio rate of return as

Rp = w1R1 + w2R2... + wNRN =
[

w1 w2 . wN

] 
R1

R2

.
RN

 = w′R (9)

where R1 and w1 represent, respectively, the rate of return and the weight on
asset 1 and so on asset 2 until N, w′ represents the transposed vector of weights
and R is the vector containing individual asset returns. The portfolio variance
is

V (RP ) = σ2
p =

N∑
i=1

w2
i σ2

i +
N∑

i=1

N∑
j=1,j 6=i

wiwjσij (10)

where σ2
i is the variance of asset i and σij is the covariance between asset i and

j. The portfolio variance can be written as

σ2
p =

[
w1 w2 . wN

]  σ11 σ12 σ13 ... σ1N

.
σN1 σN2 σN3 ... σNN

 w1

.
wN

 = w′Σw

(11)
defining Σ as the covariance matrix. Define the correlation ρ between asset i
and j as

ρij =
σij

σiσj
. (12)

In the two assets portfolio case the portfolio variance is

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2. (13)

Defining the Value at Risk (VaR) as

V aRp = ασp

√
tW (14)

where α can be set at 1.65 for a one-tail 95 percent confidence level,
√

t is the
square root of number of days defined as the unwinding period and W is the
initial portfolio value. According to Jorion [9], the portfolio VaR is then

V aRp = ασp

√
tW = α

√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2

√
tW. (15)

When the correlation ρ is zero, the Value at Risk reduces to
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V aRp =
√

α2w2
1σ

2
1tW 2 + α2w2

2σ
2
2tW 2 =

√
V aR2

1 + V aR2
2; (16)

when the correlation is exactly unity, we have

V aRp =
√

V aR2
1 + V aR2

2 + 2V aR1V aR2 = V aR1 + V aR2. (17)

The portfolio VaR can be expressed also in terms of correlation matrix, Θ,
according to Morgan [10] and we obtain given ρ11 = ρ22 = 1 and ρ21 = ρ12

V aRp = α
√

w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2

√
tW =

=
√

α2w2
1σ

2
1tW 2 + α2w2

2σ
2
2tW 2 + 2ρ12

(
αw1σ1

√
tW

) (
αw2σ2

√
tW

)
=

√
V aR2

1 + V aR2
2 + 2ρ12 (V aR1) (V aR2)

=
√

ρ11V aR2
1 + ρ22V aR2

2 + ρ12V aR1V aR2 + ρ21V aR1V aR2.

(18)

Then, the portfolio VaR can be written in matrix notation

V aRp =

√[
V aR1 V aR2

] [
ρ11 ρ12

ρ21 ρ22

] [
V aR1

V aR2

]
=
√

V aR′ΘV aR (19)

where V aR′ represents the transposed vector of V aRs.

Now, consider the previous portfolio where the two assets 1 and 2 are a USD
asset and a Yen asset respectively and the Euro is the reference currency for
portfolio value. Define with σ2

usd, σ2
yen and ρusd,yen, respectively, the volatility

of USD, the volatility of the Yen and the correlation between the two currencies.
The portfolio VaR in terms of currency risk is

V aRcurrency = ασcurrency

√
tW (20)

= α
√

w2
1σ

2
usd + w2

2σ
2
yen + 2w1w2ρusd,yenσusdσyen

√
tW.

Then we can also write

V aRcurrency =

√[
V aRusd V aRyen

] [
ρusd,usd ρusd,yen

ρyen,usd ρyen,yen

] [
V aRusd

V aRyen

]
=

√
V aR′ΞV aR (21)

12



where V aR′ represents the transposed vector of currency V aRs and Ξ is the
correlation matrix among currencies.

When the correlation between the market risk and currency risk is assumed
equal to one, that is exactly what regulators recommend according to the Basel
Committees’ rules, Basel Committee on Banking Supervision [3] and [4], the
total portfolio VaR is

V aRTOT = ασTOT

√
tW = V aRP + V aRcurrency, (22)

where σTOT = σp + σcurrency.
A formula can be derived that add the VaR measures of the two positions

in equity and currency

σ2
TOT = σ2

P + σ2
CUR + 2ρP,CURσP σCUR

= (σP + σCUR)2 − 2σP σCUR + 2ρP,CURσP σCUR (23)

= (σP + σCUR)2 − 2 (1− ρP,CUR) σP σCUR

and so

V aRTOT = α

√
(σP + σCUR)2 − 2 (1− ρP,CUR)σP σCUR

√
tW . (24)

The total VaR is the sum of the VaRs if we assume that the two risk factors
are perfectly correlated ρP,CUR = 1 and

V aRTOT = α (σP + σCUR)
√

tW = V aRP + V aRCUR, (25)

obtaining an undiversified total VaR in order to be prudent (see Alexander [2]
and Jorion [9]).
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Table 1: Chow Breakpoint test for Siemens asset, Mar 1996-Feb 2000.

Table 2: Basel Committee ”zones”.
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Table 3: Back-testing Results: Diversified Value-at-Risk.

Figure 1: Value-at-Risk diagram.
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Table 4: Back-testing Results: Non-diversified Value-at-Risk.

17



Figure 2: Recursive beta estimation for Siemens asset, Apr 1996-Feb 2000. The
dashed lines indicate ±2StandardError.

Figure 3: Cumulative Sum of Square Test for Siemens asset, Apr 1996-Feb 2000.
The dashed lines indicate the 5% confidence interval.
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Figure 4: Beta of Portfolio with OLS technique.

Figure 5: Beta of Portfolio with Kalman technique.
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Figure 6: Diversified one day-horizon VaR with 99% confidence level (percentage
values).

Figure 7: Non diversified one day-horizon VaR with 99% confidence level (per-
centage values).
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Figure 8: Diversified five day-horizon VaR with 99% confidence level (percentage
values).

Figure 9: Diversified ten day-horizon VaR with 99% confidence level (percentage
values).
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