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PREFACE

Statistics plays an important role in scientific studies, in a wide variety of applications. From
the core statistical elements (observe, analyze and infer) to complicated design of experiments,
statistics is finding newer roles in new areas. We believe that the most important reason be-
hind advancement of statistics, and its applications in important and challenging problems, is
the growth in computing power. The phenomenal advances in architectures supporting faster
processing, and the simultaneous decline in cost of desktop computing have enabled diverse
practitioners to use sophisticated statistical procedures. Applications with massive datasets (of
the order of terrabytes) or real-time applications (requiring inferences in fractions of millisec-
onds) or applications with complicated probability models, can all employ reasonable scientific
frameworks and still provide satisfactory results. In this course, we focus on the basic issues and
standard practices in application of computational techniques in standard statistical analysis.
The following outlines the basic philosophy behind this course:

1. The main focus is on ability to convert ideas into algorithms and practice their computer
implementations. In this sense, this course complements the knowledge of statistical theory
acquired in other mathematics/statistics courses.

2. Theoretical results, although important, are not emphasized here and instead the emphasis
is on taking computational solutions and implementing them into algorithms and programs.

3. Through implementations and examples, we will learn, verify and appreciate various as-
sumptions that are needed in deriving some theoretical results. One example is to establish
the conditions under which Markov chains generate samples from given probability distri-
butions.

4. This course is designed to be self-contained. Each chapter will start with the notations,
definitions and the theory needed to set up computational goals. The rest of the chapter
will deal with deriving algorithms and practice programs.

5. The main programming environment used here is matlab.

We will start with the representation of real number numbers of a digital storage device of a
computer, called the floating point representation. This leads to the study of errors introduced
in the computations due to floating point arithmetic. Understanding of these errors will guide
us in selecting proper algorithms for computations of sample statistics (mean, variance) given
the availability of memory, processing and storage resources.

The next topic is solving for (linear) regression between the observed vector and a set of
predictor vectors. In Chapter 2, we will start by re-visiting some basic definitions and rules
from linear algebra. Then, we will pose the problem of multiple linear regression and present
a solution based on orthogonal transformations of underlying coordinate system, resulting in
a simpler structure which is solvable using backward substitution. Linear representations also
play an important role in analyzing high-dimensional systems. Problems in image analysis,
meterology, atmospheric sciences, and fluid mechanics often undergo linear dimension reductions
before any statistical approach is applied. We will investigate the use of principal component
analysis and Fisher’s discriminant analysis for such linear projections.

Even though linear solutions are important tools, most practical problems are characterized
by non-linear relationships between the variables; the solutions correspond to optimal points
under some chosen cost function that is non-quadratic. Chapter 3 is devoted to the techniques
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for finding the roots of score-functions, or equivalently, finding the optimal points of non-linear
cost functions, through numerical procedures. There is a tremendous variety in non-linear
optimization techniques, we will restrict our studies to a representative set. Applications of
these ideas in studies include maximum likelihood estimation (MLE) and maximum a-posterior
(MAP) estimation. We will consider an interesting case of finding MLE using only partial
observations and expectation-maximization (EM) algorithm.

Several estimation and many other inference problems can be posed as integrals of appro-
priate functions. It should be emphasized that integration is basic to almost all statistical
inference procedures. Very often, the integrands are far too complicated to seek analytical solu-
tions; hence, numerical approximations are pursued, and Monte Carlo techniques have become
prominent for this task. To understand and appreciate the role of Monte Carlo approaches,
one should be familiar with the classical (deterministic) methods for numerical integration. In
Chapter 4 we will study a set of numerical integration techniques for integrating functions of
single and multiple variables.

One exciting area in statistics is computations through simulations. To calculate quantities
associated with random variables, such as mean, variances etc., one can simulate those random
variables and utilize the simulated values to approximate the quantities sought. With the advent
of high-speed computing it is possible to perform sophisticated simulations in reasonable times.
In Chapter 5 we will start by studying the simulation techniques for random variables, both
discrete and continuous, following it up with some examples of simulating stochastic processes.

Chapter 6 applies random sampling techniques in estimating
∫

g(x)f(x)dx where f is a
probability density function, and g is an arbitrary (integrable) function. We will start with
the classical formulation of Monte Carlo approach, using i.i.d samples of X ∼ f(x). Next,
we describe several improvements in the classical approach using variance (error) reduction
techniques.

In cases where it is not possible to exactly sample X ∼ f(x), one resorts to approximate
sampling, and an important idea in that area is Markov chain based Monte Carlo (MCMC)
approximation. In Chapter 7, we present a basic overview of MCMC techniques and, in par-
ticular, study the two classical techniques for constructing Markov chains: Gibb’s sampler and
the Metropolis algorithm. We study some asymptotic properties of the resulting Markov chains
and investigate their applications in some estimation problems.

A problem that is exact opposite of sampling is that of density estimation. Given a number
of samples xi ∼ f , the goal is to estimate f . In low-dimensional spaces, IR1 or IR2, there have
been significant number of techniques that provide acceptable solutions, and in Chapter 8 we
survey some of these techniques.

Chapter 7 deals with sampling from static or fixed distributions but many applications deal
with analysis of dynamical systems where the probability distributions are changing in time.
Consider, for example, the problem of tracking a system xt that evolves in time according to
some (known or unknown) law. Instead of observing xt directly, we get to measure a related
quantity yt, and our goal is to estimate xt using measurements at each observation time. In
a Monte Carlo framework, this problem requires sampling from probability distribution of the
type f(xt|y1, y2, . . . , yt) which changes at every t. Efficient, recursive techniques for sampling
from such time-varying distributions is described in Chapter 10. Here we start with the classical
Kalman filter and generalize to a nonlinear filtering approach using sequential Monte Carlo
apparatus.

An important contribution of computational approaches in statistical analysis has been the
invention of bootstrap methods. Bootstrap methods are very useful in situations when one
wants to evaluate a statistical procedure or an estimator, an no explicit evaluation formula
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is available. Bootstrap is essentially a technique of resampling the observed data to generate
enough replicates of the given estimator and use these replicates in computing standard error,
or bias, or a confidence interval. These techniques are described in Chapter 11.

The final chapter includes a collection of topics that are important to any discussion on
computational statistics. These topics, such as bootstrapping, perfect sampling, and dynamic
programming, have been covered summarily in Chapter 12.

(This is a work in progress with regular updates, corrections, and additions. Please beware
of a large number of unintended mistakes that are present in this document).
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Chapter 1

NUMERICAL ANALYSIS

1.1 Introduction

There are many references suitable for this topic, we will follow the notation and discussion
presented in [5]. In this chapter, we start the process of deriving computer algorithms and
developing mathematical procedures to achieve desired mathematical results. This requires a
basic understanding to how the numbers are represented on a digital machine, how the arithmetic
operations are performed, what errors are possible and how to minimize errors in computations,
and so on.

1.2 Numerical Methods

We start by making precise our usage of terms such as algorithms and numerical procedures.

Definition 1 An algorithm is a step by step procedure that produces a solution to a problem in
a finite number of steps.

So it can be a sequence of statements resulting in, for example, an approximation of an integral
or a precise exponential of a real number. There is not a precise syntax for writing algorithms.
Any symbolic representation of the steps which clearly conveys the steps is sufficient. Having
understood the mathematical theory behind a desired output generally one writes an algorithm
which can later be translated into a computer program. Some of the famous algorithms that we
will study include Newton-Raphson, Metropolis, Viterbi, and Householder algorithms.

Definition 2 An algorithm for solving a problem whose solution consists of one or more nu-
merical values is called a numerical procedure.

Consider the following example of a numerical procedure:

Example 1 Finding f ′(x) if one just has sampled values of f(x). A numerical procedure to
approximate f ′(x) is as follows:

Get x, the value at which f ′(x) is desired.
Initialize h, the variable step-size.
Get r, ratio of step-size in successive iteration.
Get NumDec, desired number of decimal accuracy.
TOL ← 0.5 ∗ 10−NumDec

Initialize PrevDQ

11
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REPEAT
DQ ← [f(x + h)− f(x)]/h
DelDQ ← DQ− PrevDQ
PrevDQ ← DQ
h ← h/r

UNTIL |DelDQ| < TOL

Why should one use a program for numerical methods, instead of just using a calculating in-
strument of some kind?

1. Ease of Implementation: Once the program is written and debugged it can be run
with a different numerical input every time. Such a computation can be unsupervised or
automated. For example, in the example above replace f(x) by a new function g(x) to
approximate its derivative, or replace x by y to approximate f ′(y). Furthermore, very often
there are steps or sets of steps which are common to many different numerical procedures,
so they need to be programmed only once.

2. Flexibility: Once a numerical procedure is programmed it is flexible enough to be mod-
ified or re-used. A simple re-organization of modules can result in a variety of numerical
procedures. Smaller algorithms can be combined to generate larger and more complicated
procedures. In fact, the strength of computational approaches lies in their heirarchical
nature; building sophisticated programs using simple building blocks.

3. Speed and Reliability: Computer programs are much faster than a human being enter-
ing values on a calculator and performing arithmetic.

Numerical analysis is a study of numerical methods. The computations performed on digital
computers are not exact: they produce side effects. Numerical analysis is a study of these side
effects and constructing algorithms which minimize them.

1.3 Floating Point Calculus

Storage areas on digital computers have finite sizes, i.e. they can store the numbers only to
some finite precision. Hence, not all real numbers are representable on digital computers, only
a finite subset can be.

Definition 3 The particular set of real numbers representable on a digital computer are called
floating point numbers.

The set of floating-point numbers plus the set of allowable arithmetic operations is called the
floating-point system. Floating point system is not same for every computer, but it conforms to
a set of standards approved by ANSI. A floating point number can be written as

(−1)s(d0.d1d2 . . . dt−1)× βe (1.1)

where s is the arithmetic sign, e is the exponent, d0, . . . , dt−1 form the mantissa (also called
fraction), and β is the base. s is either 0 or 1 while 0 ≤ di ≤ β − 1 and Emin ≤ e ≤ Emax.
The value of t dictates the precision to which a number can be stored on a computer. For a
binary system β = 2 while for the decimal system β = 10. Additional numbers such as ∞, −∞,
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and NaN (not a number) may also be represented. The smallest magnitude in this system is
x = 0.00 . . . 1× βEmin . Another system often used to represent floating point numbers is

(−1)s(.d0d1 . . . dt−1)× βe) . (1.2)

All the significant digits are after the decimal in this system.
It is clear that the same number can have multiple representations, for example 0.2008 ×

104 and 2.0080 × 103 are exactly the same. To avoid multiple representations, a normalized
representation is defined by forcing the first significant digit (d0) should non-zero, i.e. 0 < d0 ≤
β − 1. The numbers {x : |x| < βEmin−1} (called subnormals) can not be normalized and, are
sometimes excluded from the system. If an operation results in a subnormal number underflow is
said to have occurred. Similarly if an operation results in a number with the exponent e > Emax

overflow is said to have occurred. For a normalized floating point number we will use the
notation

(±d0d1 . . . dt−1, e) (1.3)

to imply (−1)s(.d0d1 . . . dt−1) × βe. In short, it is called a β, t system. For example, in a
10, 3 system 19 is represented by (190, 2) and 0.003 is represented by (300,−2). On a n-digit
computer, a typical storage of a floating point number is as follows:

s d0 d1 . . . dt−1 e1 . . . er

where n = t + r + 1.

Example 2 Add the numbers 105.0, 3.14, and 2.47 in the (β, t) system with β = 10 and t = 3.
For floating point operations, we often use double accuracy (t = 6 in this case) for computing
and storing intermediate results.

The representations with equal exponents are

105 ⇒ (105000, 3), 3.14 ⇒ (003140, 3), 2.47 ⇒ (002470, 3) .

First addition results in

(105000, 3) + (003140, 3) = (108140, 3) ,

which in (10, 3) system is (108, 3). And the second addition is

(108000, 3) + (002470, 3) = (110470, 3)

which in (10, 3) system is (110,3).

1.4 Error Analysis

Knowing that only the floating point numbers can be represented on a digital computer, what
are its consequences? Furthermore, their operations can result in non-floating point numbers
which have to be represented by the nearest floating point number. This results in creation and
propagation of errors in a numerical procedure.

There are two ways to generate a floating point approximation from a given real number:
(i) truncation, only finite number of bits are kept to make it a floating point number, and (ii)
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round-off, the number is rounded-off to the nearest floating point number in the Euclidean sense.
A real-valued number x is then represented by its floating point representation x∗ such that

x∗ = x(1 + ε) ,

where ε is the relative error. Based on the choice of β and t, we can put an upper bound on
the absolute value of ε. Let x be denoted by (.d0d1d2 . . . dt−1dt . . .)×βe. Under (β, t) system its
floating point representation becomes (.d0d1 . . . dt−1)× βe. Therefore, the error is

x− x∗ = (.00 . . . 0dtdt+1 . . .)× βe

And the absolute relative error becomes

|x− x∗

x
| =

(.00 . . . 0dtdt+1 . . .)× βe

(.d0d1d2 . . . dt−1dt . . .)× βe

≤ 1.0× β−t

0.1
= β1−t

Similarly, in case of the roundoff error the absolute relative error can be shown to be upper
bounded by 1

2β1−t. We will denote these quantities by u which represents the precision of a
computer in representing real numbers.

u =
{

β1−t truncation
1
2β1−t roundoff

(1.4)

The errors in representing real numbers accumulate further under the floating point arithmetic.
There are four main sources of error in floating point arithmetic: let fl(x◦y) represent a floating
point operation involving the two floating point number x and y.

1. Creeping roundoff/truncation: This is the situation when fl(x ◦ y) is not a floating
point number and it is approximated via round-off or truncation. Let x∗ and y∗ be the
floating point representations of x and y, respectively. Then, their floating point addition
is given by

(x∗ + y∗)∗ = (x∗ + y∗)(1 + ε3)
= (x(1 + ε1) + y(1 + ε2))(1 + ε3)
= (x + y) + (x + y)ε3 + (xε1 + yε2) + (xε1 + yε2)ε3
≤ (x + y) + 2(|x|+ |y|)u + higher order terms

So floating point addition of x and y results in cumulative errors resulting from their
individual representations and the floating point operation performed on them.

2. Negligible Addition: In case the magnitudes of x and y are very different, their sum gets
rounded off to the larger of x and y. For example, if we add the numbers 1.23× 104 and
0.1 in β = 10 and t = 3 system, we get: (123, 5) + (100, 0) = (123, 5) even if intermediate
values are stored in β = 10 and t = 6 format.

3. Error Magnification: Let ◦ denote the multiplication, and if there is an error incurred
in representation of x, that error will be magnified by the value of y.
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4. Subtractive Cancellation: If the two numbers x and y have large number of significant
digits and their difference has a relatively smaller number of significant digits, then the
difference can lose significant digits in floating point computation. For example, let x =
122.9572 and y = 123.1498, their floating point representations are, for t = 4, β = 10,
(1230, 3) and (1231, 3). The resulting difference is −0.1 while the actual answer is −0.1926.
Similarly, in the calculation of e−x by the partial sums, for large x’s the successive terms
can have subtractive cancellation.

Some of these errors are unavoidable. Sometimes they can be minimized. There are some general
guidelines for minimizing some specific errors in floating point arithmetic:

1. In case of integral exponents such as xn with n small, it advisable to compute this value
through iterative multiplication rather than the exponential evaluation. That is, to calcu-
late yn, for n integer, use u = y ∗ y and then v = u ∗ u, and so on.

2. Very often one can change expressions in the form which requires fewer floating point
operations, specially in trigonometric expressions. Furthermore, some expressions are
more stable as compared to others even though they are algebraically equivalent. For
example, evaluating the expression 1+cos(x) will result in subtractive cancellation for the
values closer to π. Instead, one can evaluate the equivalent expression 2(cos(x

2 ))2 which
avoids the issue of subtractive cancellation.

3. Use nested multiplication to compute polynomials. For example, to compute y = a1x
n +

a1x
n−1 + . . . + anx + an+1 use the loop:

y = 0;
for i = 1 : n + 1

y = y · x + ai;
end

The total number of floating point operations performed in this evaluation is 2n, an addi-
tion and a multiplication in each iteration.

4. Sometimes precision can be improved significantly by storing the intermediate values in
extended precision. For a float evaluation of a function the intermediate values can be
stored using double precision. This double precision register model is widely used in
computers.

Based on this discussion, evaluating f(x) for a real-valued number will have two types of
errors:

f∗(x∗)− f(x) = (f(x∗)− f(x)) + (f∗(x∗)− f(x∗)) .

The first error is due to the representation of x while the second term is the error in representing
f(x∗) in a floating point system. Irrespective of the function and its arguments, the relative error
in the second term is bounded the machine precision u while the first term can be significantly
high. Some functions will have the first term much larger than others. In fact, the same function
can have the first term much larger at some values of x compared to some other values. This
motivates a study of the stability in evaluating a function at a given point.

Definition 4 A function is called ill-conditioned at a given point x if a small perturbation in x
causes a large perturbation in f(x). Its called well-conditioned otherwise.
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As an example consider the function f(x) = 1
x being evaluated at a point x 6= 0. Then,

f∗(x∗) = f∗(x(1 + ε1))

=
1

x(1 + ε1)
(1 + ε2)

=
1
x

(1 + ε1)
(1 + ε2)

For small values of ε1 and ε2 the factor (1+ε1)
(1+ε2) is nearly 1 and the function is well-conditioned.

Similar discussion suggests that for x ∼ 0 (x 6= 0) this function is ill-conditioned. On the other
hand consider the function

f(x) =
1.01 + x

1.01− x
.

In this case
f∗(x∗) =

1.01 + x + xε1
1.01− x− xε1

(1 + ε2) .

For x = 1,

f∗(x∗) =
2.01 + ε1
0.01− ε1

(1 + ε2) .

Even if ε2 = 0, for ε1 = 0 f∗(x∗) = 201 and for ε1 = 0.005, f∗(x∗) = 403. Hence, f is
ill-conditioned near x = 1.

To quantify the stability of a function being evaluated at a given point we utilize the notion
of a condition number.

Definition 5 C(x) is called the condition number of a function f at a given point x if it satisfies
the condition

|relative change in f(x)| ∼ C(x)|relative change in x| . (1.5)

For a large value of C(x), more accurate representation of x is needed to get the fixed accuracy
in representing f(x). Clearly, C(x) relates to the slope of f at x. Large values of C imply an
ill-conditioned function and vice-versa. Let f be differentiable at x, then for |dx| << |x|,

f(x + dx) ∼ f(x) + f ′(x)dx

Rearranging the terms, we obtain, for x, f(x) 6= 0,

f(x + dx)− f(x)
f(x)

∼ xf ′(x)
f(x)

dx

x
.

From the definition in Eqn. 1.5, the condition number is given by,

C(x) = |xf ′(x)
f(x)

| .

For the function f(x) = exp(x), the condition number is given by:

C(x) = |x exp(x)
exp(x)

| = |x| ,

and hence this function is ill-conditioned for x with large magnitude. One should be careful
before computing exponential of large numbers.
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1.5 Moment Computations

A very frequent requirement in statistics is the computation of sample moments based on a finite
observation set. In this section we investigate the error propagation resulting in a floating point
system. Let x1, x2, . . . , xn are the observations then denote the j-th sample moment by

Mj =
1
n

n∑

i=1

(xi)j . (1.6)

The mean is given by x̄ = M1 and the central moments are given by mj = 1
n

∑n
i=1(xi− x̄)j . m2

is the variance and
√

m2 is the standard deviation.

1.5.1 Computing Sample Mean

First we analyze the error incurred in evaluating means, the common algorithm is:

Algorithm 1 (Sample Mean)
s = 0;
for j = 1 : n

s = s + x(j);
end
m = s/n;

Let n = 3 and compute f = x1 + x2 + x3 where x1, x2, x3 are floating point numbers. Each
addition in the algorithm can result in a number which may not a floating point. Its floating
point representation results in an error denoted by multiple (1 + ε) to that number. That is,

s1 = (x1 + 0)∗ = (x1 + 0)(1 + ε1)
s2 = (s1 + x2)∗ = (s1 + x2)(1 + ε2)
s3 = (s2 + x3)∗ = (s2 + x3)(1 + ε3)∑∗ = (x1 + x2 + x3) + x1(ε1 + ε2 + ε3) + x2(ε2 + ε3) + x3(ε3)+ higher order terms.

Therefore, the cumulative error is given by

|
∗∑
−

∑
| ∼ |x1(ε1 + ε2 + ε3) + x2(ε2 + ε3) + x3(ε3)|
≤ |x|(|ε1|+ |ε2|+ |ε3|) + |y|(|ε2|+ |ε3|) + |z||ε3|
≤ (3|x1|+ 2|x2|+ |x3|)u

where u is the machine precision. This result shows that the error can be more if x1 is the largest
of the three as opposed to the case when x1 is the smallest of the three. This suggests that one
should sort the numbers according to their magnitudes in increasing order before computing
their mean. Another advantage of sorting the numbers before the summation is that it helps
avoid negligible addition. It is possible to have two numbers say x1 and x2 which differ a lot
in magnitude. Their addition will result in loss of significant digits associated with the smaller
number. But through sorting it is possible that the smaller numbers accumulate first and become
more comparable to larger numbers before their addition. Obviously, there is extra time spent
in sorting the numbers (O(n log(n)) operations) so there is a trade-off between the speed of
implementation and the resulting accuracy.
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Extending this calculation to an arbitrary n, it can be shown that

|
∗∑

i

xi −
∑

i

xi| ≤ (
n∑

i=1

(n + 1− i)|xi|)u (1.7)

Dividing both sides by n, we have

|f∗ − f | ≤ 1
n

(
n∑

i=1

(n + 1− i)|xi|)u + x̄ε

≤ |xmax|u 1
n

n∑

i=1

(n + 1− i) + |xmax|u

≤ 1
2
(n + 3)|xmax|u

This is the worst case error that can be introduced in the process of computing mean of n
floating point numbers. Note that this error grows linearly in n.

Neely proposed an algorithm to reduce this error. Here is the algorithm

Algorithm 2 (Neely’s Sample Mean)
S = 0;
for j = 1 : n

S = S + x(j);
end
x̄ = S

n ;
S = 0;
for j = 1 : n

S = S + (x(j)− x̄);
end
X̄ = x̄ + S

n ;

Basically, the first for loop computes the mean as earlier but the second run through the
loop does finer corrections in computing the mean. In ideal calculation S should be 0, but for
floating point system S is of the order of the linear term in summation we calculated earlier,
that is

S ∼
(

n∑

i=1

(n + 1− i)xi

)
u .

1.5.2 Computing Variance

Variance can be calculated in many ways, two of them according to the formulae,

1
n

n∑

i=1

(xi − x̄)2 =
1
n

n∑

i=1

x2
i − (

1
n

n∑

i=1

xi)2 .

These two lead to the following two algorithms for computing the variance. The natural im-
plementation of the variance formula (left side of the equation) results in a two-pass algorithm.
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Algorithm 3 (Two-Pass Variance)
s = 0;
for i = 1 : n

s = s + x(i);
x̄ = s/n;
end
s = 0;
for i = 1 : n

s = s + (x(j)− x̄)2;
end
var = s/n;

The other algorithm, utilizing only one pass through the data is based on the right side of
the equation:

Algorithm 4 (One-Pass Variance)
s = 0;
s2 = 0;
for j = 1 : n

s = s + x(j);
s2 = s2 + x(j) ∗ x(j);

end
var = s2/n− (s/n)2;

It can be seen that the algorithm 1 is better. Why? The reason is that the cancellation of
significant digits takes place when we take the difference of two large numbers. For example,
consider computing the variance of the dataset X = (19, 20, 21). The mean is x̄ = 20 and the
variance is 2/3. The computations according to Algorithm 1, in a β = 10 and t = 3 system, will
result in:

(−100, 1)2 = (100, 1)
(000, 1)2 = (000, 1)
(100, 1)2 = (100, 1)

= (200, 1)

and the variance becomes (200, 1)/3 = (667, 0). On the other hand, the second algorithm results
in:

(190, 2)2 = (361, 3) [+(000, 1) = (361, 3)]
(200, 2)2 = (400, 3) [+(361, 3) = (761, 3)]
(210, 2)2 = (441, 3) [+(761, 3) = (1202, 4)] = (120, 4) .

The first term is given by (120, 4)/3 = (400, 3). The second terms is given by (200, 2)2 = (400, 3).
The variance is given by their difference,

(400, 3)− (400, 3) = 0 .
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This algorithm demonstrates that significant digits may be lost in using the second algorithm.
Why is the two-pass algorithm better? In that case we avoided subtracting cancellation, i.e.
subtracting close, large numbers, by centering them, and hence, the improvement in the perfor-
mance.

To analyze the errors incurred in computing the variance according to Algorithm 2, define
the coefficient of variation (CV), according to

CV =

√
S

nx̄2
=

√∑n
i=1 x2

i − nx̄2

nx̄2
=

standard deviation
mean

.

It can be shown that if (CV )2 is less than the machine precision then all the significant digits will
be lost. Another quantity which is used to analyze the algorithmic performance is the condition
number κ. It bounds the amount by which the relative errors introduced into the data set are
magnified in the variance computations. If κ is large the data set is ill-posed. If the error in
number representation is less than u, then the error in variance calculation is lass than κu. Also,

κ =
√

1 + (CV )−2 ∼ CV −1 .

Analyzing the two algorithms, the errors are bounded as follows. In algorithm 1, the error in
S are bounded by nu + n2κ2u2, while in Algorithm 2 the error is bounded by nκ2u. If we use
yi = xi − x̄ instead of xi then the error in computing S is bounded by nu + κ2(nu)3. If the
addition in computing the mean is performed pairwise, the replace n by log2n in these bounds.
Provisional Centering
For any constant g, the variance is given by

n∑

i=1

(xi − x̄)2 =
n∑

i=1

(xi − g)2 − n(x̄− g)2 . (1.8)

One can utilize this formula to compute the variance more accurately and still have only one
pass through the data. This technique is called provisional centering. It retains the speed of
one pass algorithm and still seeks the accuracy of the two-pass algorithm. What should be the
value of g? g should be a measure of central tendency in the data, ideally the mean x̄ or the
median. In the notation of Eqn. 1.8, the one-pass algorithm implements the case g = 0, and
the two pass algorithm implements the case g = x̄. But computing x̄ requires a pass through
the data and the procedure becomes identical to Algorithm 1. A simple choice is to select any
xi, say x1, and use it as g. But this g may not be a good representative of the data. A better
technique is to do adaptive centering. In this technique, one starts with an initial value of g
but changes it in the loop as and when certain conditions are met. At every step k, the quantity
to checked for the condition

|
k∑

i=1

(xi − g)| >> 0 ,

or, change g when |∑k
i=1(xi − g)| exceeds a certain predefine quantity E. At that moment, the

current value of g gets substituted by the current sample mean g̃ = 1
k

∑k
i=1 xi. This substitution

will also require a correction term to account for changing g in the middle of the pass. Let g
gets replaced by g̃ at the kth step of the loop. Then, the current sum of squares gets corrected
according to the equation,

k∑

i=1

(xi − g̃) =
k∑

i=1

(xi − g) + k(g − g̃) (1.9)
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k∑

i=1

(xi − g̃)2 =
k∑

i=1

(xi − g)2 + k(g̃2 − g2)− 2(g̃ − g)

(
(

k∑

i=1

(xi − g)) + kg

)
.

(1.10)

An algorithm to implement this strategy is as follows:

Algorithm 5 (Adaptive Centering Variance)
s1 = 0;
s2 = 0;
g = x(1);
i = 0;
while (i < n)

while (i < n & abs(s1) < E)
i = i + 1;
s1 = s1 + (x(i)− g);
s2 = s2 + (x(i)− g) ∗ (x(i)− g);

end
if i < n

gn = (s1/i) + g;
s2 = s2 + i ∗ (gn2 − g2) + 2 ∗ (gn− g) ∗ (s1 + i ∗ g);
s1 = 0;
g = gn;

end
end
m = (s1/n) + g;
var = s2/n− (s1/n)2;

Note that if g̃ is the current mean, then the new value of s1 is zero!

1.6 Inner Products

Computing inner products in finite dimensional vector spaces is given by

< a, b >=
n∑

i=1

aibi

The possibility of cancellation error is large in these computations. The common techniques to
avoid these errors are: (i) use double precision, and (ii) use provisional centering.
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1.7 Problems

1. Let f(x) = (
∑n

i=1 Xi)
n . Let f∗ be the floating point implementation of this equation. Show

that

|f∗ − f | ≤
(

n−1∑

i=0

(1− i

n
)|Xi+1|+ |X̄|

)
u .

2. Prove that

|f∗ − f | ≤
(

n−1∑

i=0

1
2
(n + 3)|Xmax|

)
u .

3. Consider the following three functions:

f1(x) =
1− cos(x)

x2
, f2(x) =

(sin(x)/x)2

1 + cos(x)
, f3(x) = 2(

sin(x/2)
x

)2 .

(a) Start with x = 0.1 and calculate each function for that x, then choose x = 0.01 and
so on.

(b) Now start with x = π + 0.01 and calculate each function for that x, then choose
x = π + 0.001 and so on.

Tabulate your results, underline the digits which are wrong.

4. For our computers β = 2 but t can differ. Here is an algorithm to find t:
Algorithm 6 x = 1.5; u = 1.0; t = 0;α = 1.0;
while x > α

u = u/2;
x = α + u;
t = t + 1;

end

Find t for your computer. Why is α chosen to be 1.0 ?

5. Using β = 10 and t = 4, find the floating point representation of the following numbers
using truncation. Also calculate their relative errors.

122.9572, 123.1498, 0.0014973, 457932

6. For the following algorithm:
Algorithm 7 s = 0;
for j = 1 : n

s = s + x(j);
end
m = s/n;
s = 0;
for j = 1 : n

s = s + (x(j)−m);
end
m = m + s/n;
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Show that algebraically m is equal to the mean of x(j)’s.

7. For β = 10 and t = 4, and for x = (5298, 0), y = (8012, 0) and z = (6024, 0) show that

((x + y)∗ + z)∗ 6= (x + (y + z)∗)∗ .

That is, through this example show that the floating point addition may not be associative.

8. Write a matlab program which sorts a given set of numbers in an increasing order using
the following algorithm:

for i = 1 : n− 1
for j = 1 : n− 1

if (x(j) > x(j + 1))
t = x(j);
x(j) = x(j + 1);
x(j + 1) = t;

end
end

end

9. For the following data:

3078.14 0.0034 12.45 4.0586 245.45 0.234 987.1 56.0987 7.031 100.02

44.156 2.679 962.0162 96.0 108.0123 1209.04

(a) Write a matlab program to calculate the mean using the regular algorithm.

(b) Write a matlab program which first sorts the numbers and then calculates their mean
using the regular algorithm.

(c) Write a program to calculate the mean using pairwise addition.

10. For a quadratic equation ax2 + bx + c = 0, the two roots are given by:

r1,2 =
−b±√b2 − 4ac

2a
.

In situations where b2 >> 4ac, the discriminant becomes
√

b2 − 4ac ∼
√

b2 = |b|. Hence,
if b is positive −b + |b| can have subtractive cancellation. If b is negative then −b− |b| can
be erroneous. To avoid this situation, an alternative algorithm is:

b1 = −b
2a ;

c1 = c
a ;

d = b2
1 − c1;

r1 = abs(b1) + sqrt(d);
if b1 < 0

r1 = −r1;
end
if r1 6= 0

r2 = c1
r1

;
end

Write a matlab program using this algorithm to find the roots of x2 + 1000.001x + 1 = 0.
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11. Write a matlab program to implement the adpative one-pass strategy for computing the
variance of a given sequence of numbers. Test your program on a random sequence of 1000
numbers.

1.8 References

The material presented in this chapter is taken mainly from the texts [5, 9, 2].



Chapter 2

NUMERICAL LINEAR ALGEBRA

2.1 Introduction

Using observations either from controlled or observational experimats, to discover relationships
between variables of interest, is an important component of applied statistics. For instance, we
may be interested in studying the effect of a number of treatments on a response variable. As
an example, in a meterological experiment we may be interested in the effect of the moisture
level and wind velocity (independent variables) on the probability of rain (dependent variable)?
Or in a medical study, we may be interested in the effect of a particular drug treatment on some
cancer patients? Clearly, in most practical situations these relationships are quite complicated.
To understand the problem formulation and the solution, one starts by simplifying to the stage
where the response variables are related to dependent variables (or the treatments) in a linear
fashion. Once the tools to infer linear relationships are derived then these techniques can be
expanded to more interesting non-linear situations. Clearly, such techniques will apply to a
variety of areas ranging from meteorology to mechanical control systems to medical diagnosis.

Let x1, x2, . . . , xn be a set of independent variables and y be a variable of interest which
depends upon the values of xi’s. For example, xi’s may correspond to temperature, atmospheric
pressure, wind velocities, etc. in a region and y may correspond to the amount of rainfall in
that region. Furthermore, assume that the relationship between xi’s and y is linear, that is,

y =
n∑

i=1

bixi + ε

where bi’s are scalar constants and ε represents the residual error in the model. Very often ε is
assumed as a random variable and, in particular, a Gaussian random variable. The coefficients
bi’s are unknown and they have to be estimated using the observed values of xi’s and y. One
can design an experiment in which several sets of measurements of the variables xi’s and y are
taken, and then analyzed to estimate the coefficients bi. For example, the observations may
belong to different sample times t1, t2, . . . , tm such that

y(tj) =
n∑

i=1

bixi(tj) + ε(tj) (2.1)

In a matrix form these equations can be restated as

y = Xb + ε, y = [y(t1) y(t2) . . . y(tm)]T

25
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where y ∈ IRm, X ∈ IRm×n, b ∈ IRn, and ε is a random vector of size m. In this notation, the
problem can be stated as follows: given X and y what is the best estimate of b and how to
compute it? The study of this equation and its solutions is called multiple regression analysis.

2.2 Multiple Regression Analysis

Solving a linear system of equations is common to many problems, including multiple regression
analysis as stated earlier. We take a least squares approach to understanding multiple regression
analysis. Restating the problem, let y be a set of observations and X be a matrix of independent
variables of predictors, the goal is to find the weight vector b such that

(yi − ŷi)2

is minimized (or such that ŷ = Xb). b is also called the vector of regression coefficients. A similar
problem formulation arises in the maximum likelihood estimation of b based on the observation
model

y = Xb + ε (2.2)

where b is deterministic but unknown and ε ∼ N(0, σ2I) can be thought of as measurement
errors. Given X, and having observed y the maximum likelihood estimate of b is

b̂ML = argmax
b

1
(2σ2)m/2

exp{ −1
2σ2

‖y −Xb‖2}

In case m = n and X is invertible, the least square solution (or maximum likelihood estima-
tion) is relatively straightforward. b̂ is given by

b̂ = X−1y .

In case m 6= n and XT X is non-singular, the solution is given by

b̂ = (XT X)−1XTy .

The term (XT X)−1XT is called the pseudo-inverse of X. Computing this pseudo-inverse
involves inner-products, and therefore, the error analysis for inner products is applicable. Fur-
thermore, computing inverse of a matrix is order O(n3) operation which is computationally
expensive. We seek another approach to solve this problem without resorting to compute the
inverse of a matrix. This approach is based on transforming a given system of equations in to a
relatively simple form and then solving the simpler system, as described in the next section.

In addition to finding a least squares estimate of the vector b, we want to quantify how good
the linear model is. That is, how good is the assumption that y and X are related through the
linear system stated in Eqn. 2.2. To quantify the goodness of fit of the regression model, the
following quantities are used:

1. the residual sum of squares (RSS), alos called the sum of squres of error (SSE), is given
by:

SSE = ‖y −Xb̂‖2 .

2. For m > n, the residual variance, an estimate of σ2, given by:

residual variance (s2) =
SSE

(m− n)
.

Recall that σ2 is the variance of the elements of ε in the regression model.
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3. an estimate of the variance of b̂ given by

variance matrix V (b̂) = s2(XT X)−1 ,

assuming that XT X is invertible.

2.2.1 Orthogonal Transformations

We are interested in solving the problem

b̂ = argmin
b

‖y −Xb‖2 (2.3)

Let Q be an m ×m orthogonal matrix (Q is called orthogonal if QT Q = Im, see appendix for
details), and

y∗ = Qy = QXb + Qε = X∗b + ε∗
It must be noted that multiplication by an orthogonal matrix does not change the 2-norm of a
vector. It results only in the rotation of the vector in IRm and, hence, its length is unchanged.
Q being an orthogonal matrix

‖y −Xb‖2 = ‖y∗ −X∗b‖2

for any given b. Therefore,

b̂ = argmin
b

‖y −Xb‖2 = argmin
b

‖y∗ −X∗b‖2 (2.4)

That is, the estimate b̂ is same for the original system of equations and the rotated system of
equations. If we can select a Q in such a way that X∗ is an upper triangular matrix (zeros below
the diagonal elements). Due to that additional structure

(
y∗1
y∗2

)
=

(
X∗

1

0

)
b +

(
ε∗1
ε∗2

)
.

Therefore,
‖y∗ −X∗b‖2 = ‖y∗1 −X∗

1b‖2 + ‖y∗2‖2

and, therefore,
b̂ = argmin ‖y∗1 −X∗

1b‖2

And now, X∗
1 being upper triangular b̂ can be found by the backward substitution and RSS =

‖y∗2‖2.

Backward Substitution: This is a technique to solve for the vector b ∈ IRn in an equation
y∗1 = X∗

1b where y∗1 ∈ IRn and X∗
1 ∈ IRn×n is an upper-trianguler matrix. That is,




y∗1
y∗2
. . .
y∗n


 =




x∗11 x∗12 . . . x∗1n

0 x∗22 . . . x∗2n

. . .
0 0 . . . x∗nn







b1

b2

. . .
bn


 .
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First consider the last equation in this system of equations. All the elements in the last row of
X∗

1 are zero except the last element and therefore one can solve easily for bn according to

b̂n =
yn

x∗nn

.

Once we have b̂n, then we can solve the second last equation finding b̂n−1 according to

b̂n−1 =
yn−1 − x∗n−1,nbn

x∗n−1,n−1

.

Continuing this way we can solve for all the elements of the estimate b̂ according to the general
formula,

b̂j =
yj −

∑n
i=j+1 x∗j,ibi

x∗j,j
, j = n− 1, n− 2, . . . , 1 (2.5)

Algorithm: Given an upper triangular matrix X ∈ IRm×n and a vector y ∈ IRm, find the least
squares estimate of b.

Algorithm 8 (Backward Substitution)
function b = backsub(X,y)
l = size(X);
n = l(2);
b(n, 1) = y(n, 1)/X(n, n);
for j = n− 1 : −1 : 1

b(j, 1) = (y(j, 1)−X(j, j + 1 : n) ∗ b(j + 1 : n, 1))/X(j, j);
end

The next question is: how to find O efficiently such that X∗ is upper triangular? Most reliable
solutions to linear regression are based on a reduction of X to some canonical form via orthogonal
transformations. There are two popular techniques to find such orthogonal transformations:
Householder transformations and Givens rotations. These are based on modifying the column
vectors of matrix X using the reflections or the rotations. By selection of appropriate plane of
reflections or appropriate angles of rotation, we can introduce zeros in appropriate places in X.

2.2.2 Basic Rotations & Reflections

We wish to transform vectors and matrices through multiplication by orthogonal matrices in
such a way that some of their elements can be selectively made zero. In our case, for a m × n
matrix X (with m > n) we want to zero out the elements below the diagonal elements.

Definition 6 An n × n matrix O is called an orthogonal matrix if OT O = In, where In is a
n× n identity matrix.

There are two types of orthogonal matrices: (i) rotations and (ii) reflections. Since for an
orthogonal matrix O, OT O = I, we have det(O) = ±1. In case the determinant is +1, the
matrix O is called a rotation matrix, and for determinant −1, it is called a reflection matrix.
Therefore, the task of making X upper triangular can be performed using either the rotation
and reflection transformations. For the case of n = 2, the two types of orthogonal matrices can
be specified as follows.



2.3. HOUSEHOLDER REFLECTION TRANSFORMATIONS 29

1. In case of n = 2, the rotation matrices always take the form,

Orot =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

For an x ∈ IR2, the vector Ox is nothing but a rotated version of x, rotated in the
counterclock direction by an angle θ, as shown in Fig 2.1. To zero out the second component

θ
x

Ox

Figure 2.1: A vector x when multiplied by a special orthogonal matrix O results in a positive
rotation by angle θ.

of x, that is x2, we can rotate x such that it ends up on the x-axis. So for a given x ∈ IR2,
the goal is to find an angle θ such Ox is aligned with the x-axis.

The same explanation extends in case of vectors in higher dimensions.

2. Instead, a matrix of the following type

Oref =
[

cos(θ) sin(θ)
sin(θ) −cos(θ)

]

is called a reflection matrix. Multiplication of a vector by this matrix results in reflection
of this vector in a mirror positioned on line θ

2 , as shown in Figure 2.2. The advantage
of rotation and reflections is that they can be used to introduce zeros in a vector by
appropriately choosing the rotation angle and the reflection plane, while preserving the
norm of that vector.

2.3 Householder Reflection Transformations

First we look at the technique of transforming data through reflection, according to a process
called Householder reflections. Let S be a vector subspace (please refer to [4] for a definition of
vector spaces). Then, a m×m matrix P is called the orthogonal projection onto S if

1. range(P ) = S,
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x

v

Hx

Figure 2.2: A vector x when multiplied by a reflection matrix O results in a vector which is the
mirror reflection of x with the mirror located at angle θ

2 . θ.

2. P 2 = P (P is idempotent), and

3. P T = P (P is symmetric)

If v = [v1 v2, . . . , vm] forms an orthogonal basis of S then the matrix P = vvT

vT v
is the unique

orthogonal projection matrix on to S. Therefore, for a vector v ∈ IRm, and v 6= 0, P = vvT

vT v
is

the orthogonal projection onto the subspace spanned by v, S = span(v).

Definition 7 For a vector v ∈ IRm, a m×m matrix H of the form

H = I − 2vvT /vT v

is called a Householder reflection matrix (or just Householder matrix or Householder transfor-
mation).

v is called the Householder vector and H is an orthogonal matrix. For any x ∈ IRm, Hx is the
vector obtained by reflecting x is the hyperplane span(v)⊥, as shown in Figure 2.3. A simple
calculation shows that Hv = −v. Also, it should be noted that the scale (length) of v does not
affect H. We can specify v within a scalar constant and still have a unique definition of H. H
is a rank-1 modification of the identity and can be used to zero out the selected members of a
vector while preserving its norm.

How to find the appropriate reflection matrix? Let’s say that for a given vector x ∈ IRm, we
want to form an H, a householder matrix, in such a way that Hx has all but the first entry as
zeros. In other words Hx lies in the span of e1, that is, Hx = αe1 for some constant α. Since
H is an orthogonal matrix, the only possible values for α are ±‖x‖2 (why?). First we try with
Hx = ‖x‖2e1. Since,

Hx = (I − 2vvT /vT v)x = x− (
2vT x

vT v
)v ,
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v

S

x

Px

Hx

Figure 2.3: S = span(v)⊥ is a plane perpendicular to v. Px is the projection of x onto the plane
S. Hx is the mirror reflection of x with the mirror located in the plane S.

and Hx = ‖x‖2e1 imply that v = αx + βe1 for some constants α and β. However, as shown
later, we need to find v only within a constant and therefore one of the constants can be ignored
giving v = x + βe1. Now, vT x = xT x + βx1, and vT v = xT x + 2βx1 + β2. So,

Hx = (1− 2
xT x + βx1

xT x + 2βx1 + β2
)x− 2β

vT x

vT v
e1 .

We will have the desired value of Hx if the first term on the right side is zero and the second
term equals that desired value. That is,

1 = 2
xT x + βx1

xT x + 2βx1 + β2

which implies that β = ±‖x‖2. The householder vector is given by v = x ± ‖x‖2 and the
reflected vector is Hx = ∓‖x‖2e1. The next issue is: what sign should we choose for v, plus or
minus? From the considerations of numerical analysis, to avoid subtractive cancellation, it is
recommended to use the same sign as x1.

v = x + sign(x1)‖x‖2e1 .

Notice that multiplying v by a constant scalar does not change the value of the resulting H.
There is one extra degree of freedom in defining v according to the above equation. To remove
that, we normalize v such that v(1) = 1. The resulting v always has v(1) = 1 so we need to store
only its last (m− 1) entries. Similarly, Hx always has the last (m− 1) entries as zero, therefore
we don’t need to store these values. In total, only m storage places are needed to store both
v and Hx. Hence, the algorithm is designed to perform compute v and Hx and store them in
place of the original vector x. The vectors take the following form:

x =




x1
...

xm


 , v =




1
v2

. . .
vm


 , Hx =




‖x‖2e1

0
. . .
0



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We are ready to write an algorithm to form a householder matrix for a given x ∈ IRm.
Algorithm: Given an m-vector x compute an m-vector v such that v(1) = 1 and (I−2vvT

vT v
)x =

βe1 for a non-zero β. The matlab function to implement this algorithm is:

Algorithm 9 (Householder Vector)
function v = house(x);
m = length(x);
µ = norm(x,2);
v = x;
if µ 6= 0

β = x(1) + sign(x(1))µ;
v(2 : m, 1) = v(2 : m, 1)/β;

end
v(1) = 1;

The total number of operations is approximately 3m floating point operations. We can
exploit the structure of H to maximally utilize the memory in the following way. Let X ∈ IRm×n

and let H be the householder matrix

H = I − 2
vvT

vT v

then HX = X−2vvT X
vT v

. For β = −2
vT v

and w = βXT v, HX = X +vwT which implies a rank-one
update of X. That is, any matrix multiplied with a householder matrix results in its rank one
update, which is implemented via the vectors w and v. This avoids explicit calculation of the
householder matrix and is accomplished by, for example, the following algorithm.
Algorithm: Given an m×n matrix (n < m) X and a m-vector v overwrite X with HX where

H = I − 2
vvT

vT v
.

The matlab function is:

Algorithm 10 (Householder Multiplication - Row)
function X = rowhouse(X,v)
β = −2

vT v
;

w = βXT v;
X = X + vwT ;

Instead if we want XH then the following algorithm applies

Algorithm 11 (Householder Multiplication - Column)
function X = colhouse(X,v)
β = −2vT v;
w = βXv;
X = X + wvT ;
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The number of floating point operations in these algorithms is 4mn.
We are interested in transforming a given matrix X through multiplication by orthogonal

matrices in such a way that it results in an upper triangular matrix, X∗. Under the Householder
technique, we apply a householder transformation to each of the n columns in an iterative way
so that for each column the entries below the diagonal are converted to zero. If B is an inter-
mediate result after the first j-transformations then B(j + 1 : m, j) = 0, for 1 ≤ j ≤ n. As
discussed earlier, the lower diagonal entries in B can be used to store the the householder vector
v for each corresponding column. The following algorithm accomplishes that.
Algorithm: Given a m × n matrix X convert it into an upper triangular matrix (in place)
using Householder transformations, and store householder vectors v below diagonal in the trans-
formed X.

Algorithm 12 (Householder Transformation)
function X = householder(X)
[m,n] = size(X);
v = zeros(m, 1);
for j = 1 : n

v(j : m, 1) = house(X(j : m, j));
X(j : m, j : n) = rowhouse(X(j : m, j : n), v(j : m, 1));
X(j + 1 : m, j) = v(j + 1 : m, 1);

end

In each step of the for-loop we apply an order m− (j − 1) Householder matrix

H̃j = I − 2
ṽṽT

ṽT ṽ

to the (m− j +1)× (m− j +1) submatrix on the lower-right of X. Let Hj be the m×m matrix
generated as:

Hj =
[

Ij−1 0
0 H̃j

]
.

To understand this procedure let X be the original m × n matrix, X(1) be the result after
the first transformation (j = 1), X(2) after the second transformation (j = 2) and so on. That
is, X(1) = H1X, X(2) = H2X

(1). Let

X =




x11 x12 . . . x1n

x21 x22 . . . x2n

. . .
xm1 xm2 . . . xmn




Then

X(1) = H1X =




x1
11 x1

12 . . . x1
1n

0 x1
22 . . . x1

2n

. . .
0 x1

m2 . . . x1
mn




and

X(2) = H2X
(1) =




x1
11 x1

12 . . . x1
1n

0 x2
22 . . . x2

2n

0 0 . . .
0 0 . . . x2

mn



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and finally

X(n) = HnHn−1 . . . H1X
(1) =




x1
11 x1

12 . . . x1
1n

0 x2
22 . . . x2

2n

0 0 . . .
0 0 . . . xn

nn

0 0 . . . 0
. . .
0 0 . . . 0




In the computation of X∗ the following points are worth noting:

1. The composite Householder matrix O = HnHn−1 . . . H1 is never calculated directly.

2. Not even the individual transformation matrices Hj ’s are calculated explicitly.

3. Multiplication of X(j−1) by Hj does not affect the first j − 1 columns and the first j − 1
rows of X(j−1).

4. Application of j-th transformation (Hj) to the j-th column modifies the diagonal entry in
that column and all the other entries below become zero.

Householder reflections introduce zeros on a grand scale, that is, all the elements below the
diagonal become zero. For a more selective zeroing of elements in a matrix another technique,
based on rotation matrices, can be used.

2.4 Givens Rotation Transformations

In Figure 2.1, a vector x ∈ IR2 is rotated to a vector y = Ox by multiplying it with a 2 × 2
rotation matrix

O =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
.

Suppose that the angle θ is such that the resulting y is aligned with the horizontal axis. In
other words, the second coordinate of y, namely y2, has been zeroed out through rotation by an
appropriate O. This idea is utilized in case of the Givens transformations for selectively zeroing
the entries in a sparse matrix. Any element below diagonal can combine with the diagonal
element (of its column) to form a 2-vector which can then be rotated by choosing appropriate
O so that it becomes zero.

A Givens rotation matrix is basically a transformation of the form

G(i, k, θ) =




1 . . . 0 . . . 0 . . . 0
0 . . .
. . .
0 . . . c . . . s . . . 0
. . .
0 . . . −s . . . c . . . 0
0 . . . 0 . . . 0 . . . 1




,

where c = cos(θ) and s = sin(θ) and the 2 × 2 submatrix formed by c and s resides in i, k
rows and columns of the bigger matrix G. G is an orthogonal matrix and for any x ∈ IRm and
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y = G(i, k, θ)T x

yj = {
cxi − sxk j = i
sxi + cxk j = k

xj otherwise
.

So if the desired value for yk is 0 then have

c =
xi√

x2
i + x2

k

, s =
−xk√
x2

i + x2
k

.

One should guard against the possibility of overflow, which occurs when one of these numbers
is much larger than other. The following algorithm computes c and s and checks against the
possibility of overflow:

Algorithm: Given scalars a and b compute the numbers x = cos(θ) and s = sin(θ) such that

[
c s
−s c

]T [
a
b

]
=

[
r
0

]
.

Following subroutine accomplishes this task.

Algorithm 13 (Givens Rotation)
function [c, s] = givens(a, b)
if b = 0

c = 1; s = 0;
else

if |b| > |a|
τ = −a

b ; s = 1√
1+τ2

; c = sτ ;
else

τ = −b
a ; c = 1√

1+τ2
; s = cτ ;

end
end

Notice that this algorithm does not compute the rotation θ and also does not calculate the
inverse trigonometric functions.

Example 3 Let x = [1 2 3 4]T and we want to have a zero in the last location by multiplying
x with an orthogonal matrix. That is, find G such that y = Gx = [y1 y2 y3 . . . 0]T . We will
choose x2 = 2 as the ith element and x4 = 4 becomes the kth element. In this case a = 2 and
b = 4, and

τ =
−1
2

, s =
2√
5
, c =

−1√
5

l.

It can be checked that

G(2, 4, θ)x =




1 0 0 0
0 −1√

5
0 −2√

5

0 0 1 0
0 2√

5
0 −1√

5







1
2
3
4


 =




1
−√20

3
0


 .
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Next consider a sparse matrix X ∈ IRm×n and its transformation by a Givens rotation matrix
G. Notice that, in the left multiplication of X by G(i, k, θ) only the rows i and k are affected.
Therefore, if this multiplication is implemented through a function, one needs to send it only
these two rows. Following is an algorithm which implements the Givens rotation for the selected
two rows of a matrix.

Algorithm: Given X ∈ IR2×n and c = cos(θ) and s = sin(θ), write
[

c s
−s c

]T

X over X.

The matlab function to perform this task is:

Algorithm 14 (Givens Rotations - Row)
function X = rowrot(X, c, s)
n = cols(X);
for j = 1 : n

τ1 = X(1, j); τ2 = X(2, j);
X(1, j) = cτ1 − sτ2;
X(2, j) = sτ1 + cτ2;

end

Notation: We will use the matlab notation of X([i, k]; :) to represent the submatrix
(

xi1 xi2 . . . xin

xk1 xk2 . . . xkn

)
.

In this notation, we can use the following function call

X([i, k], :) = rowrot(X([i, k], :), c, s) ,

to perform X ← G(i, k, θ)T X. To illustrate the use of Givens rotation in multiple linear regres-
sion, consider a m × n matrix X whose certain entries we want to zero out using orthogonal
transformation. To zero out say X(k, j) (assuming k > j), the transformation will modify the
rows j and k of X. The algorithm which performs this task is as follows:
Algorithm: Given an m×n matrix X perform a Givens transformation to zero out its element
X(k, j) where k > j.

Algorithm 15 (Givens Transformation)
function X = giventrans(X, k, j)
[c, s] = givens(X(j, j), X(k, j));
X([j, k], j : n) = rowrot(X([j, k], j : n, c, s);

Error Analysis:
The numerical stability of Givens rotation is same as that of Householder reflections. The errors
introduced in the computing c and s are bounded as follows:

ĉ = c(1 + εc), |εc| ≤ u

ŝ = s(1 + εs), |εs| ≤ u
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Therefore, for the Givens transformation of the matrix X

fl(Ĝ(i, k, θ)T X) = G(i, k, θ)T (X + E)

where ‖E‖2 ∼ u‖X‖2.
Considering the composite transformation of X through application of multiple Givens ro-

tations, O = GtGt−1 . . . G1, it is more economical (computationally) to keep O in the factored
form. The technique is to associate a single floating point number, call it ρ, with each 2 × 2
rotation denoted by [

c s
−s c

]
, c2 + s2 = 1 .

Define ρ by the following algorithm

Algorithm 16 (Find Givens Rotation)
function ρ = findrho(c, s)
if c = 0

ρ = 1;
else if |s| < |c|

ρ = sign(c). s
2 ;

else
ρ = 2 sign(s)

c ;
end

The basic idea is to store s
2 if s is smaller or store 2

c if c is smaller. From ρ ∈ IR, one can
reconstruct c and s according to:

Algorithm 17 (Givens Rotation)
function [c, s] = findcs(ρ)
if ρ = 1

c = 0; s = 1;
else if |ρ| < 1

s = 2ρ; c =
√

1− s2;
else

c = 2
ρ ; s =

√
1− c2;

end

From memory considerations, the number ρ associated with each transformation can be stored
in place of the number being zeroed out.

2.5 Multiple Linear Regression Algorithms

Summarizing the problem set up, we are interested in the following minimization problem. For
a given y ∈ IRn and X ∈ IRn×p find

b̂ = argmin
b

‖y −Xb‖2 .
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Through orthogonal transformations we simplify the problem to finding

b̂ = argmin
b

‖y∗ −X∗b‖2 ,

where y∗ = Oy and X∗ = OX for an n × n orthogonal matrix O. O can be obtained through
Householder transformations or the Givens transformations, as described earlier. Once O is
found, then we can solve for b̂ through backward substitution. That is, for j = 1, . . . , p,

b̂j =
1

x∗jj
(y∗j −

p∑

i=j+1

x∗jib̂i) .

The residual sum of squares (RSS) is given by

RSS =
n∑

i=p+1

‖y∗i |2 .

In the equation y = Xb, we multiply both sides by orthogonal transformation O in such a
way that X∗ = OX is upper triangular. For concreteness consider the Householder case. The
left side results in y∗, which is computed as follows. Let yj be the result of j − 1 Householder
multiplications to the original y. At the jth iterative stage, Hj is multiplied to the vector yj−1

to obtain yj .

yj = Hjyj−1 = (Im − 2
vvT

vT v
)yj−1 .

Therefore,

yj = yj−1 + βv, where β =
−2vTyj−1

vT v
.

This formula can be utilized to write the complete regression function as follows:
Algorithm: Given a matrix X ∈ IRm×n and a vector y ∈ IRm, find a vector b̂ ∈ IRn such that
b̂ satisfies Eqn. 2.3.

Algorithm 18 (Multiple Linear Regression)
function b = multlinreg(X,y)
[m,n] = size(X);
for j=1:n

v(1:m) = zeros(m,1);
v(j:m) = house(X(j:m,j));
X(j:m,j:n) = rowhouse(X(j:m,j:n),v(j:m));
beta = -2*(v(j:m)’*y(j:m))/(v(j:m)’*v(j:m);
y(j:m) = y(j:m) + beta*v(j:m);

end
b = backsub(X,y);

2.5.1 Performance Analysis

Any statistical estimation procedure should be accompanied by a performance analysis. The
main quantity for analyzing regression performance is the error variance. The residual sum of
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squares is given by :

RSS =
m∑

i=1

(yi −
n∑

j=1

Xij b̂j)2

=
m∑

i=n+1

(y∗i )
2 .

An estimate of the error variance (also called the mean squared error) is given by:

MSE(s2) = RSS/(m− n) .

To compute the regression performance, one compares the RSS with the sum of squares for the
dependent variable, or total sum of squares, denoted by SSY, defined as:

SSY =
m∑

i=1

y2
i −

1
m

(
m∑

i=1

yi)2 .

The quantity SSR = SSY − RSS is also called the sum of squares due to regression. The
comparison is made using the coefficient of determination

0 ≤ COD =
SSY− RSS

SSY
≤ 1 .

COD takes values between 0 and 1, and a large value of COD implies good regression perfor-
mance. Another useful indicator of the regression performance is the coefficient of correlation,
denoted by r, which is given by the square root of the COD:

r =
√

COD .

Under the assumption that the error realizations εi are iid normal with mean zero and variance
σ2, it can be shown that the residuals y∗n+1, y

∗
n+2, . . . , y

∗
m are iid normal with mean zero and

variance σ2. Therefore, the MSE is given by σ2χ2
m−n, where χ2

m−n is a chi-squared random
variable with m− n degrees of freedom. Furthermore, MSE and b̂ are statistically independent.

2.6 General Regression Problems

Although we have looked at the simplest type of linear regression problem, several generalizations
are possible. Some of them are:

1. Weighted Least Squares (WLS): This criterion for solving a linear regression problem is
useful when one wants to emphasize some observations more than others. For instance,
in cases where some observations are taken in more error prone circumstances relative to
other observations, we would like to de-emphasize their role in estimating b. This can be
accomplished by introducing a diagonal matrix D whose entries are non-negative. The
regression coefficients are now obtained by solving for:

b̂ = argmin
b

(y −Xb)T D−1(y −Xb) . (2.6)

How to solve for b̂ using our earlier solution? Simply define A = (D
1
2 )−1 and solve for

b̂ = argmin
b

‖y∗ −X∗b‖2 ,

where y∗ = Ay and X∗ = AX. Now the function multilinreg can be applied directly.
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2. Generalized Least Squares: In cases where the observation noise ε has covariance other
than a diagonal matrix, i.e. the variance of ε is now given by K, a symmetric positive-
definite matrix, then the regression problem solves the following minimization:

b̂ = argmin
b

(y −Xb)T K−1(y −Xb) . (2.7)

As earlier, the solution is found by choosing A = (K
1
2 )−1, and following the same steps as

in WLS. K
1
2 can be found in several ways including choleski decomposition.

3. Generalized Linear (Interactive) Models: So far we have restricted to only the linear
relationships between the dependent and independent variables. But this solution for
linear system of equations can sometimes be applied to nonlinear situations where some
(nonlinear) function of y is now linearly related to the X. That is, for some function
f : IR 7→ IR, we solve for the regression coefficients according to:

b̂ = argmin
b

‖f(y)−Xb‖2 . (2.8)

f is called the link function. As an example, let y be a Bernoulli random variable with
probability p and we want to relate p to the predictor variables. Instead of directly relating
p, one relates the variable log( p

1−p) with the predictors. This is also called a logistic
regression models.

2.7 QR-Factorization

An important technique in analyzing matrices is through a factorization called QR-factorization.

Definition 8 For a matrix X ∈ IRm×n, X = QR is called the QR-factorization of X if Q ∈
IRm×m is an orthogonal matrix and R ∈ IRm×n is an upper-triangular matrix.

We will assume that the rank of X is n, that is, X is full column ranked. The usefulness of
QR-factorization comes from the following result.

Theorem 1 If X = QR is a QR-factorization of a full column rank matrix X ∈ IRm×n and
X = [x1 x2 . . . xn], Q = [q1 q2 . . . qm], then

span(x1, x2, . . . , xn) = span(q1, q2, . . . , qn) .

In particular, if Q1 = Q(1 : m, 1 : n) and Q2 = Q(1 : m, n + 1 : m) then

range(X) = range(Q1), range(X)⊥ = range(Q2) .

It must be noted that both Q1 and Q2 have orthonormal columns. Therefore, Q1 and Q2 provide
orthonormal basis for the range space of X and its perpendicular subspace. Such bases are useful
in analyzing the fundamental variability associated with the observed data. The uniqueness of
such a factorization comes from the following result.

Proposition 1 Suppose X ∈ IRm×n has full column rank. Then, the factorization X = QR
is unique where Q ∈ IRm×m has orthonormal columns and R ∈ IRm×n is upper triangular with
positive diagonal entries.
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We claim that using the tools developed so far in this chapter, computing QR-factorization
is straight-forward. Recalling that earlier in this chapter we have computed an orthogonal
transformation (using Householder and Givens transformations) O such that OX = X∗, where
X∗ is an upper-triangular matrix. For orthogonal matrix O, O−1 = OT , we have

X = OT X∗ .

Labeling OT as Q and X∗ as R, this expression is nothing but the QR-factorization of X. So
this factorization can be accomplished by our Householder or Givens algorithms. We will only
do the Householder QR, the treatment of Givens transformation being similar.
Algorithm: (Householder QR)
Given X ∈ IRm×n (m > n) find Householder matrices H1, H2, . . . ,Hp such that if O =
H1H2 . . . Hn then OX = R is upper triangular. To write such an algorithm we have already
done most of the work. That is, we have found transformations which convert X into X∗ which
is the upper triangular matrix R here. The only additional requirement is to explicitly calculate
and store O. This can be done by adding the following steps to the existing programs:

Algorithm 19 (Householder QR Decomposition)
function [Q,R] = householderQR(X)
O = eye(m);
for j = 1 : n

v = zeros(m, 1);
v(j : m) = house(X(j : m, j));
X(j : m, j : n) = rowhouse(X(j : m, j : n), v(j : m));
H = eye(m)− 2v∗vT

vT ∗v ;
O = HO;

end
Q = O’; R = X;

In addition to Householder and Givens, there are other methods also by which the QR-factorization
can be accomplished.

2.8 Singular Value Decomposition

An important tool to analyze properties of a given matrix is through its singular value decom-
position.

Theorem 2 For any X ∈ IRm×n there exist orthogonal matrices U ∈ IRm×m and V ∈ IRn×n

such that
UT XV = Σ, where Σ = diag(σ1, σ2, . . . , σn) ∈ IRm×n ,

and where σ1 ≥ σ2 ≥ . . . σn ≥ 0.

σi’s are called the singular values of X and the columns of U and V are called the singular
vectors of X. Since XV = UΣ and

Xvi = σiui, XT ui = σivi
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For this reason, ui’s are called the left singular vectors and vi’s are called the right singular
vectors.

Singular valued decomposition of a matrix reveals a great deal about the matrix. Let the
singular values of the matrix be such that

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0

then rank(X) = r. Also,
null(X) = span(vr+1, vr+2, . . . , vn)

and
range(X) = span(u1, u2, . . . , ur) .

The frobenious norm of a matrix is given by the square root of the sum of its singular values,
i.e.

‖X‖2
F =

n∑

i=1

σ2
i ,

and ‖X‖2 = σ1. If X happens to be a symmetric matrix then the two orthogonal matrices U
and V are same. Based on these results we can analyze the sensitivity of our solution to a linear
system equations to small perturbations in the observations.

Sensitivity of a square system: Due to the errors in floating point representation, the system
of equation one solves through multiple linear regression changes to

(y + εf) = (X + εF )b1 ,

instead of the Equation 2.2. The question is: how different is b1 from the ideal solution b with
respect to the relative changes in y and X? For the purpose of this discussion assume that
m = n, that is, X is a square matrix and its SVD is

X =
n∑

i=1

σiuiv
T
i = UΣV T .

For Xb = y and for X to be invertible

b = X−1y = (UΣV T )−1y =
n∑

i=1

(
uT

i y
σi

)vi .

Errors in representing X and y are magnified to errors in b when scaled by the singular values
σi’s. The exact dependence can be derived as follows. Let the new system of equations, in view
of the floating point errors, be

(X + εF )b(ε) = y + εf , (2.9)

where b(0) = b (the ideal answer), f is an n-vector and F is an n× n matrix. We are interested
in relating the error norm ‖b(ε)−b‖

‖b‖ to the terms ε ‖f‖‖y‖ and ε ‖F‖‖X‖ .
It can be seen that if X is invertible, then b(ε) is differentiable in a neighborhood near 0.

Therefore, using Taylor’s expansion, we have

b(ε) = b + εḃ(0) + O(ε2) .
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To obtain ḃ(0), we differentiate both sides in Eqn. 2.9 with respect to ε and set ε = 0 to obtain:

ḃ(0) = X−1(f − Fb) .

Substituting and analzying:

‖b(ε)− b‖ = ε‖ḃ(0)‖+ O(ε2)
= ε‖X−1(f − Fb)‖+ O(ε2)
≤ ε‖X−1‖‖f − Fb‖+ O(ε2)
≤ ε‖X−1‖(‖f‖+ ‖Fb‖) + O(ε2)
≤ ε‖X−1‖(‖f‖+ ‖F‖‖b‖) + O(ε2)

Therefore,
‖b(ε)− b‖

‖b‖ ≤ ε‖X−1‖(‖f‖‖b‖ + ‖F‖) + O(ε2) .

Using the fact that y = Xb, we obtain that ‖y‖ ≤ ‖X‖‖b‖, of ‖b‖ ≥ ‖X‖−1‖y‖, and therefore,

‖b(ε)− b‖
‖b‖ ≤ ε‖X−1‖( ‖f‖

‖X‖−1‖y‖ + ‖F‖) + O(ε2)

= ε‖X−1‖‖X‖(‖f‖‖y‖ +
‖F‖
‖X‖) + O(ε2) .

The number κ(X) = ‖X−1‖‖X‖ is called the condition number of the matrix X. If ‖ · ‖ stands
for the two-norm of a matrix, then κ(X) equals the ratio of the largest singular value to the
smallest singular value of X.

This relationship shows that if the condition number of X is large then even small errors in
representing X, y can cause large errors in the estimated value of b. If the condition number is
small then the system is more stable with respect to the representation errors.

2.8.1 Dimension Reduction Using Linear Projections

In analysis of systems with large number of components, it is common to reduce dimensions
before any statistical analysis. The basic idea to treat observations as elements of a large vector
space, and use projections to transform them into smaller vectors. In view of their convenience,
linear projections have become popular. If the original observation space is Rn, then the problem
reduces to finding an appropriate projection that takes elements of Rn to elements of Rd in a
linear fashion. Depending on the nature of the required projections, several solutions exists and
are discussed next.

2.8.2 Principal Component Analysis

For applications involving a large number of correlated random variables, it is beneficial to try to
reduce the the dimensions, without sacrificing too much of the information. One idea is to reduce
dimensions by exploiting the correlation between the variables. This idea, called principal
component analysis, rotates the coordinate axes in order to have the new coordinates with
certain optimal variance properties. The original variables when rotated to the new coordinate
system are termed the principal components. The principal components are uncorrelated to
each other which makes them attractive for analysis. In addition, if the number of uncorrelated
variables is less than the number of original variables, then a reduction in dimension also results.
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Let X be a vector of n random variables with mean zero and covariance K. If the original
X has nonzero mean, then use X − E[X] instead to make it zero mean. Let U be an n × n
orthogonal matrix such that the elements of vector Z = UT X are uncorrelated.

Definition 9 The uncorrelated elements of the vector Z = UT X are called the components of
X.

The components of X are useful in statistical analysis. For reducing dimensions, one can work
with those d components that have the largest variances. However, to compute these components
one needs an appropriate orthogonal matrix U that satisfies this definition. Given a random
vector X, or some description of it, how can one calculate U? According to this definition, the
covariance matrix of Z is a diagonal matrix, call it Σ ∈ Rn×n. If K is the covariance matrix
of X, then the relation Z = UT X results in the relation Σ = UT KU . This further implies
that K = UΣUT for a diagonal matrix Σ. Comparing this relation with the singular value
decomposition of the covariance matrix K, we can deduce that the required matrix U can be
obtained from the SVD of K.

Another way to reach the same result but from a different point of view is as follows. In this
discussion, assume that we are interested in finding a low-dimension approximation of X for use
in some statistical analysis. We want to reduce the dimension from n to some smaller number
d. As earlier, we will use an orthogonal matrix U but of different size; this time U ∈ Rn×d

and UT U = Id. We will project X into a space spanned by d columns of the matrix U . In
other words, the columns of U decide which subspace will we project X into. Let the goal be to
find a d-dimensional subspace of Rn such that the projection of X on that subspace minimizes
expected squared error. The projection of X, onto a space spanned by columns of U , is given by
UUT X, and the projection error, or approximation error, is X−UUT X. Our goal is to find a U
that minimizes the mean value of the norm of this error. That is, find an orthogonal U ∈ Rn×d

such that:
Û = argmin

U
(E[‖X − UUT X‖2]) , (2.10)

where E denotes the expectation over the joint probability density function of X. Simplifying
this expression,

argmin
U

(E[‖X − UUT X‖2]) = argmin
U

E[(X − UUT X)T (X − UUT X)]

= argmax
U

E[tr(UT XXT U)]

= argmax
U

tr(UT E[XXT ]U) .

Since K = E[XXT ] ∈ Rn×n be the covariance matrix of X, and let K = V ΣV T be its singular
value decomposition (SVD). Then, we can rewrite the optimization problem as:

Û = argmax
U

tr(UT V ΣV T UT )

= argmax
U

tr(AΣ), for A = V T UT UT V

= argmax
U

n∑

i=1

σiAii

Now, the trace of A is tr(UUT V V T ) = d, so
∑n

i=1 Aii = d. We also know that each entry of A is
non-negative since A is an outer product of a matrix with itself. what values of Aii will maximize



2.8. SINGULAR VALUE DECOMPOSITION 45

the last sum. Assuming that the entries of diagonal matrix Σ are non-increasing from top to
bottom, the maximizing A is when Aii = 1 for i = 1, 2, . . . , d and Aii = 0 for i = d + 1, . . . , n.
This occurs when U is set to be made up of the first d columns of V .

There are some interesting properties associated with z.

1. Λ1,1 is the largest singular value of Σ and Z1 = UT
1 X is the first principal component

of X, where U1 is the first column of U . This implies that Z1 has the largest variance,
namely Λ1,1, that can be obtained by projecting X on a unit length vector. Following this
argument, Z2 is a random variable that is uncorrelated to Z1 and has the second largest
variance namely Λ2,2. Similarly, Zi is uncorrelated to the first i− 1 principal components,
and has the next highest variance. Ui’s denote the directions of principal variations of X.

2. Note that, instead of SVD, one can also use eigen decomposition to find the principal
components and principal directions. Since the covariance matrices are symmetric and
non-negative definite, both the SVD and eigen-decomposition provide the same results.

3. To motivate the utility of this component analysis, consider the following example. Define
a vector X̃k as the linear combinations

X̃k =
k∑

i=1

aiUi, ai ∈ IR , (2.11)

where ai’s are i.i.d random variables that are normally distributed with mean zero and
variance Λi,i. If for some k < n, the Λi,i’s are such that

Λ1,1 ≥ Λ2,2 ≥ . . . ≥ Λk,k > Λk+1,k+1 = . . . = Λn,n = 0 ,

then X̃k has the same mean and variance as the original X. More importantly, if X
is multivariate normal then it is completely specified by k variables: a1, a2, . . . , ak. For
k significantly less than n, there will be an important speed up in the computational
procedures analyzing X. In general, Λk+1,k+1, . . . ,Λn,n may not be zero but rather small
for some value of k and can still provide computational simplification. To determine

such a k, compute the ratio
∑k

j=1 Λj,j∑n
j=1 Λj,j

for increasing k and stop when this ratio exceeds
some prescribed cutoff, say 0.95. Also, in case x is not multivariate normal, the newer
distributions are sought for ai’s keeping the same mean and variances.

Sample Principal Components:
So far we have defined the components given the values of K. If K is not known, then it is
estimated using the samples of X, and the principal components are based on estimated valued
of K. Let X1, X2, . . . , Xn be the sampled values of the vector x and

K̂ =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)T ,

where X̄ is the sample mean of X. Then, for K̂ = V̂ Σ̂V̂ T , the SVD of K̂, the vector V̂ T X
contains the sample principal components of X. The observations of sample components can be
obtained as V̂ T Xi. The orthogonal matrix for reducing dimension from n to d while minimizing
the expected error is given the first d columns of V̂ .

The following algorithm generates observations of principal components of x given a large
set of its observations.
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Algorithm 20 (PCA of Given Data) Let X be the m×n matrix where each row denotes an
independent observation vector for the random vector x.

1. Find the sample covariance matrix C ∈ IRn×n of the elements of X,

2. Compute the singular value decomposition (SVD) of C to obtain the orthogonal matrix
U ∈ IRn×n,

3. Set U1 to be the first d columns of U , and,

4. define Z = XU1 ∈ IRm×d.

2.8.3 Linear Discriminant Analysis

In case the goal is to separate and categorize the observations after their projection, then the
choice of projection takes into account this categorization. In other words, we can try to choose a
projection that minimizes the spread of projected vectors within the same class, and maximizes
the separation of vectors across different classes. In this section we derive an optimal projection
using such a criterion.

Let C1, C2, . . . , Cm be m sets that partition Rn into m classes. We are given Nj observations
for class labeled by Cj , i.e. given Xj

i ∈ Cj , i = 1, . . . , Nj , for j = 1, . . . ,m. Each Xj
i is a element

of Rn. The goal is to find a projection, denoted by the basis U , such that the coefficients from
the same class cluster closer and the classes separate away maximally. We perform this analysis
by introducing a number of useful quantities. Let µj be the mean of observations in class Cj :

µj =
1

Nj

Nj∑

i=1

Xj
i ∈ Rn .

A matrix that captures the separation between the classes is the between-class scatter matrix:

SB =
m∑

j=1

(µj − µ)(µj − µ)T ∈ Rn×n, whereµ =
1
m

m∑

j=1

µj .

Similarly, the average separation between elements within the same class is captured by the
within-class scatter matrix:

SW =
m∑

j=1




Nj∑

i=1

(Xj
i − µj)(X

j
i − µj)T


 ∈ Rn×n .

In case Z = UT X ∈ Rk is the projection of X onto the space spanned by the columns
of U , then the scatter matrices for the projections are derived similarly. The corresponding
scatter matrices are given by: Sz

B = UT SBU , and Sz
W = UT SW U . The goal is to choose U that

maximizes the following functions:

f(U) =
det(Sz

B)
det(Sz

W )
=

det(UT SBU)
det(UT SW U)

.

The optimal projection is given by: Û = argmaxU∈Rn×k, UT U=Ik
f(U). It can be shown that the

solution Û can be solved as the generalized eigen value problem. In other words, the columns
of Û satisfy the equation:

SBûi = λ1SW ûi .

In matlab, this can be achieved using the eig function for solving the generalized eigen-value
problem.
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2.9 Problems

1. Let O ∈ SO(3) be a 3 × 3 rotation matrix, i.e. Ox is the vector x rotated by an angle θ
around an axis v. What is the eigen structure of O, how does it relate to θ and v?

2. Solve the following system of equations using backward substitution:



12 10 13 10
0 7 1 4
0 0 3 2
0 0 0 4







b1

b2

b3

b4


 =




1
1
1
1




3. Let H be a householder matrix given by

H = In − 2vvT

vT v
, for any v ∈ IRn .

(a) Show that H = HT and HT H = HHT = In.

(b) Show that for any x ∈ IRn, ‖Hx‖2 = ‖x‖2.

4. Write a program to implement house and execute it with x = (1, 7, 2, 3,−1)T .

5. Write program to implement rowhouse and execute it for

X =




1.0 −5 0.5 2.0
7.0 1.2 3.0 −1.0
2.0 −1.0 3.0 2.5
3.0 −0.9 −4.0 1.0
−1.0 3.5 2.2 4.0




and v generated from the previous problem.

6. Write a matlab program BackSub to solve for the coefficients via backward substitution.
That is, for a given vector y ∈ IRm, and matrix X ∈ IRm×n (upper triangular with non-zero
diagonals) solve for b ∈ IRn such that

y = Xb .

Assume m ≥ n. Test your program on Problem 1 in Assignment #3.

7. Using the functions householder, house, and rowhouse (as defined in the class) write pro-
gram to convert a given m×n matrix into an upper triangular matrix. Test your program
on

X =




9 1 2 3
9 4 2 2
4 8 2 1
8 0 6 7


 .

8. Combine the previous two programs to solve for the following linear regression problem:
Find b̂ ∈ IR4 such that

b̂ = argmin
b

‖y −Xb‖2
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where y = [2 4 1 5]T and

X =




9 1 2 3
9 4 2 2
4 8 2 1
8 0 6 7


 .

9. Use the above programs to solve for the inverse of X.

10. Let x and y be two non-zero vectors in IRn. Give an algorithm for determining a House-
holder matrix H such that Hx = y.

11. For the linear system y = Xb, X ∈ IRm×n, y ∈ IRm, b ∈ IRn, where X has full column-
rank (rank(X) = n) the matrix C = (XT X)−1 is known as variance-covariance matrix.
Assume that the factorization X = QR is available.

(a) Show that C = (RT R)−1.

(b) If R =
[

α vT

0 S

]
, then show that

C =
[

(1 + vT C1v)/α2 −vT C1/α
−C1v/α C1

]
,

where C1 = (ST S)−1.

(c) Give an algorithm that overwrites the upper triangular portion of R with the upper
triangular portion of C.

12. Consider a rigid object moving in three-dimensional space. Let v1 and v2 be the trans-
lational velocities (in IR3) of the object separated by a unit time interval. If the driving
force is considered random, then the two related according to,

v2 = (I3 −X)v1 + n , (2.12)

where X is a 3× 3 skew-symmetric matrix of the angular velocities,




0 −a3 a2

a3 0 −a1

−a2 a1 0




and n is the additive noise (assume n ∼ N(0, σ2I3)). Take σ = 0.05, a1 = 0.1, a2 =
0.1, a3 = 0.1, and v1 = [111]T ;

(a) Generate a sample of n and evaluate v2.

(b) Now consider v2 to be a given observation from the linear model (Eqn 2.12) and
determine the maximum likelihood estimate of v1, v̂1, using Householder-QR.

(c) Study the norm of ‖v1 − v̂1‖ versus the noise standard deviation σ.

13. Let A =
(

a11 a12

a21 a22

)
. What are the entries in the Givens rotation matrix G(1, 2, θ)

which converts a21 to zero.

14. Let x and y be two unit-norm vectors in IRn. Use Givens transformations to find a Q such
that such that QT x = y.
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15. For a m×n matrix X (m ≥ n) it can be shown that the singular values σ1 ≥ σ2 . . . ≥ σn ≥ 0
satisfy the equation

σk = max
dim(S)=k

min
v∈S,‖v‖=1

‖Xv‖ = max
dim(T )=k

min
u∈T,‖u‖=1

‖uT X‖ ,

where S, T are meant to range over all subspaces of IRn. Let w ∈ IRm and define B =[
X w

]
. Show that (i) σ1(B) ≥ σ1(X), and (ii) σn+1(B) ≤ σn(X). Thus the condition

number grows if a column is added to a matrix !

16. Using the programs from previous exercises to write a matlab program to perform (house-
holder) QR factorization of a given matrix. Test your program on

X =




9 1 2 3
9 4 2 2
4 8 2 1
8 0 6 7


 .

17. Write a matlab program, based on Givens rotations, to zero out the element (4, 2) (4-th
row and 2nd column) in the matrix:

X =




9 1 2 3
0 4 2 2
0 0 2 1
0 6 0 7


 .

18. Let D be a diagonal matrix denoting the covariance matrix of the (zero mean) error vector
ε, in the equation:

y = Xb + ε ∈ IRm .

Write a matlab program to solve for the weighted least squares estimates of b, given X, y
and D. Test your program using:

X =




3 3 3 1
2 1 2 1
1 3 3 1
3 2 2 3


 , y =




52
28
44
48


 , and D =




4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1


 .

19. Sample Principal Components: In this problem, you have to write a matlab program
to compute principal components from the sampled data. Let x ∈ IR4 be a vector of
random variables and its ten observations are given below:

0.9501 0.2311 0.6068 0.4860
0.8913 0.7621 0.4565 0.0185
0.8214 0.4447 0.6154 0.7919
0.9218 0.7382 0.1763 0.4057
0.9355 0.9169 0.4103 0.8936
0.0579 0.3529 0.8132 0.0099
0.1389 0.2028 0.1987 0.6038
0.2722 0.1988 0.0153 0.7468
0.4451 0.9318 0.4660 0.4186
0.8462 0.5252 0.2026 0.6721
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Find the principal directions of variation of x, and their corresponding contributions to
the total variation.

20. Consider a linear regression problem where y ∈ IRm and X ∈ IRm×n are given, and we
have to solve for the coefficients b ∈ IRn such that ‖y −Xb‖2 is minimized. In case n is
too large to handle, we can use principal component analysis to reduce n to k and then
solve for the coefficients.

(a) For the data provided on the website, first compute a matrix X1 ∈ IRm×k as follows:
(i) Find the sample covariance matrix C ∈ IRn×n of the elements of X, (ii) Compute
the singular value decomposition (SVD) of C to obtain the orthogonal matrix U ∈
IRn×n, (iii) Set U1 to be the first k columns of U , and (iv) define X1 = XU1 ∈ IRm×k.

(b) Now solve for the coefficients b̂1 ∈ IRk by minimizing ‖y −X1b1‖2.

(c) Compute the SSE = ‖y −X1b̂1‖2.

For the dataset provided m = 100, n = 100, and use k = 10. Save the file on your
computer and use “load fname” command to load the data in matlab. Compute and plot
the SSE for values of k ranging from 10 to 100 in the steps of 5.

21. Consider a labeled data set X with the following properties: there are m = 5 classes, each
class has k = 10 observations, and each observation is a vector of size n = 3. Therefore,
X can be thought of as three-dimensional array with dimensions 3 × 5 × 10. In matlab,
X(:, i, j) denotes the jth observation vector of ith class.

Given this data, you have perform a linear discriminant analysis of the data for d = 1, and
find the projection U ∈ Rn×d that is optimal for separating observed classes. You can use
the eig function in matlab to perform generalized eigen decomposition. For the resulting
U :

(a) State U .

(b) Project the data X into z, and plot the observations of z.

(c) Show 3D scatter plot of data X.

Useful commands in matlab eig, plot(·, ·,′ r∗′), plot3. Download X from the class website
from the file HA4 b dat.mat.

2.10 References

The material presented in this chapter is taken mainly from the classic text by Golub and
Vanloan [2].



Chapter 3

NON-LINEAR STATISTICAL
METHODS

3.1 Introduction

(References, [5, 9, 2]). This chapter is devoted to solving for the optimal points of given functions.
In the previous chapter, we have restricted ourselves to minimizing quadratic functions (‖y −
Xb‖2) but a large number of problems require analyzing non-quadratic functions. The solutions
in quadratic case can be determined by solving for the zeros of the gradient function, which in this
case defines a system of linear equations. However, in non-quadratic functions, the gradients are
nonlinear and the previous methods do not apply. We need to specify more general techniques
that optimize given functions, linear or nonlinear.

An instance of nonlinear optimization problems in statistics occurs in cases of maximum
likelihood estimation. As an example consider the following observation model:

y = F (x, b) + ε , (3.1)

where x and y are random variables of interest, b is a constant vector of parameters, and ε is a
random vector of measurement or sampling error with the density function given by fε. F is a
functional form relating y, x and b, e.g. F (x, b) = xb or F (x, b) = (x−b)2 etc. In many practical
situations, we have the sampled values of y, x, and our goal is to estimate the b according to
some criterion. One criterion is to choose that value of b which maximizes the following quantity:

b̂ = argmax
b

n∏

i=1

fε(yi − F (xi, b)) . (3.2)

In this setup we are assuming that the error values in different measurements are independent
of each other. The quantity on the right side of Eqn. 3.2 is called the likelihood function
and b̂ is called the maximum likelihood estimate (MLE) of b. We now consider some special
situations:

1. The linear regression solution we have considered in the previous chapter can be be treated
as a maximum likelihood estimate for F (x, b) = xT b (y ∈ IR, x ∈ IRn) and where ε is a
normal random variable with mean zero and variance σ2I. The likelihood function is given
by

1
(2πσ2)n/2

e−
1

2σ2 ‖y−Xb‖2 ,

51
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where y is the vector of measurements of y, and X is the matrix of measurements of x.
The log-likelihood function is proportional to

−1
2
‖y −Xb‖2

and therefore
b̂ = argmin

b
‖y −Xb‖2

which is precisely the vector of regression coefficients found earlier in Chapter 2.

2. It is possible to have the sampling error ε that is a normal random variable (N(0, σ2I)
as earlier, but the function F is now a non-linear function of X and b. In this case, the
maximum likelihood estimate of b is given by

b̂ = argmin
b

‖y − F (X, b)‖2 ,

and the solution is obtained by solving this minimization problem.

3. Another possibility is that the function F is linear but the addition noise is no longer
normal, i.e.

y = Xb + ε

where ε is a random vector with joint density function fε. In that case, the maximum
likelihood of b is obtained by solving the following maximization problem:

b̂ = argmax
b

fε(y −Xb) .

A value of b which maximizes the likelihood function can be found out by seeking the roots of
the first derivative of the likelihood function (also called the score function). So an important
ingredient in maximum likelihood estimation is finding the roots of the score function. We start
our discussion of non-linear statistics with an overview of some popular techniques in numerical
root finding. We will assume that we have a score function f as a function of some argument x
and our goal is to find the roots of f .

3.2 Numerical Root Finding: Scalar Case

Start by assuming x to be an unknown deterministic (non-random) parameter, and let x be a
scalar. We are given a real-valued function f(x) where x ∈ IR and the goal is to find the roots
of f , that is find x∗ ∈ IR such that f(x∗) = 0.

Due to the non-linearity of the cost function its root are found in an iterative way: an initial
estimate is chosen and is modified iteratively until some stopping criterion is met. There are
many different methods for root-finding. They all have the following three essential elements:

1. Some of determining the starting value, x0.

2. Given the ith iterate some formula for calculating the (i + 1)th iterate.

3. Some stopping criterion.
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For each of these algorithms we are interested in finding their rate of convergence towards the
roots of the function. The rate of convergence is defined by a quantity called the order of
convergence.

Definition 10 For a converging sequence {xi}, the order of convergence is defined by β if,

lim
i→∞

Ei+1 = KEβ
i , where Ei = |xi − xi−1| . (3.3)

3.2.1 Simple Iterations

Instead of solving for the roots of f we solve an equivalent problem of finding the fixed point of
another function g. g is found in such a way that

f(x∗) = 0 ⇔ g(x∗) = x∗ .

In other words, g is found such that a fixed point of g is also a root of f . Sometimes there are
many choices of g possible for a single function f . The selection depends on which g is easier to
handle and solve for a fixed point. One choice which is always valid is

g(x) = x + f(x) .

Let x0 be some starting value for the iterative search of the roots of f . At the ith stage of the
algorithm, the next iterate is given by the formula:

xi+1 = g(xi) = xi + f(xi) . (3.4)

The algorithm for implementing the simple iteration is given by:
Algorithm: Given a function f(x) find its roots using simple iterations by defining g(x) =
x + f(x), and:

Algorithm 21 (Simple Iterations)
x(1) = x0;
gx = g(x(1));
i = 1;
while (abs(x(i)− gx) > ε)

gx = x(i);
x(i + 1) = g(x(i));
i = i + 1;

end

The natural question is ask is: under what conditions does this algorithm converges to a root
of f or a fixed-point of g. The conditions are defined by the following theorem. Before that, we
define the concept of Lipschitz continuity.

Definition 11 A function g(x), defined on an interval [a, b], is said to be Lipschitz continuous
for a given constant L if for any s, t ∈ [a, b]

|g(s)− g(t)| ≤ L|s− t| .

Now we state the theorem.
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Theorem 3 Let g(x) be a continuous function on an interval [a, b] such that g(x) ∈ [a, b] when-
ever x ∈ [a, b] and g satisfies Lipschitz condition with L < 1. Then, for any x0 ∈ [a, b], the
sequence

xi+1 = g(xi) ,

converges to a fixed point of g and the solution is unique.

x
xxxx 0123

g(x)

g(x)=x

Figure 3.1: Pictorial illustration of convergence via simple iterations. The value of g at the
previous iterate becomes the next iterate.

It must be noted that the order of convergence in simple iterations is 1.0, or the convergence is
linear.

A necessary and sufficient for this algorithm to converge is that g should be Lipschitz con-
tinuous with L < 1. But what if g does not satisfy that property. Perhaps g can be scaled such
that it satisfies that property.

3.2.2 Scaled Simple Iterations

This is a technique where g can be scaled in such a way that its scaled version satisfies the
requirements of Theorem 3. Assume that g is given by

g(x) = x + f(x) .

Notice that for x∗ to be the root of f implies that x∗ is also the fixed point of g. If g is modified
to

g(x) = x + αf(x) ,

where α is a constant scalar, even then the fixed point of g is also the root of f .
Theorem 3 requires that g be Lipschitz continuous with L < 1. This can be achieved if

|g′(x)| < 1 for all x ∈ [a, b]. That is, |1 + f ′(x)| < 1, for all x ∈ [a, b]. If not, one can choose α
in such a way that

|1 + αf ′(x)| < 1 .

If f ′(x) has the same sign over the domain, then one way is to find f0 = argmaxx∈[a,b] |f ′(x)|,
and then select any α < − 1

f0
. The algorithm for implementing the scaled simple iteration is

given by:
Algorithm: Given a function f(x) find its roots using scaled simple iterations:
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Algorithm 22 (Scaled Simple Iterations)
x(1) = x0;
i = 1;
gx = x(i) + α ∗ f(x(1));
while (abs(x(i)− gx) > ε)

gx = x(i);
x(i + 1) = x(i) + α ∗ f(x(i));
i = i + 1;

end

x 0x1x2x3

x

f(x)

αf(x  )0

Figure 3.2: Pictorial illustration of convergence via scaled-simple iterations. The value of f ,
scaled by α, is the increment to find the next iterate.

The advantages of using scaled simple iterations is that it is simple and relatively stable
algorithm. The drawback is that it is a slow algorithm.

3.2.3 Newton-Raphson’s Method

The slow convergence of the simple iterations and scaled simple iterations is avoided by using
the next method. It is one of the most popular techniques used in numerical root finding or
fixed point estimation. There are stricter requirements for Newton’s method to be applicable to
any given function.

For Newton’s method to apply, f should be twice continuously differentiable and f ′(x) 6= 0
near the solution x∗. Again, we will derive an iterative procedure for computing xi+1 given xi.
Let xi be close to x∗ (f(x∗) = 0). Using Taylor’s expansion,

f(x) = f(xi) + (x− xi)f ′(xi) +
(x− xi)2

2
f ′′(xt) ,

where xt ∈ (x, xi). For x = x∗,

0 = f(x∗) = f(xi) + (x∗ − xi)f ′(xi) +
(x∗ − xi)2

2
f ′′(xt) ,

Dropping the second order term and solving for x∗, we obtain,

xi+1 = xi − f(xi)
f ′(xi)

, (f ′(xi) 6= 0) . (3.5)
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An algorithm to implement this equation iteratively is given by:
Algorithm: Given a function f(x) find its roots using Newton-Raphson’s method:

Algorithm 23 (Newton-Raphson Method)
x(1) = x0;
i = 1;
gx = x(i)− f(x(i))/f ′(x(i));
while (abs(x(i)− gx) > ε)

gx = x(i);
x(i + 1) = x(i)− f(x(i))/f ′(x(i));
i = i + 1;

end

x
x0

f(x)

x1x2

Figure 3.3: Pictorial illustration of convergence via Newton-Raphson’s method. The root of the
tangent vector at xi becomes the next iterate, xi+1.

As shown in Figure 3.3, the basic idea is to approximate the function at a given point by a
first order polynomial (or a straight line). In this case, the line is given by the line tangent to
f at that point. Its root becomes the next iterate xi+1. Newton-Raphson is one of the fastest
known algorithms for root finding in general situations. Its order of convergence is β = 2. The
trade-off for speed is of course the restrictions imposed on its applicability: f should be twice
continuously differentiable and f ′(x) 6= 0 near the solution x∗.

There are situations where f ′(x) is to difficult to compute or, perhaps, is just not known.
Then, the tangent vector at a given point must be approximated numerically. One way is to
approximate this derivative function using finite differences, as described in the next section.

3.2.4 Secant Method

From the definition of the derivative, we can attempt to approximate f ′(x) using finite differences
according to,

f ′(x) ∼ f(x + h)− f(x− h)
2h

,

or for any two points x1 and x2, substitute
f(x2)− f(x1)

x2 − x1
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in place of f ′(x) in the Newton-Raphson iteration. The new formula obtained is called the
Secant’s method for root finding. the iteration is given by:

xi+1 = xi − (xi − xi−1)
(f(xi)− f(xi−1))

f(xi) .

An algorithm to implement this method iteratively is given by:
Algorithm: Given a function f(x) find its roots using the Secant method:

Algorithm 24 (Secant Method)
x(1) = x0;
x(2) = x1;
i = 2;
gx = x(i)− f(x(i))(x(i)− x(i− 1))/(f(x(i))− f(x(i− 1)));
while (abs(x(i)− gx) > ε)

gx = x(i);
x(i + 1) = x(i)− f(x(i))(x(i)− x(i− 1))/(f(x(i))− f(x(i− 1)));

i = i + 1;
end

The basic idea behind the secant method is the following: given two starting points, x−1 and
x0, draw a straight line passing through them. Find the root of that line, i.e.the point where it
intersects the x-axis. This point becomes the next iterate, x1. Perform these steps again, now
with x0 and x1.

x

f(x)

x−1 x1
x0 x

2

Figure 3.4: Pictorial illustration of convergence via Secant’s method. Two points are used to
approximate the curve by a secant line whose root becomes the next iterate.

The disadvantage of using secant method is that it requires two starting values, and the
convergence is sensitive to the starting values.
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One can extend this idea of approximating the curve locally by low-order polynomials. In
the secant method the approximation is by a first order polynomial or a straight line. One
can approximate the function by a second order polynomial given three starting values. The
next iterate is then the root of the second order polynomial approximating the function in the
previous step. This method is called Muller’s method. The order of convergence of the secant
method is given by 1.618 and for Muller’s method the order of convergence is 1.839.

3.2.5 Bracketing Methods

There is another family of methods which do not rely on the derivatives or their approximations
for root finding. This technique basically relies on the intermediate value theorem.

Theorem 4 (Intermediate Value Theorem) Let f be a continuous function on [a, b] then
for all γ ∈ [f(a), f(b)] there exists at least one c ∈ [a, b] such that f(c) = γ.

Assume that there are two points x0, x1 with x0 < x1 such that f(x0)f(x1) < 0 then 0 is
contained in the interval having f(x0) and f(x1) as the boundaries. Therefore, by the interme-
diate value theorem the root of f is contained in [x0, x1]. Bracketing methods seek this root by
successively decreasing the interval while keeping the root in between the end-points. Different
bracketing methods differ in the way they reduce the intervals and the associated speeds of
convergence. Following are some of the bracketing method commonly used for root finding:

1. Bisection Method: This method relies in dividing the interval in half at every step till
the resulting interval size is with in the desired accuracy. The algorithm is as follows:
Algorithm: Given x0 and x1 (x0 < x1) such that f(x0)f(x1) < 0 find a root of f with in
an accuracy given by TOL.

Algorithm 25 (Bisection Method)
function r = bisection(x0, x1)
l = x0;
u = x1;
i = 1;
while ((u− l) > TOL)

x(i + 1) = (u + l)/2;
if f(x(i + 1)f(l) < 0)

u = x(i + 1);
else

l = x(i + 1);
end
i = i + 1;

end
r = x(i);

As shown in Figure 3.5, the bisection method has the advantage that it is stable, there
is no chance of algorithm diverging. In order to reach an accuracy of ε, it takes at most
O(log2(1/ε)) number of steps. To gain some speed one can use the next two methods while
still keeping the algorithms stable.
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x

f(x)

x0 x1
x 2 x

3

Figure 3.5: Pictorial illustration of convergence via bisection iterations. The mid-point of the
interval becomes the next iterate.

2. Secant Method: In this case, at any iteration the current end points are used to form a
straight line and the root of this line is gives the next iterate. The algorithm is given by:
Algorithm: Given x0 and x1 (x0 < x1) such that f(x0)f(x1) < 0 find a root of f with in
an accuracy given by ε.

Algorithm 26 (Secant Bracketing Method)
function r = secant(x0, x1)
l = x0;
u = x1;
i = 1;
while ((u− l) > ε)

x(i + 1) = lf(u)−uf(l)
f(u)−f(l) ;

if f(x(i + 1)f(l) < 0)
u = x(i + 1);

else
l = x(i + 1);

end
i = i + 1;

end
r = x(i);

As shown in Figure 3.6, the secant method is faster than the bisection but it has the
following drawback: when the function is convex or concave one of the end-points becomes
fixed and only the other one changes at every iteration. this results in a slower convergence.
To avoid this possibility one can use the Illinois method.
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x

f(x)

x0 x1
x2 x

3

Figure 3.6: Pictorial illustration of convergence via bracketed secant iterations. The root of the
line joining two points becomes the next iterate.

3. Illinois Method: If one of the end-points is same as previous iteration, then the function
value can be replaced by half its value at that point. The algorithm is given by:
Algorithm: Given x0 and x1 (x0 < x1) such that f(x0)f(x1) < 0 find a root of f with in
an accuracy given by ε.

Algorithm 27 (Illinois Bracketing Method)
function r = secant(x0, x1)
l = x0; fl = f(l);
u = x1; fu = f(u);
i = 1;
while ((u− l) > ε)

x(i + 1) = lfu−ufl
fu−fl ;

if f(x(i + 1)fl < 0)
u = x(i + 1); fu = f(u);
if f(x(i))f(x(i + 1)) > 0

fl = fl/2;
end

else
l = x(i + 1); fl = f(l);
if f(x(i))f(x(i + 1)) > 0

fu = fu/2;
end

end
i = i + 1;

end
r = x(i);
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To compare the convergence rates, the order of convergence of bisection method is 1, for
secant-bracket method is also 1, and for Illinois method is 1.442.

3.3 Starting Values & Stopping Criteria

In root finding if the function is not linear, then a general technique is to start with some
initial guess, improve upon the guess iteratively and then stop when certain stopping criterion is
satisfied. In the algorithms discussed earlier, various techniques for improving upon the iterates
have been established. Aside from the iterative rules, one needs to specify how to find the initial
guess and what should be the stopping criteria?

First we discuss the starting values, or the initial guess. Unfortunately, there is not much
theory to finding starting values in general. It basically depends on the prior knowledge about the
function. One way is to approximate the given function with another function with know roots.
For example, a continuous function can be approximated by a polynomial of an appropriate
order, and the roots of this polynomial can form the starting value for iterative methods on the
original function. Another technique is to plot roughly the given function by computing some
sample points and connecting the sampled points to seek an approximate root. This root can
then be the starting point for the iterative methods.

The next issue is to define a criterion for stopping the iterative procedure. We need to
ascertain when the iteration has sufficiently converged to provide the desired accuracy in the
final result. The following quantities can be chosen to measure the convergence:

1. The absolute change in the values of the successive iterates:

|xi+1 − xi| < ε .

2. The absolute relative change in the values of the successive iterates:

|xi+1 − xi|
|xi| < ε .

The first criterion is a better choice if the root is close to 0, but the second criterion is better if
the root is some value away from 0. sometimes it is a good idea to include |f(xi) in the stopping
criterion because near the root this value should be |f(xi)| ∼ 0. Another suggestion is to put a
hard limit on the iteration count just in case the algorithm has a possibility of diverging.

3.4 Numerical Root Finding: Vector Case

Now we consider the case when the function to be optimized has multiple arguments, i.e. the
likelihood function is a function of n variables. In this case, the derivative function, f(x), is
a function from IRn to IRn, and x∗ ∈ IRn is its root when f(x∗) is a vector of zeros. In this
section we will study techniques for finding the vector roots of vector valued functions. Let f
be a function from x ∈ IRn to f(x) ∈ IRn whose root we are interested in finding. Its first
derivative with respect to x will be a matrix, each column consisting of the gradient of each of
its components with respect to x. Similarly, its second derivative will be a three-dimensional
array of size n× n× n, each component being a scalar function of x.

The vector root finding can be accomplished by extending the methods described in the
previous sections. Additionally, there are some interesting ideas that go beyond the simple
extensions of the scalar cases. We consider the methods next:
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1. Simple Iterations:
As in the scalar case, the iteration for the simple iteration is given by

xi+1 = xi + f(xi) . (3.6)

Where g(x) = x+ f(x) satisfies certain properties: its range is a subset of its domain, and
it is Lipschitz continuous with parameter less than one.

2. Scaled Simple Iterations: If g does not satisfy the requirement for Lipschitz continuity
then f can be scaled in order to satisfy that condition. That is, find a matrix J such that

ρ(I − J−1f ′(x)) < 1 , for all x near the root ,

where ρ is the spectral radius of its matrix argument. Since it is not straightforward to find
a J which satisfies this property, some simple of choices for J are often made. For example
J = αIn, for some constant α small enough, is a common choice. This J implies having the
same step size in all the dimensions in the iterative procedure for root finding. Very often
it is clear from the function involved that the step-sizes for different components should
be different. If the choices for individual step sizes is obvious, they can be incorporated
using J = diag(α1, α2, . . . , αn).

3. Newton-Raphson’s Method: As described in the scalar case the choice of matrix J is
analytically precise if certain assumptions are made about f . If the second derivative of f
is continuous and f ′(x) is not zero in the neighborhood of the root, then using the Taylor’s
series:

f(x) = f(xi) + f ′(xi)(x− xi) +
1
2
(x− xi)T f ′′(x∗)(x− xi) ,

for some x∗ ∈ {tx + (1 − t)x1 : 0 ≤ t ≤ 1}. Substituting for x = s, the root of f , and
solving for s, we obtain the next iterate as:

xi+1 = xi −
(
f ′(xi)

)−1
f(xi) . (3.7)

Computing the next iterate requires inverting an n × n matrix f ′(xi). Following the
techniques learnt in Chapter 2 we can solve for xi+1 as the solution of the equation

f(xi) = −f ′(xi)(xi+1 − xi) .

Householder factorization is one way to solve this linear system of equations.

The advantage of Newton-Raphson is its faster speed of convergence. The disadvantages
are that it requires the continuity of f ′′(x) and the starting point has to be in a small
neighborhood of the root.

4. Secant Method: In situations where f ′(x) is either not known or difficult to calculate,
then the secant method is applicable. Extrapolating the secant technique discussed for the
scalar case, now we need (n+1) starting points. Each component of f , say fi, is evaluated
at these n + 1-points and a hyperplane is fitted to pass through the samples of fi at these
points. That is, solve for the coefficients a1, a2, . . . , an, in the equations

f(xi) = a1xi(1) + a2xi(2) + . . . + anxi(n) , i = −n,−n + 1, . . . ,−1 .

The intersection of hyperplanes corresponding to different components of f provides the
next iterate, xi+1.
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5. Non-Linear Gauss-Seidal Iteration: This is a interesting idea for solving n-dimensional
root-finding using multiple applications of scalar-root finding. The basic framework is: the
ith component of f is considered to be a function only of the ith component of x, other
components are assumed fixed. Using scalar techniques, once can solve for the root of fi as
a function of xi. Perform this step for each i = 1, 2, . . . , n and combining these individual
roots the next iterate for f is ready. If Newton’s method is used of scalar root-finding,
then the resulting method is called Gauss-Seidal-Newton’s method.

Theorem 5 Non-linear Gauss-Seidal iteration converges globally to a unique solution in
IRn provided that f ′(x) is symmetric positive definite and that the smallest characteristic
root of f ′(x) is bounded away from zero.

3.5 Numerical Optimization

so far we have discussed numerical root finding which is only a necessary condition (not sufficient
condition) for finding the optimal point (maxima or minima) of a given function. A general
optimization problem can be stated as follows:

Let F be a real-valued function on IRn and let S be a given connected subset of IRn,
then find x ∈ S at which F attains an optimum (maximum or minimum) value.

F is called the objective function and S is called the constraint set. Roots of the gradient
function are good candidates for the optimal points but additional steps are needed to check for
their optimality. In general, the task of optimization is a little different from the root-finding
procedure because of the following reasons:

1. The root of the derivative of a function may be a maximum, a minimum or a saddle point.
If we are looking for a maximum of f the second derivative F ′′(x∗) called the Hessian
matrix, should be positive definite. Similarly, if the Hessian matrix is negative definite at
x∗ then it implies the maximal point. In other cases, x∗ may be a saddle point.

2. Even if F ′(x∗) = 0 and F ′′(x∗) is positive definite, x∗ may only be a maximum value
in a small neighborhood of x∗. In other words, x∗ is only a local maximum and while
considering the whole set S, there may be other global maxima.

3. Sometimes an optimal point is such that F ′(x) 6= 0 for that point. For example, consider
a linear function F over a rectangular set S. The optimal points of this function lie on the
boundary of the constraint set and F ′(x) 6= 0 for these points.

4. In certain situation, we may not have a closed form expression for F but have only its
sampled values. Again, the search can not be based on F ′(x) as is done in root finding.

In case the earlier methods do not apply, there are some additional ideas that can be tried for
optimization. These ideas lead to large computational costs, but can still be useful if the earlier
methods do not work.

1. Grid Search: This method, also called raw search, involves partitioning the domain
S into numerous subsets and sampling the function f at a point in each subset. Based
on the sampled values, the maximal or minimal value can be selected. Obviously, finer
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partitioning can result in more accurate results depending upon the continuity of the
function. Let ZZn be the integer grid and define the set of sample points,

L = {x|x = x0 + Ma, a ∈ ZZn} .

L is called the lattice or grid with origin x0. M is a full-ranked matrix called the
Minkowski’s basis of L.

2. Sequential Search: Another strategy to search for optimal points relies on solving for
each component at a time. Fix all but one components and use the grid method to find
the optimal point in that dimension. Then, using the new value fix that component and
search for other components one by one.

3. Linear Search Strategies: This idea for searching one component at a time can be
generalized as follows. Let x be the a starting point for search in S and let d ∈ IRn be a
direction vector. Define a scalar function,

g(t) = F (x + td), t ∈ IR .

d is called an admissible if g is a decreasing function at t = 0. Assuming that one can solve
for the minimizer of g, the minimum t∗ provides the next iterate in the search. That is,
x + t∗d for the new starting point and the process is repeated. It must be noted that the
admissible direction d varies from point to point. So the question is, given a point x how
to find the admissible direction? There are at least three ways of selecting an appropriate
d.

(a) Newton’s Method: For x ∈ IRn, the admissible direction is calculated as

dN = − (
F ′′(x)

)−1
F ′(x) ,

where F ′′(x) is a positive definite matrix.

(b) Steepest-Descent: In this case the admissible direction is given by the negative of the
gradient vector

dS = −F ′(x) .

(c) Levenberg-Marquardt Adjustment: A combination of these two methods can be for-
mulated by using the direction

dLM = − (
F ′′(x) + λI

)−1
F ′(x) ,

where λ > 0 is a constant greater than the smallest eigen-value of F ′′(x). In case
F ′′(x) is positive definite then λ can be chosen to be 0 to imply Newton’s method
(dLM = dN ). In case λ is large and dominates F ′′(x) term, then dLM is quite close
to the steepest descent direction, dS .

3.6 Conjugate Gradient Technique

Another commonly used technique for optimization which depends upon the local definition on
an admissible direction at each point is the conjugate gradient technique. We illustrate the basic
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idea behind conjugate gradients using a simple example. Let a function F : IRn → IR be given
by

F (x) =
1
2
xT Ax− xT b (3.8)

for some fixed b ∈ IRn. Also, assume that A is a n × n symmetric, positive definite matrix.
We already know that the minimizer of F is given by x = A−1b and the minimum value of F
is −bT A−1b

2 . That is, if A is symmetric, positive definite, then minimizing F is same as solving
for x = A−1b. As earlier, we seek an iterative numerical technique which avoids computing the
inverse of A.

We will use the linear search strategy, that is, at any point we select a direction and solve
for the optimal point along that direction (by solving a one-dimensional optimization problem).
The question is, how to find that search direction at any arbitrary point. As we have seen before,
the method of steepest descent suggests using ∇F (x) as the search direction at x ∈ IRn. Let xc

be the current point. In this case, −∇F (xc) = b − Axc. Let this vector be called the residual
vector rc. If rc 6= 0, then there exists a positive α ∈ IR such that F (xc + αrc) < F (xc). The
α which minimizes the function f(α) = F (xc + αrc) can be found by the usual calculus. It is
given by

α̂ =
rT
c rC

rT
c ArC

.

Then, F (xc + αrc) = F (xc)αrT
c rc + 1

2α2rT
c ArC . This can be implemented by the following

algorithm:

Algorithm 28 Let x0 be the initial guess and set r0 = b−Ax0 and k = 0.

while (rk 6= 0)
k = k + 1;
αk = rT

k−1rk−1/rT
k−1Ark−1;

xk = xk−1 + αkrk−1;
rk = b−Axk;

end

It can be shown that

(F (xk) +
1

bT A−1b
) ≤ (1− 1

κ2(A)
)(F (xk−1) +

1
bT A−1b

) .

where κ2(A) is the condition number of the matrix A (given by the ratio of the largest eigen value
to the smallest eigen value of A). If the condition number of A is large, then the progression of
the algorithm is slow. The geometric interpretation of this condition is that the level curves of F
are elongated hyper-ellipsoids on the gradient direction (which is locally the steepest direction)
is not a good choice in the global sense.

Conjugate Search Directions

Now we will look for search directions p1, p2 . . . which are different from the residual r1, r2, . . .. If
pk is a search direction then it can be shown that the α which minimizes F along that direction
is given by

α̂k = argmin
α

F (xk−1 + αpk) =
pT

k rk−1

pT
k Apk

,
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and F (xk−1 + α̂kpk) = F (xk−1) − 1
2

(pT
k rk−1)2

pT
k Apk

. Therefore, pk should not be orthogonal to rk−1,
in addition to the fact that it is not going to be completely along rk−1.

If the search directions {p1, p2, . . .} are linearly independent of each other and if

xk = argmin
x∈x0+span{p1,p2,...,pk}

F (x), k = 1, 2 . . . , n ,

then the convergence of this iterative procedure it guaranteed in n steps. It is because span{p1, p2, . . . , pk} =
IRn. Following this strategy, we should select pk which makes the evaluation xk feasible. Let
Pk−1 = [p1 p2 . . . pk−1] ∈ IRn×(k−1). Then xk is given by

xk = x0 + Pk−1y + αpk

for some y ∈ IRk−1 and α ∈ IR. And

F (xk) = F (x0 + Pk−1y) + αyT P T
k−1Apk +

α2

2
pT

k Apk − αpT
k r0 .

In this function the term αyT P T
k−1Apk relates the two elements α and y. We want to select a

pk which makes it easier to find α and y which minimize this cost function. So if the cross-term
is zero the optimization over these two quantities separates into two different problems. Set the
cross-term to zero (by choosing pk such that P T

k−1Apk = 0) and let yk−1 be the vector which
minimizes the first term. Then for xk−1 = x0 + Pk−1yk−1,

xk−1 = argmin
x∈x0+span{p1,p2,...,pk−1}

F (x) .

Given pk, αk = pT
k r0

pT
k Apk

minimizes the other terms. It is convenient to notices that

pT
k rk−1 = pT

k (b−A(x0 + Pk−1yk−1)) = pT
k r0 .

The algorithm to implement this technique is given by:

Algorithm 29 Let x0 be the initial guess and set r0 = b−Ax0 and k = 0.
while (rk 6= 0)

k = k + 1;
choose pk ∈ span{Ap1, Ap2, . . . , Apk}⊥ so that pT

k rk−1 6= 0,
αk = pT

k rk−1/pT
k Apk;

x=xk−1 + αkpk;
rk = b−Axk;

end

Since pT
i Apj = 0 for all i 6= j the search directions are called A-conjugate. From construction, if

Pk = [p1 p2 . . . pk], then

P T
k APk = diag(pA

1 p1, p
T
2 Ap2, . . . , pkT Apk) .

Since A is a positive definite matrix P T
k APk is a non-singular matrix, that is, it has full column

rank k. Therefore, the convergence is guaranteed in n-steps because Pn is a full ranked n × n
matrix and xn lies in its span.
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Still, we haven’t completely specified how to find pk, though we have found some conditions
which pk must satisfy. pk is A-conjugate to p1, p2,..,pk−1, pk is not exactly along rk−1 and pk is
not orthogonal to rk−1. There are several strategies suggested in the literature to find pk. One
of them is to compute pk recursively according to

pk = rk−1 + βkpk−1 , βk = −pT
k−1Ark−1

pT
k−1Apk−1

.

3.7 Expectation Maximization (EM) Algorithm

So far we have looked at maximizing likelihood for parameter θ given an observation x and a
likelihood function f(x|θ). In such cases it is assumed that the maximizer exists, either locally
or globally, and the techniques described earlier can solve of it. However, in some problems
the full observation may not be provided and that makes the maximization a difficult, or even
ill-posed, problem. Let the data vector x be made up of two components x = [xo xm] where xo

denotes the observed part of x and xm stands for the missing part. Assume that given the full
data x, it is possible to solve for the maximum likelihood estimate of θ but goal now is to solve
for the maximizer:

θ̂ = argmax
θ

f(xo|θ) . (3.9)

In fact, EM is beneficial mostly where f(x|θ) is easier to maximize compare to maximizing
f(xo|θ). A note of caution here in that our notation is to use f for all density functions, includ-
ing the conditional density function of xo given θ, and the arguments of f should make clear the
actual function it refers to.

Example 4 (Mixture of Gaussians)
Let Y be a real-valued random variable such that Y = Y (j) with probability αj, where Y (j) ∼
N(µj , σ

2
j ) and

∑
j αj = 1. The goal is to use independent observations of Y , say Y1, Y2, . . . , Yn,

to estimate the parameters αj , µj , σ
2
j , for all j. To simplify this discussion let the number of

densities in the mixture be two, and Y becomes a mixture of two Gaussian random variables. We
seek a maximum likelihood estimate of the unknowns θ = (µ1, µ2, σ

2
1, σ

2
2, α1, α2). The likelihood

function is given by:

f(Y |θ) =
n∏

i=1

f(Yi|θ)

=
n∏

i=1

(
α1f1(Yi|µ1, σ

2
1) + α2f2(Yi|µ2, σ

2
2)

)

where f1 and f2 are the two normal density functions with appropriate parameters. The log-
likelihood function is given by:

log(f(Y |θ)) =
n∑

i=1

log
(
α1f1(Yi|µ1, σ

2
1) + α2f2(Yi|µ2, σ

2
2)

)
.

Solving for θ̂ = argmaxθ log(f(Y |θ)) is difficult because of the summation inside the log function.
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Consider a different situation where in addition to Yis one also observes a label li that equals
one if Yi ∼ f1 and two if Yi ∼ f2. In other words, li tells us what density Yi came from. Form
a larger observation (Y, l), where l = (l1, l2, . . . , ln), and derive the log-likelihood function:

log(f(Y, l|θ)) =
n∑

i=1

log(f(Yi, li|θ))

=
n∑

i=1

log(f(Yi|li, θ)P (li|θ))

=
∑

i:li=1

log(αlif1(Yi|li, µ1, σ
2
1)) +

∑

i:li=2

log(αlif2(Yi|li, µ2, σ
2
2)) (3.10)

Here, we have used the fact that P (li|θ) = αi. Now, the data breaks into two groups: one from f1

and the other from f2, and one can use this separate data sets to estimate parameters for those
respective densities. So, this example illustrates a situation where the log-likelihood function
for the observed data log(f(Y |θ)) is rather difficult to maximize, while the same function for a
complete data, assuming additional data in form of the labels l, is much easier to maximize. The
EM algorithm is applied in such situations where the additional data, called the missing data, is
not available but could have greatly simplified the optimization problem. In EM algorithm, one
does not have the missing data, but tries to integrate out this unknown using a density function
conditioned on the observed data.

3.7.1 Derivation of EM Algorithm

Our goal is to construct a sequence {θi} such that: (i) f(xo|θi+1) ≥ f(xo|θi), and (ii) with
some additional conditions this sequence converges to the estimator θ̂. Rearrange the equation:
f(x|θ) = f(xo|θ)f(xm|xo, θ to write:

f(xo|θ) =
f(x|θ)

f(xm|xo, θ)
.

Taking log on both sides, we get

log(f(xo|θ)) = log(f(x|θ))− log(f(xm|xo, θ)) .

Next, take expectation on both sides with respect to the density function f(xm|θ0, xo), for some
θ0. Given x0, the left hand side is a constant and remains same. On the right side, we get

E[log(f(xo, xm|θ))|θ0, xo]−E[log(f(xm|θ, xo))|θ0, xo]
= Q(θ|θ0, xo)−H(θ|θ0, xo)

where Q and H are defined by above equations. Q is the expected value of the complete data
(log) likelihood conditioned on the given values of θ0 and xo. Considering the second term first,
we focus on the difference:

H(θ|θ0, xo)−H(θ0|θ0, xo) = E[log(f(xm|θ, xo))|θ0, xo]−E[log(f(xm|θ0, xo))|θ0, xo]

= E[log(
f(xm|θ, xo)
f(xm|θ0, xo)

)|θ0, xo]

≤ log(E[
f(xm|θ, xo)
f(xm|θ0, xo)

|θ0, xo])

= log(
∫

f(xm|θ, xo)
f(xm|θ0, xo)

f(xm|θ0, xo)dxm) = 0
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The inequality comes from the Jensen’s inequality which says that E[log(Y )] ≤ log(E[Y ]) since
log is a convex function. This implies that H(θ|θ0, xo) ≤ H(θ0|θ0, xo) for any θ0.

Now consider a sequence θ1, θ2, . . ., θm where the iteration is given by some function l, i.e.
θm+1 = l(θm). Substituting θ0 = θm we get:

log(f(xo|θm+1))− log(f(xo|θm)) =
Q(θm+1|θm, xo)−Q(θm|θm, xp)− (H(θm+1|θm, xo)−H(θm|θm, xo)) .

We set
θm+1 = argmax

θ
Q(θ|θm, xo) , (3.11)

i.e. the maximizer of the first term involving the complete data likelihood. Then, the first term
by definition is non-negative, and we have already shown that the second term is non-negative.
Together, these two conditions imply that log(f(xo|θm+1)) ≥ log(f(xo|θm)).

We can summarize the EM algorithm as follows:

Algorithm 30 (EM Algorithm) Choose an initial value for θ0 and set m = 0.

1. Expectation Step: Compute

Q(θ|θm, xo) = E[log(f(xo, xm|θ))|θm, xo] .

2. Maximization Step: Set

θm+1 = argmax
θ

Q(θ|θm, xo) .

3. Check convergence. If not converged, set m = m + 1 and go to Step 1.

Properties of the resulting sequence {θm} can be characterized by the following theorem.

Theorem 6 1. For EM algorithm where θm+1 is given by Eqn. 3.11, we have

log(f(xo|θm+1)) ≥ log(f(xo|θm)) ,

with equality if and only if

Q(θm+1|θm, xo) = Q(θm|θm, xo) .

2. If Q(θ|θ0, xo) is continuous in both θ and θ0, then every limit point of an EM sequence
is a stationary point of the (incomplete data) likelihood function f(xo|θ), and f(xo|θm)
converges monotonically to f(xo|θ̂) for a stationary point θ̂.

3.7.2 Some Examples of EM Algorithm

There are some well known examples of using EM algorithms for finding maximum likelihood es-
timates of parameters. In this section, we discuss two of them, namely, estimation of multinomial
parameter(s) and estimation of Gaussian mixture parameters.
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1. Multinomial Case: Consider a multinomial distribution parameterized by θ according
to:

(x1, x2, x3, x4) ∼M(n; 0.5 + 0.25θ, 0.25(1− θ), 0.25(1− θ), 0.25θ) .

The likelihood function of θ given the vector x is:

f(x|θ) =
(

n
x1 x2 x3 x4

)
(0.5 + 0.25θ)x1(0.25(1− θ))x2+x3(0.25θ)x4 .

Hence, the log-likelihood function is:

log(f(x|θ)) ∝ x1 log(2 + θ) + (x2 + x3) log(1− θ) + x4 log(θ) .

Define two new random variables y1 and y2 such that x1 = y + 1 + y2, where (y1, y2) ∼
M(x1; 0.5, 0.25θ). Set the complete data to be y = (y1, y2, x2, x3, x4). The vector y has
multinomial distribution according to:

y ∼M(n; 0.5, 0.25θ, 0.25(1− θ), 0.25(1− θ), 0.25θ) .

The complete data log-likelihood is proportional to:

(y2 + x4) log(θ) + (x2 + x3) log(1− θ) .

(a) E-Step: Its expectation with respect to the density function f(y1, y2|θ0, x1, x2, x3, x4)
is given by:

Q(θ|θ0, y) = (
θ0

2 + θ0
x1 + x4) log(θ) + (x2 + x3) log(1− θ) .

Here, we have used the fact that E[y2|θ0, x1] = θ0
2+θ0

x1. Recall that

(y1, y2) ∼ binomial(x1; 0.5/(0.5 + 0.25θ), 0.25θ/(0.5 + 0.25θ))

and the conditional mean of y2 is x1(0.25θ)
0.5+0.25θ .

(b) M-Step: To perform the maximization step, we maximize Q(θ|θ0, y) by taking its
derivative and setting it equal to zero. Solving for θm+1, we obtain:

θm+1 =
θmx1
2+θm

+ x4

θmx1
2+θm

+ x2 + x3 + x4

.

This results in the EM algorithm for finding MLE of θ.

2. Gaussian mixture case: Remember that the observed data in this case is x0 = Y , the
observations of mixture variable, and the missing data is xm = l, the set of labels associated
with elements of Y . Also, note that the missing data is a discrete random variable and
hence we use a probability mass function instead of a probability density function. The
complete data log-likelihood function for this case is given in Eqn. 3.10. Using that form,
we proceed to deriving the EM algorithm:
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(a) E Step: This step involves computing the expectation of the log-likelihood function
with respect to the probability P (l|Y, θ), where l is an n-vector of labels. The resulting
expectation is given by:

Q(θ|θm, Y ) = E[log(f((l, Y )|θ))|Y, θm]

=
∑

l

log(f((l, Y )|θ))P (l|Y, θm)

=
∑

l

(
n∑

i=1

log(f((li, Yi)|θ))P (li|Yi, θm)

)

Switching the two summations, we get:

Q(θ|θm, Y ) =
n∑

i=1




2∑

li=1

log(f((li, Yi)|θ))P (li|Yi, θm)




=
n∑

i=1




2∑

j=1

log(αj,mfj(Yi|µj , σ
2
j ))P (j|Yi, θm)


 (3.12)

(b) M Step: Maximizing the expected log-likelihood function Q(θ|θm), we obtain the
following updates:

αj,m+1 =
1
n

n∑

i=1

P (j|Yi, θm) (3.13)

µj,m+1 =
∑n

i=1 YiP (j|Yi, θm)∑n
i=1 P (j|Yi, θm)

(3.14)

σj,m+1 =

√∑n
i=1(Yi − µj,m+1)2P (j|Yi, θm)∑n

i=1 P (j|Yi, θm)
(3.15)

where

P (j|Yi, θm) =
αj,mfj(Yi|µj,m, σ2

j,m)
∑2

j=1 αj,mfj(Yi|µj,m, σ2
j,m)

Additional examples of use of EM algorithm are provided through the exercises at the end of
this chapter.

3.8 Miscellaneous Topics

3.8.1 Bayesian Inference

So far we have discussed computing the maximum likelihood estimate of an unknown parameter
b either by seeking a root of the first derivative of the likelihood function (the score function)
or by direct optimization techniques. Another situation which arises frequently in statistics is
Bayesian inference. The parameter is assumed to be random with some known distribution and
its estimate ends up being an expected value under the posterior distribution.
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If b is a random parameter with some known distribution, then according to the Bayes’ rule,
the posterior distribution is given by

P (b|y) =
P (y|b)P (b)

P (y)
∝ P (y|b)P (b) ,

where y is the dependent random variable. Given an observation y, the posterior is proportional
to the product of the data likelihood and the prior probability on the parameter b. The next
question is: what should be the criterion for estimating b from observed y ? Under the posterior
probability, there are several cost functions that can be minimized, resulting in different values
of the estimate. We briefly mention a few commonly used cost functions. Let ‖ · ‖ denote the
Euclidean distance function on IRn.

1. The maximizer of the posterior density is called the maximum a-posterior (MAP) estimate:

b̂MAP = argmax
b

P (b|y) .

The MAP estimate can be found using techniques which were described to find the
maximum-likelihood estimate, except the posterior density is maximized instead of the
likelihood function.

2. Let b be the value of the estimator. Then the expected squared error is given by∫

b1

‖b− b1‖2P (b1|y)db1 .

The value of b which minimizes this expected squared error is called the minimum mean
squared error estimator (MMSE).

b̂MMSE = argmin
b

Expected Squared Error .

It can be shown that for Euclidean parameters, the MMSE estimator is given by the mean
under the posterior (conditional) distribution. That is,

b̂MMSE =
∫

b
bP (b|y)db . (3.16)

This estimator involves computing integral of the posterior density. In case the analytical
solutions are difficult to evaluate numerical techniques for integration can be used. In the
next chapter (Chapter 4) we will describe some commonly used numerical techniques for
numerical integrations.

3. The disadvantage of minimizing expected squared error is that it results in an averager:
the solution is the average of high posterior probability points. Even the individual points
may be high probability, their average itself can be a low-probability point and hence a
bad estimate. Therefore, very often it is the expected error which is minimized instead of
the expected squared error: ∫

b1

‖b− b1‖P (b1|y)db1 .

For Euclidean parameters the minimum expected absolute error criterion results in the
median of the posterior probability.

Several of these solution require solving optimization problems, and the techniques discussed
in this chapter are applicable. Others, such as computation of conditional mean in Eqn. 3.16,
require the use of sampling algorithms covered later in Chapters 6-7.
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3.9 Problems

1. Consider Problem 12 from Chapter 2.

(a) The linear estimator can be expressed as v̂1 = Bv2 where B is the inverse of (I3−A).
Verify that the estimator v̂1 is unbiased.

(b) Derive the expression for Cramer-Rao lower bounds on the expected error E((v̂1 −
v1)(v̂1−v1)T ). Compare this value with your computed value of the error. Remember
that you computed ‖v̂1 − v1‖ and not the whole matrix.

2. Write a matlab program to compute a root of the following function using simple iterations:

f(x) = sin(x)− x .

Choose x = π/4 as the starting value for x. Write a matlab program to solve the same
problem using Newton-Raphson method.

3. For finding the roots of the function f(x) = e−x − cos(x),

(a) Write a matlab program to implement Newton’s method Run this program twice with
the starting values +1 and −1.

(b) Write a matlab program to implement Secant method. Run this program with the
starting values x−1 = 1 and x0 = 1.5.

Plot the convergence of the sequence to the root in each of these cases.

4. Let y be a random variable defined by the linear equation,

y = 5 ∗ b + w

where w is a normal random variable with mean 4 and variance 2, that is w ∼ N(4, 2).

(a) Observe y: Generate a realization of w in matlab using

w = 4 + sqrt(2) ∗ randn; .

Use this value of w to calculate the value of y according to the above linear equation.

(b) Estimate b: Based on this value of y, calculate the maximum likelihood estimate of
b. (First write down the likelihood function of b and then find that value of b which
maximizes it.) Remember that for a Gaussian random variable with mean µ and
standard deviation σ, the probability density function is given by

P (x) =
1√

2πσ2
exp(

−1
2σ2

(x− µ)2) .

5. Use the bracketing method to find the roots of the polynomial

x3 − 12x2 + 48x− 64 .

Use x1 = 1.5 and x2 = 5.0 as the starting boundary points.
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6. Assume a chair being pictured by a remote camera. Chair position, camera position
and other nuisance parameters are assumed known with the only variable being the chair
orientation angle. The model for camera output is given by the equation

Y = F (θ) + N, Y,N ∈ IR64×64

where θ is the relative orientation between the camera and the chair, and F is the or-
thographic projection capturing the target profile (as shown in Figure). Assume that
F is twice continuously differentiable and N is additive Gaussian noise with i.i.d ele-
ments ∼ N(0, σ2). F is not available analytically but sample images F (θi) are given for
θi = 2πi/360 i = 1, 2, . . . 360.

Given an observation Y find the maximum-likelihood estimate of θ using: (i) rescaled
simple iterations, and (ii) Newton’s method. Try the following initial conditions: (i)0, (ii)
π/4, (iii) 3π/4, and (iv) π/2.

7. Assume a chair being pictured by a remote camera. Chair position, camera position
and other nuisance parameters are assumed known with the only variable being the chair
orientation angle. The model for camera output is given by the equation

Y = F (θ) + N, Y,N ∈ IR64×64

where θ is the relative orientation between the camera and the chair, and F is the ortho-
graphic projection capturing the target profile. Assume that N is additive Gaussian noise
with i.i.d elements ∼ N(0, σ2). F is not available analytically but sample images F (θi)
are given for θi = 2πi/M i = 1, 2, . . . M , M = 360.

Given an observation Y , following is an algorithm to calculate the Hilbert-Schmidt (H-S)
estimate (minimum-mean squared error estimate) of the chair angle.

Algorithm 31 (a) Calculate pi = e−‖Y−F (θi)‖2/2σ2
, i = 1, 2, . . . , M .

(b) Normalize them in to probabilities, p̃i = pi∑M
i=1 pi

.

(c) Compute the average matrix, A =
∑M

i Oip̃i, where Oi =
[

cos(θi) −sin(θi)
sin(θi) cos(θi)

]
.
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(d) The Hilbert-Schmidt estimate is given by

ÔHS = {
1

det(A)A if det(A) 6= 0
any O ∈ SO(2) o.w.

.

(e) Calculate θ̂HS from ÔHS.

Prob: Generate a noisy image Y for θt = 60deg. Use this algorithm to compute the H-S
estimate, θ̂HS , from Y .
Remark: If pi = 1/M for all i, then θ̂HS represents the ”mean” of θi’s with respect to
the Hilbert-Schmidt metric.

8. Consider an extension of Problem 12 in Chapter 2 as follows. Let v(n) ∈ IR3 be the state
variables and y(n) be the observations, satisfying the equations,

v(n) = (I −A)v(n− 1) + W1

y(n) = Bv(n) + W2

where W1,W2 are the Gaussian vectors with zero mean and σ2
1I, σ2

2I covariances, respec-
tively. A is a skew-symmetric matrix with entries (+or−)0.1. Let v1 be Gaussian with
mean [1 1 1]T and covariance σ2

1I. Choose σ1 = σ2 = 0.1. Matrix B is given by

B =




1 0.1 0.5
−0.3 2 1.0
0.01 0.5 2.5


 .

(a) For n = 2, . . . , 5 generate a sequence of v(n)’s.

(b) Using v(n)’s generate the observations y(n)’s.

(c) Derive the discrete Kalman filter formulas for conditional mean and conditional co-
variance estimates. Use these formulas to estimate the conditional mean and covari-
ances for v(5).

9. Write a matlab program to find the fixed-point(s) of the following function using simple
iterations:

gp(x) =
1
p

(
(p− 1)x +

78.8
x

)
,

for (i) p = 1.5, and (ii) p = 2.0; Use x1 = 9 for the first case and x1 = 12 for the second
case. For both cases tabulate your results according to:

iter (k) xk ∆xk = xk+1 − xk
∆xk

∆xk−1

∆xk
(∆xk−1)2

1
2 . . .

Also, plot the values gp(xk) versus k. Based on these results state the order of convergence
for the two cases.

Run your program form p = 0.5 and verify that it does not converge.



76 CHAPTER 3. NON-LINEAR STATISTICAL METHODS

10. In the case of Newton-Raphson and Secant methods for root finding, the sequences con-
verge to a root only linearly if that root has a multiplicity greater than one. For roots
with multiplicity greater than one, Newton-Raphson satisfies the equation

Ei+1 ∼ KEi, Ei = |xi − xi−1| and K =
m− 1

m
,

when m is the multiplicity of the root. Write a matlab program to find the multiplicity of
root x = −0.5 of the polynomial

x5 − 4.5x4 + 4.55x3 + 2.675x2 − 3.3x− 1.4375 .

11. Use the bracketing methods (Bisection and Secant) to find the roots of the functions:

(a) x2 − 78.8. Use 0 and 10 as the starting points.
(b) x3 − 12x2 + 48x− 64. Use x1 = 1.5 and x2 = 5.0 as the starting boundary points.

Plot the sequences for all cases.

12. Using Newton-Raphson’s method solve for the minimizer of the cost function F (x) =
‖y −Ax‖2

2, where

A =




3 3 3 1
2 1 2 1
1 3 3 1
3 2 2 3


 , y =




52
28
44
48


 .

13. Solve the above problem using Gauss-Seidal-Newton’s method.

14. Use Newton-Raphson’s method to solve for the roots of the function

f(x, y) = [
ye−x − 2

x2 + y − 4
] .

Choose [x y] = [1 1] as the starting point.

15. Solve for the maximizer of F using the sequential grid-search where

F (x1, x2, x3) = exp(−
3∑

i=1

(xi − 1
i
)2) .

16. Let X1, X2, . . . , Xn be independent and identically distributed samples from a logistic
distribution with the probability density function

f(x|θ) =
exp(−(x− θ))

(1 + exp(−(x− θ)))2
.

Given the values of X1, X2, . . . , Xn, our goal is to find the maximum likelihood estimate
(MLE) of θ, using the following steps:

(a) Derive an expression for the log likelihood function

l(θ) =
n∑

i=1

log(f(Xi|θ)) ,

such that the MLE is given by θ̂ = argmaxθ l(θ).
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(b) Find the expression for l̇(θ), the derivative of l with respect to θ. Use Newton-Raphson
method to find a root of l̇(θ). Call it θ̂.

(c) Verify that l̈(θ̂) < 0.

Download a sample of X from the class website.

17. Let the random variables X1, X2, . . . , Xn be independent and identically distributed ac-
cording to the probability density function:

f(x) =
1

Γ(p)
exp(−x)xp−1, x ≥ 0 .

Our goal is to estimate the unknown value p given the observed values of X1, . . . , Xn, using
the maximum likelihood criterion. The likelihood of p is given by:

f(x1, x2, . . . , xn|p) =
n∏

i=1

f(xi|p)

=
1

Γ(p)n
exp(−

n∑

i=1

xi)(x1x2 . . . xn)p−1

=
1

Γ(p)n
exp(−a)bp−1 , where a =

n∑

i=1

xi, b =
n∏

i=1

xi .

So the maximum likelihood estimate (MLE) of p is given by:

p̂ = argmax
p

(
1

Γ(p)n
exp(−a)bp−1) = argmax

p
(−n log(Γ(p)) + (p− 1) log(b)) .

Find the MLE of p for the following data:

n = 10, X = [2.06 2.83 4.84 3.89 8.74 6.32 3.67 7.03 7.16 3.57] .

18. For the multinomial example studied in the class, estimate the parameter θ using the EM
algorithm for the observation (x1, x2, x3, x4) = (125, 18, 20, 30).

19. Consider the model where Xi’s are independently distributed as

Xi ∼ θg(x) + (1− θ)h(x) ,

where g and h are known probability densities. Our goal is to find MLE of θ given the
observations (x1, x2, . . . , xn). Derive an EM algorithm using the following steps:

(a) Introduce the variables Z1, Z2, . . . , Zn, where Zi indicates from which density Xi has
been drawn. (That is, Zi = 1 or 0. If Zi = 1, then Xi ∼ g(x) and if Zi = 0 then
Xi ∼ h(x)).

(b) Show that the complete data likelihood can be written as:

n∏

i=1

(zig(xi) + (1− zi)h(xi))θzi(1− θ)(1−zi) .
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(c) Show that the conditional expectation of Zi is:

E[Zi|θ0, xi] =
θ0g(xi)

θ0g(xi) + (1− θ0)h(xi)
.

(d) Write down the EM algorithm for estimation of θ.

Implement this algorithm for g being N(0, 1) and h being normal N(5, 1), and the following
observations:

(0.95, 0.23, 5.45, 0.60, 5.44, 0.48, 0.49) .

20. Mixture of Gaussians: Let Y be a continuous random variable with probability density
function:

Y ∼ α1f1(y; µ1, σ
2
1) + α2f2(y; µ2, σ

2
2) ,

where f1 and f2 are two Gaussian density functions with means µ1, µ2 and variances σ2
1,

σ2
2, respectively. Also, 0 ≤ α1, α2 ≤ 1, such that α1 + α2 = 1. Given n observations of Y ,

our goal is to find maximum likelihood estimate of θ = (µ1, µ2, σ
2
1, σ

2
2, α1, α2).

We will use the EM algorithm for this estimation. Let θ(m) be the current values of the
unknown. Then, the update for θ(m+1) is given by:

α
(m+1)
l =

1
n

n∑

i=1

P (l|θ(m), Yi)

µ
(m+1)
l =

∑n
i=1 YiP (l|θ(m), Yi)∑n
i=1 P (l|θ(m), Yi)

σ
(m+1)
l =

√∑n
i=1(Yi − µ

(m+1)
l )2P (l|θ(m), Yi)∑n

i=1 P (l|θ(m), Yi)

where

P (l|θ(m), Yi) =
α

(m)
l fl(Yi; µ

(m)
l , (σ(m)

l )2)
∑2

l=1 α
(m)
l fl(Yi; µ

(m)
l , (σ(m)

l )2)
.

Download two datasets from the class website to apply to this problem. For each data:

(a) Plot a histogram of the data using the hist function in matlab.

(b) Using some initial values guessed from the histogram, apply EM algorithm to estimate
the unknown parameters.

(c) Plot the evolution of the observed data log-likelihood function versus the iteration
index. The observed data log-likelihood function is:

n∑

i

log
(
α1f1(Yi; µ

(m)
1 , (σ(m)

1 )2) + α2f2(Yi; µ
(m)
2 , (σ(m)

2 )2)
)

.

3.10 References

The material presented in this chapter is taken from the texts [9, 5].



Chapter 4

NUMERICAL INTEGRATION

4.1 Introduction

Integration is fundamental to statistical inference. Evaluation of probabilities, means, variances,
and mean squared error can all be thought of as integrals. Very often it is not feasible to solve for
the integral of a given function via analytical techniques and alternative methods are adapted.
In situations where the approximate answers are acceptable, the numerical techniques can be
applied. In this chapter we will study some techniques for numerically approximating integrals
of real valued functions. These numerical techniques for integration are also often referred to as
quadrature methods.

To understand these numerical techniques, we start with a discussion of Riemann integral.
Consider the definition of Riemann Integral of a function f(x) on an interval [a, b]. Divide
[a, b] into n-disjoint intervals ∆xi, such that ∪i∆xi = [a, b] and {∆xi} is called a partition P of
[a, b]. The mesh of this partition is defined to be the largest size of sub-intervals, mesh(P ) =
maxi|∆xi|. Define a finite sum,

Sn =
n∑

i=1

f(xi)∆xi ,

where xi ∈ ∆xi is any point. If the quantity limmeshP↓0 Sn exists, then it is called the integral
of f on [a, b] and is denoted by

∫ b
a f(x)dx. This construction demonstrates that any numerical

approximation of
∫ b
a f(x)dx will have two features: (i) some selection of samples points which

partition the interval, and (ii) a finite number of function evaluations on these sample points.

4.2 Quadrature Integration

Our goal is to approximate
∫ b
a f(x)dx by using evaluations of f at some sample points, in such

a way that more samples imply more accuracy. To simplify the discussion, in this chapter we
will restrict to scalar-valued functions of scalar variables.

The underlying idea is to approximate f by a simple function which can be easily integrated
on [a, b] and which agrees with f on the sampled points. The technique of finding a smooth
curve passing through a set of points is also called curve fitting. The most common technique is
to sample n + 1 points and find an order-n polynomial passing through those points. Then, the
integral of f over that region (containing n+1-points) can be approximated by the integral of the
polynomial over the same region. Given n+1 sample points there is a unique polynomial passing

79
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through these points, though there are several methods to obtain it. We will use the Lagrange’s
method to find this polynomial, which we will call Lagrange’s interpolating polynomial.

4.2.1 Basic Formulation

If we try to fit a polynomial to the sample points over the whole interval [a, b] we may end up with
a high order polynomial which itself might be difficult to integrate. Therefore, to start with, we
focus on a smaller region in [a, b], lets say [xk, xk+n], containing the points xk, xk+1, . . . , xk+n.
Let Pk+i ≡ (xk+i, f(xk+i)) be the pairs of the sampled points and the function values; they
are called knots. Let pk,k+n(x) denote the polynomial of degree less than or equal to n that
interpolates Pk, Pk+1, . . . , Pk+n. With this notation, our goal is the following

Given Pk, . . . , Pk+n find the polynomial pk,k+n(x) such that

pk,k+n(xk+i) = f(xk+i), 0 ≤ i ≤ n .

To understand the construction of pk,k+n(x) first we look at some examples for small values of
n.

1. In case of n = 0, that is, given only one point Pk, the only choice is a constant function,
pk,k(x) = f(xk).

2. In case of n = 1, we are given Pk and Pk+1, pk,k+1(x) is a first order polynomial (or a
straight line) passing through these two points. The equation of a straight line passing
through Pk and Pk+1 is given by:

pk,k+1(x) = f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk)

= f(xk)
(

x− xk+1

xk − xk+1

)
+ f(xk+1)

(
x− xk

xk+1 − xk

)

3. Extending these ideas to an arbitrary value of n, the polynomial takes the form

pk,k+n(x) =
n∑

i=0

f(xk+i)Lk+i(x), where Lk+i(x) =
n∏

j=0,j 6=i

(x− xk+j)
(xk+i − xk+j)

.

Notice that Lk+i(x) =





1, x = xk+i

0, x = xk+j , j 6= i
else, in between

. Therefore, pk,k+n(x) satisfies the re-

quirement that it should pass through the n + 1 knots and is an order-n polynomial.

The basic idea is to select n-adjacent points and interpolate them with n-the order polynomial.
f(x), over the region [xk, xk+n], is now approximated by pk,k+n(x) for the purpose of numerical
integration.

f(x) ∼ pn(x) = f(xk)Lk(x) + f(xk+1)Lk+1(x) + . . . + f(xk+n)Lk+n(x) ,

where Lk+i(x) =
∏n

j=0,j 6=i
(x−xk+j)

(xk+i−xk+j)
. We will now approximate

∫ xk+n

xk
f(x)dx by the quantity∫ xk+n

xk
pk,k+n(x)dx.

∫ xk+n

xk

f(x)dx ∼
∫ xk+n

xk

pk,k+n(x)dx
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= f(xk)
∫ xk+n

xk

Lk(x)dx + f(xk+1)
∫ xk+n

xk

Lk+1(x)dx + . . . + f(xk+n)
∫ xk+n

xk

Lk+n(x)dx

= wkf(xk) + wk+1f(xk+1) + . . . + wk+nf(xk+n) ,

where the weights are obtained by integrating the Lagrange’s polynomials according to

wk+i =
∫ xk+n

xk

Lk+i(x)dx .

We will calculate these weights to derive a family of numerical integration techniques but in
a simplified setup. We will assume that the sample points xk, xk+1, . . ., are uniformly spaced
with the spacing h > 0. Any point x ∈ [xk, xk+n] can now be represented by x = xk + sh,
where s takes values 1, 2, 3, . . . , n at the sample points and other values in between. With this
assumption the Lagrange polynomials and the evaluation of the weights simplify:

Lk+i(xk + sh) =
n∏

j=0,j 6=i

(s− j)
(i− j)

Changing the variable of integration from x to s using x = xk + sh and dx = hds, we obtain
∫ xk+n

xk

f(x)dx ∼
n∑

i=0

f(xk+i)
∫ n

0
Lk+i(xk + sh)hds .

So the weights are now given by

wk+i = h

∫ n

0
Lk+i(xk + hs)ds . (4.1)

The polynomials Lk+i(s) can be evaluated and integrated before-hand resulting in some well-
known integration rules such as trapezoidal, Simpson’s etc. The basic difference between these
methods is the order of the polynomial chosen (or the number of knots grouped together) and
the corresponding region of integration. Following is a table for the interpolating polynomials:

n Lk+1(xk + hs)
1 Lk = s

Lk+1 = 1− s

2 Lk+0 = 1
2(s2 − 3s + 2)

Lk+1 = 1(s2 − 2s)
Lk+2 = 1

2(s2 − s)
3 Lk+0 = −1

6 (s3 − 6s2 + 11s− 6)
Lk+1 = 1

2(s3 − 5s2 + 6s)
Lk+2 = −1

2 (s3 − 4s2 + 3s)
Lk+3 = 1

6(s3 − 3s2 + 2s)
Lagrange polynomials for uniform spacing and different values of n.

Given these polynomials, we can choose different values of n and compute the weights for
numerical integration.

1. For n = 0, the weight is

wk = h

∫ 0

0
Lk(s)ds = 0 .
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2. For n = 1, the weights are given by

wk = h

∫ 1

0
Lk(s)ds

= h

∫ 1

0
sds =

h

2

Similarly,

wk+1 = h

∫ 1

0
Lk+1(s)ds

= h

∫ 1

0
(1− s)ds =

h

2

The integral value is given by
∫ xk+1

xk

f(x)dx ∼ h

2
(f(xk) + f(xk+1)) .

This approximation is called the Trapezoidal rule, because the integral is equal to the
area of the trapezoid formed by the two knots.

3. For n = 2, the weights are given by

wk = h

∫ 2

0
Lk(s)ds

= h

∫ 2

0

1
2
(s2 − 3s + 2)ds =

h

3

wk+1 = h

∫ 2

0
Lk+1(s)ds

= h

∫ 2

0
(s2 − 2s)ds =

4h

3

wk+2 = h

∫ 2

0
Lk+2(s)ds

= h

∫ 2

0

1
2
(s2 − s)ds =

h

3

The integral value is given by
∫ xk+1

xk

f(x)dx ∼ h

3
(f(xk) + 4f(xk+1) + f(xk+2)) .

This rule is called the Simpson’s 1/3 rule.
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4. For n = 3, we obtain Simpson’s-3/8 rule given by
∫ xk+3

xk

f(x)dx ∼ 3h

8
(f(xk) + 3(f(xk+1) + f(xk+2)) + f(xk+3)) . (4.2)

A variation of this technique results in many different formulas. Instead of selecting some samples
and integrating over the corresponding region, some sample points from the neighboring intervals
can also be utilized to improve accuracy. For example, to integrate over [xk, xk+1], sample xk−1

and xk+2 are utilized. This results in central cubic rule:
∫ xk+1

xk

f(x)dx ∼ h

24
(−f(xk−1) + 13(f(xk) + f(xk+1)− f(xk+2)) . (4.3)

4.2.2 Composite Rules

So far we have derived integration rules for sub-intervals of [a, b], the interval which we are
interested in. Considering the whole space, we will divide it into n sub-intervals of equal width.
We will utilize a sliding window on [a, b] by including only a small number of these sub-intervals
at a time. That is,

∫ b

a
f(x)dx =

N/n∑

k=0

∫ xk+n−1

xk

f(x)dx , (4.4)

where each of the integrals on the right side can be approximated using the basic rules derived
earlier. The summation of basic rules over sub-intervals to obtain an approximation over [a, b]
gives rise to composite rules. We will discuss two such composite rules for a uniform spacing
of h between the sampled points, x0 = a, x2, x2, . . . , xn = b:

1. Composite Trapezoidal Rule: The numerical approximation formula is given by:

∫ b

a
f(x)dx ∼ T [h] = h

(
f(a) + f(b)

2
+

n−1∑

i=1

f(xi)

)
. (4.5)

The error is this approximation is given by

−1
12

h2f ′′(ξ)(b− a), for ξ ∈ (a, b) .

2. Composite Simpson’s-1/3 Rule: To obtain a composite Simpson’s-1/3 rule the number
of samples n + 1 should be odd, or the number of intervals should be even. The integral
approximation is given by

∫ b

a
f(x)dx ∼ S1/3[h] =

h

3


f(a) + f(b) + 4

∑

i odd
f(xi) + 2

∑

i even
f(xi)


 . (4.6)

The error associated with this approximation is given by

−1
90

f (iv)(ξ)(b− a)h4, for ξ ∈ (a, b) .
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4.2.3 Richardson’s Improvement Formula

We have derived an approximation to the integral
∫ b
a f(x)dx base on some number of samples

of f taken h-distance apart. Let

Q =
∫ b

a
f(x)dx .

and F [h] be an approximation computed using h-spacing. Then,

Q = F [h] + Chn + O(hm) , (4.7)

where C is a constant and m > n. The term O(h) roughly implies that O(h)
h is bounded

and, hence, O(h) goes to zero at least linearly as h goes to zero. Clearly, O(hm) goes to zero
faster than O(hn) as h goes to zero. In other words, O(hn) is a bigger error term than O(hm).
Richardson’s formula is useful in the situations where there is a separation between n and m in
Eqn. 4.7. It eliminates the error term Chn by evaluating Eqn. 4.7 for two different values of h
and mixing the results appropriately.

Assume that Eqn. 4.7 is evaluated for two values of h: h1 and h2. Let h2 > h1 and h2
h1

= r
where r > 1. For the sample spacing given by h2 or rh,

Q = F [rh1] + Crnhn
1 + rmO(hm

1 )F [rh1] + Crnhn
1 + O(hm

1 ) (4.8)

because since r is constant rmO(hm) is still O(hm). Multiplying Eqn. 4.7 by rn and subtracting
from it the Eqn. 4.8, we obtain,

rnQ−Q = rnF [h1]− F [rh1] + O(hm
1 ) .

Rearranging,

Q =
rnF [h]− F [rh]

rn − 1
+ O(hm) . (4.9)

The first term on the right can now be used as an approximation for Q with the error term given
by O(hm). This removal to Chn from the error using two evaluations of f [h] at two different
values of h is called Richardson’s Improvement Formula. This result when applied to
numerical integration is called Romberg’s Integration.

We will analyze Romberg’s Integration in the context of composite trapezoidal rule. Re-
member that the error term in the composite trapezoidal rule is given by

C1h
2 + C2h

4 + C3h
6 + . . . .

For a h-spaced sampling of the interval [a, b], the composite trapezoidal approximation is

T [h] = h

(
f(a) + f(b)

2
+

n−1∑

i=1

f(xi)

)
.

Let h2 = 2h be the other spacing for applying Richardson’s improvement formula, i.e. r = 2.
Then, according to the improvement formula, the result, denoted by T1[h], is given by

T1[h] =
4T [h]− T [2h]

3
. (4.10)
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It can be shown that the resulting expression for T1[h] is identical to the composite rule for
Simpson’s-1/3 rule. T [2h] can be calculated first and then the more accurate evaluation is
computed recursively using,

T [h] =
1
2
(T [2h] + 2h

∑

i odd
f(xi)) . (4.11)

For the first improvement formula, T1[h], the error is a polynomial with the leading term h4.
This idea of utilizing improvement to remove the leading term in the error can be carried further
by evaluating T1[h] for two different values of h and applying the improvement formula again. In
general, for the ith-column the formula involves two entries from the previous column according
to

Ti[h] =
4iTi−1[h]− Ti−1[2h]

4i − 1
.

This results in the Romberg’s integration table:

h T [h] T1[h] T2[h] T3[h]
h0 T [h0]

h0/2 T [h0/2] T1[h0/2]
h0/4 T [h0/4] T1[h0/4] T2[h0/4]
h0/8 T [h0/8] T1[h0/8] T2[h0/8] T3[h0/8]

O(h2) O(h4) O(h6) O(h8)

The accuracy associated with these approximations increases as we move from left to right.
Romberg’s table is suitable for numerically approximating an integral when the desired accuracy
is specified. In each row, the spacing is reduced by half so that the approximation can be obtained
in a recursive way from the previous row via Eqn. 4.11. Once the first column is computed, the
other columns utilize those values directly without requiring to compute the function samples
any more.

4.2.4 Non-Uniform Spacing

So far the integration formulas we have derived assumed that the function samples are ob-
tained at equal spacing. If the function behaves differently in different regions of [a, b] it seems
reasonable to choose appropriately different spacings in those regions. There are types of for-
mulas which involve non-uniform spacing: (i) in which the spacing is non-uniform but fixed
independent of the function to be integrated, and (ii) in which the spacing changes according
to the behavior of the function over sub-regions of [a, b]. The first set of methods are called
Gauss Quadrature methods, while the second set comes under the Adaptive Quadrature
methods.

We start with a discussion on Gauss quadrature methods. At first, we consider the inte-
gration of a given function f on the interval [−1, 1]. The goal is to determine n-sample points
(x1, x2, . . . , xn) and n weights (w1, w2, . . . , wn) such that the integral value is approximated
by ∫ b

a
f(x)dx ∼ w1f(x1) + w2f(x2) + . . . + wnf(xn) . (4.12)

Since there are 2n unknowns, we need 2n equations to solve for them. We obtain these 2n
equations by imposing a constraint that the sample points and the weights should be chosen in
such a way that the result in Eqn. 4.12 is exact for f which are polynomials of order 2n− 1 or
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less. In other words, Eqn. 4.12 should be exact for the polynomials f = 1, x, x2, . . . , x2n−1,
and their linear combinations. Substituting for these f = xi, 0 ≤ i ≤ 2n − 1, we obtain 2n
equations of the kind

w1x
i
1 + w2x

i
2 + . . . + wnxi

n =
∫ 1

−1
xidx .

This is a system of 2n non-linear equations involving 2n unknowns.
To illustrate the solution of these non-linear equations consider an example for n = 2. In

this case there are four equations involving four unknowns (x1, x2, w1, w2):

w1 + w2 = 2
w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 =

2
3

w1x
3
1 + w2x

3
2 = 0

To solve these equations, we argue that the two points x1 and x2 must be symmetrically located
in the interval [−1, 1], since this formula will apply to a general function f . We have preference
of one side over another. Similarly, if x1 and x2 are symmetric with respect to zero, the weights
associated with them w1 and w2 must also be equal. With the assumptions, we can easily solve
for the unknowns obtaining:

x1 = − 1√
3
, x2 =

1√
3
, w1 = w2 = 1 .

Hence the 2-point Gauss quadrature formula is

∫ 1

−1
f(x)dx = f(− 1√

3
) + f(

1√
3
) . (4.13)

This formula is exact for polynomials of the order three or less.
Similarly, the 3-point Gauss quadrature formula is given by

∫ 1

−1
f(x)dx =

1
9

(
5f(−

√
0.6) + 8f(0) + 5f(

√
0.6in)

)
. (4.14)

This formula is exact for the polynomials of the order five or less. The sample points for
n = 4 are given by ±0.861136 and ±0.339981 with the weights given by 0.347854 and 0.652145,
respectively.

Remarks:

1. The sample points, xi’s, are located symmetrically around zero in [−1, 1].

2. The density of Gaussian sample points is greater near the end points−1 and 1, as compared
to the the middle.

3. The weights wi’s are all positive.

4. The sample points for the n-point rule, {xi}n
i=1, are not a subset of the sample points for

the (n + 1)-point rule, {yi}n+1
i=1 .



4.2. QUADRATURE INTEGRATION 87

To extend the Gauss quadrature formulas to arbitrary intervals [a, b], we use the transfor-
mation

y = a +
b− a

2
(x + 1) ,

which transforms [−1, 1] to [a, b] and dy = b−a
2 dx. Hence,

∫ b

a
f(y)dy =

∫ 1

−1
f(a +

(b− a)
2

(x + 1))
b− a

2
dx =

b− a

2

∫ 1

−1
f(a +

b− a

2
(x + 1))dx

Using Gauss quadrature formula, this becomes

b− a

2
(w1f(y1) + w2f(y2) + . . . + wnf(yn)) , (4.15)

where yi = a + b−a
2 (xi + 1), for xi’s as derived earlier.

4.2.5 Choosing a Method

We have discussed a number of techniques for approximating an integral on a compact interval
[a, b]. Given a specific situation of requiring numerical integration which technique is most
suitable? The answer to that question depends upon two things: in what form the information
is provided to us and what is the ultimate concern in approximation. Based on these points an
appropriate technique can be selected as summarized below:

1. If the number of sample points (given by n) is specified but their locations (values) can
be chosen by the user, then Gauss quadrature formulas as most accurate. This can be
a situation where the user is limited by the number of function samples but has choice
to selecting the sample points. For the same number of samples, Gauss formula is more
accurate than the composite rules because they insist on uniform spacing.

2. If the function samples are given for a specified set of sample points then Gauss quadrature
may not apply. The user is supplied with a set of sample points and these may not coincide
with the Gauss sample points. In this situation there are two possibilities:

(a) If the given sample points are uniformly spaced then the composite rules (Trapezoidal,
Simpson’s, or their combinations) apply.

(b) If the samples are non-uniform then using Lagrange’s interpolating polynomial one
can derive the weights for the weighted sum approximation of the integral.

3. Sometimes the ultimate concern is the resulting accuracy and there is no hard limit on
the number of sample points and their values. In this case Gauss quadrature may apply
but it has the limitation that increasing n renders the old samples useless. The sample
points for different n are completely different in Gauss formulas. Therefore, Romberg’s
table is a preferred method since it uses all the previous function samples and calculates
only the other half at any value of n. So one can construct a Romberg’s table increasing
the number of rows and columns till the desired accuracy is achieved.
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4.3 Problems

1. (a) Derive Simpson’s 3
8 -rule. Recall that it is a three panel, 4-point algorithm. The

Lagrange’s interpolating polynomials for n = 3 are given in class.

(b) Evaluate
∫ 3
0 x3dx using Simpson’s 3

8 -rule. Comment on the precision of numerical
integration.

2. Consider the following two composite rules for proper integrals on [a, b]:

(a) Trapezoidal Rule:

∫ b

a
f(x)dx ∼ T [h] = h{f(a) + f(b)

2
+

n−1∑

i=1

f(xi)}

(b) Simpson’s Rule:

∫ b

a
f(x)dx ∼ S1/3[h] =

h

3
{f(a) + f(b) + 4

∑

odd i

f(xi) + 2
∑

even i

f(xi)}

Show that if T [2h] is used in Richardson’s formula to improve T [h], i.e. T1[h], the result
is S1/3[h].

3. Form the Romberg Table for
∫ 6.8
2.0 exdx starting from h0 = 1.6 and going up to h0/8.

Compare with the exact value.

4. Use 3-point Gauss quadrature formula to evaluate
∫ 2.2
1 ln(x)dx. Also, evaluate S1/3[0.3]

and compare the two results.

5. Previously, the integral
∫
SO(2) Op(O|Y )dO was evaluated using composite Trapezoidal rule.

Now use the composite Simpson’s rule to approximate the integral and compare with earlier
results.

6. Let f(x) = ex. Evaluate the integral
∫ 1
0 f(x)dx numerically using Monte-Carlo technique.

Plot the error versus the number of samples used.

7. Find a cubic spline passing through the knots (−2,−8), (0, 0), (1, 1) and (2, 8). Choose the
end-point conditions as

(a) s′′(−2) = −12 and s′′(2) = 12.

(b) Assume σ0 = σ1 and σ3 = σ2.

(c) Assume s′(−2) = s′(2) = 12.

Plot your results.

8. Estimate I =
∫ 1
0

∫ ex

1 (x + 1
y )dydx. Use 3-point Gauss quadrature for the x interval and

2-point Gauss quadrature for the y interval.

4.4 References

The material presented in this chapter is taken mainly from the textbook by Thisted [9].



Chapter 5

SIMULATING PROBABILITY
DISTRIBUTIONS

5.1 Introduction

Simulation of random variables and random processes using computers is among the fastest
growing areas of computational statistics. Many statistical techniques rely on simulating random
variables. One traditional area is the use of random numbers to sample from a population. More
recent applications include simulation of high-dimensional, complex stochastic systems that are
beyond analytical studies. In many practical situations the probability distributions are far too
complicated to analyze and often it is easier to simulate these distributions on computers and
the resulting samples can be analyzed instead. Given the faster computing and visualization
environments of recent times more and more distributions are becoming accessible through
simulations than ever before. In fact, the study of a random variable through simulations is
becoming a powerful tool in the hands of the statisticians.

In view of this importance, we spend this chapter learning techniques to simulate from some
well known distributions and summarize the emerging techniques in simulating from distribu-
tions which are continuous, discrete and perhaps a mixture of the two. It will be observed that
in most cases the generation of random variables from any distribution involves first generating
samples from a uniform density function. In fact, in most approaches there are two steps to
simulating a given distribution:

1. Generate samples from a standard uniform probability, say between [0, 1], and

2. Transform those samples appropriately to simulate the desired distribution.

We will study these two steps in the next sections.

5.2 Simulating Uniform Random Variable

How can one simulate a uniform random variable? One possibility is to tap a physical process
(temperature, wind velocity etc.) and modify the measurements to simulate randomness. Even
though the real life physical processes simulate randomness well, a drawback in this method
is the lack of knowledge about the underlying probability. Since we are not sure of the ex-
act probability model governing the physical process, it makes it hard for us to use it as a
ranodm number generator. The other idea is to use algebraic methods to generate sequences

89
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of numbers that mimic the behavior of a uniform random variable. These numbers are called
pseudorandom numbers and we will look at some common techniques for generating them.

Definition 12 A uniform pseudorandom number generator is a mapping f that, starting from
an initial value x0, generates a sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . .

Since f is computed on a computer (without the use of random number generator!!), it is a
deterministic mapping. That is, given x0 the remaining sequence is fixed everytime the sequence
is computed. Interestingly, a deterministic sequence is being utilized to simulate a random
variable. The elements of such a sequence should have the following properties:

1. The patterns between the numbers the appearing in a sequence should be minimized.

2. The correlation between the neighboring elements should be reasonably small.

3. The values should be distributed nearly uniformly over the whole the range of possible
values.

4. The sequences should have large periods, where a period is later defined to be duration
after which a sequence repeats itself.

5. There exist a set of goodness of fit tests for testing the probability distributions associated
with the obsered random variables. The elements of a pseudorandom sequence should
provide a reasonable performace in these goodness of fite tests.

Next, we study a few techniques to generate pesudorandom sequences on digital computers.

1. Congruential Generators:
A common idea in pesudorandom methods utilizes modular arithmetic to formulate the
congruential generators. First we introduce the notation for modular arithmatic. For a
positive integer m and a given number b, a is called the residue of b modulus m if

a = b− [b/m]m ,

where [·] denotes the largest integer less than the argument. For example, if m = 5 and
b = 13, then the residue of b modulus m is 3.0. We will use the notation that a is b mod
m. It can be checked that a large number of numbers have the same residue. In fact, if we
define two numbers to be equivalent if they have the same residue, then this relationship
establishes an equivalence class on the space of numbers. We will retrict ourselves to
non-negative integers, and the equivalence class for this set can be denoted by

{0, 1, 2, 3, . . . , m− 1} .

Modular arithmatic can be used to generate sequences of pseudorandom numbers in the
following way. Define the next element of the sequence is given by

xi+1 = (axi + c)modm ,

where a is called the multiplier, m is the base and c is the additive constant. The generators
based on this general formula are called linear congruential generators. If c = 0, then
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the resulting generator is called a multiplicative generator. The choice of a and m
determines the properties of the resulting sequence. We start with an initial number,
x0 ∈ {1, 2, . . . , m − 1}, called the seed of the number generator. The remaining sequence
is determined by the relation

xi+1 = (axi)modm .

It should be noted that that this relation is completely deterministic, i.e. if a number
repeats in the sequence then the following sequence also repeats. Furthermore, since the
elements of the sequence lie in the set {1, 2, . . . , m− 1}, the numbers repeat themselves if
we generate a sequence long enough. The leads to the definition of a period.

Definition 13 The period of a sequence is defined as the number of elements in the se-
quence before the sequence repeats itself.

For the base m, the maximum period of a sequence is m−1. For the same m, but different
multipliers a’s, the resulting sequences can have very different periods. For example, for
m = 31, and for a = 12, and for a = 9, we have .... therefore, the choice of a becomes
important.

Also, for some choices of a we may have some unwanted structure in the sequence. Ei-
ther the correlations between the successive numbers can be high, or there can be some
non-apparent relationship between the numbers which makes the resulting sequence not
appropriate for use in random number generators,

2. Shift-Register Geneators: This class of generators rely on high-speed implementation
of a finite-memory device, that utilizes a weighted sum of the last n elements of the series
to compute the next element. A general form can be described by the equation:

xi+1 = (w1xi + w2xi−1 + . . . + wnxi−n+1 .

The advantage of this method is that it can be implemented rather fast in hardware.

3. Lagged Fibonacci Generators

The general form of these generators is given by:

xi = xi−r · xi−s ,

where · is a binary operation defined on the set in which the xi’s take values.

We will denote a continuous uniform random variable taking values between 0 and 1 by
U [0, 1].

5.3 Simulating Other Random Variables

We will start with a discussion on simulating discrete random variables followed by a discussion
on sampling from the continuous distributions. In this chapter we will assume that we already
have a uniform random number generator available to us. We will denote a uniform random
variable taking values between 0 and 1 by U [0, 1]. Essentially, this chapter will be concerned
with transforming the numbers obtained from simulating U [0, 1] appropriately to obtain a desired
random variable.
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5.3.1 Discrete Random Variables

A discrete random variable takes only a countable number of values with pre-defined proba-
bilities. A discrete random variable is characterized by its probability mass function defined
as

P (x1) = p1

P (x2) = p2

. . .

P (xn) = pn

. . .

such that for all i, 0 ≤ pi ≤ 1, and
∑

i=1 pi = 1. Commonly used discrete random variables
are binomial, Poisson, geometric and negative-binomial. As an example, the probability mass
function of a Poisson random variable with parameter λ is given by:

pi =
exp(−λ)λi

i!
, i = 0, 1, 2, . . . .

Similarly, for a binomial random variable, with parameters (n, p), the probability mass function
is

pi =
(

n
i

)
pi(1− p)n−i .

Before we study various algorithms for simulating discrete random variables, we make the
definition of simulation precise.

Definition 14 For a given random variable, with a specified probability mass function {(xi, pi), i =
0, 1, 2, . . .}, the process of selecting a value xi with probability pi is called Simulation. If this se-
lection is performed many times, generating a sequence {Xj}, then

1
n

n∑

j=1

IXj ({xi}) → pi . (5.1)

In other words, one selects from the set of the allowed values with the associated probability.
For discrete random variables, there are at least three standard simulation techniques.

1. Inverse Transform Method:
Let X be a discrete random variable with a given probability mass function. We have to
utilize numbers generated using U [0, 1] to simulate values of X. This can be accomplished
using the following algorithm:

(a) Generate U according to U [0, 1].
(b) If U < p1

Set x = x1

else if U < p2 + p1

Set x = x2

. . .
else if U <

∑n
i=1 pi

Set x = xn

. . .
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As shown in Figure 5.1, the random variable U will take value between 0 and 1 on the
vertical axis. That value is projected to the right till it meets with a vertical bar and the
corresponding value is selected. It can be shown that the value xj is selected with proba-
bility pj . To verify that X generated according to these steps has the desired probability

x x x4 5 n−1x1

x1

x2

x2

x3

x3

x
n

x
n

p

1.0

p
1

p
2

p
1+

p
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Figure 5.1: Random sampling from a discrete probability distribution.

distribution:

P (X = xj) = P (
j−1∑

i=1

P (xi) ≤ U ≤
j∑

i=1

P (xi)) = pj

=
j∑

i=1

P (xi)−
j−1∑

i=1

P (xi) = P (xj)

This is a general technique for sampling discrete random variables. We take some examples.

(a) Geometric random variable
A random variable X is called geometric if its probability density function is given
by

P{X = i} = p(1− p)i−1, i = 1, 2, . . . .

Consider an experiment involving independent and identical trials, each resulting in
either success with probability p or failure with probability (1 − p). X denotes the
number of trials performed to reach the first success.

P{X ≤ j − 1} =
j−1∑

i=1

p(1− p)i−1 = 1− (1− p)j−1 .

Let U be distributed according to U [0, 1]. The algorithm sets X = j if
j−1∑

i=1

P{X = i} ≤ U <

j∑

i=1

P{X = i}
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1− (1− p)j−1 ≤ U < 1− (1− p)j

(1− p)j−1 ≥ 1− U > (1− p)j

In other words, set X = j if

X = min{j : (1− p)j < 1− U}
= min{j : j log(1− p) < log(1− U)}
= min{j : j >

log(1− U)
log(1− p)

}

Since U is the same random variable as 1− U ,

X = ceil(
log(U)

log(1− p)
) .

(b) Poisson random variable
X is a Poisson random variable with parameter λ if its probability mass function is
given by

P{X = i} =
exp(−λ)λi

i!
, i = 0, 1, 2, . . .

Therefore,
P{X = i + 1}

P{X = i} =
λ

i + 1
.

Using this results, the cumulative distribution function can be iteratively calculated
as

P{X ≤ j} =
j∑

i=0

λ

i + 1
.

An algorithm to simulate X using inverse transform method is given by:

i. Generate U according to U [0, 1]
ii. Set i = 0, p = exp(−λ), and F = p.
iii. If U < F , set X = i and stop.
iv. Set p = λp

i+1 , F = F + p, i = i + 1
v. Go to Step (iii).

(c) Binomial random variable
X is said to be binomial with parameters (n, p) if its probability mass function is
given by

P{X = i} =
(

n
i

)
pi(1− p)n−i .

As in the Poisson case,

P{X = i + 1}
P{X = i} =

n− i

i + 1
p

1− p
.

An algorithm to simulate X using inverse transform method is given by:

i. Generate U according to U [0, 1]
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ii. Set c = p
1−p , i = 0, pr = (1− p)n, and F = pr.

iii. If U < F , set X = i and stop.
iv. Set pr = cn−1

i+1 pr , F = F + pr, i = i + 1
v. Go to Step (iii).

Sometimes the random variable has additional structure that can be utilized to sample
in a more direct fashion. As an example consider the poisson random variable.

(d) Poisson Random Variable: This is a discrete random variable which takes values
in the set of non-negative integers with the probability given by

P (z = k) =
exp(−λ)λk

k!
,

where λ is called the rate of z.
Let ui, i = 1, 2, . . . be a sequence of i.i.d. random variables each uniform over the
interval [0, 1]. Let z be a random variable generated by the following procedure:

i. set i = 0, T = 1, z = −1.
ii. i = i + 1, z = z + 1.
iii. generate ui.
iv. T = Tui.
v. if T > e−λ go to step (b), else stop.

It can be shown that the random variable z produced with this procedure is Poisson
with parameter λ.

2. Acceptance/Rejection Method:
This method is useful in situations where we want to simulate a random variable Y and
we have a technique of simulating another random variable X. Let the probability density
functions of X and Y be given by

P{X = i} = pi, i = 0, 1, 2, . . . , P{Y = j} = qj , j = 0, 1, 2, . . . .

We will assume that there exists a constant c such that

pj

qj
≤ c, for all j for which pj > 0 .

The general algorithm for accetancerejection is given by:

(a) Simulate a value of Y .

(b) Generate U according to U [0, 1].

(c) If U < pY
qY

, then set X = Y ,
Else, return to (i)

As a first step, we have to prove that this procedure simulates X. That is, for an X
generated according to this procedure P{X = j} = pj .



96 CHAPTER 5. SIMULATING PROBABILITY DISTRIBUTIONS

3. Composition Method:
Consider n discrete random variables X1, X2, . . . , Xi, . . . , Xn, with probability mass func-
tions P

(i)
j , such that

∑
j P

(i)
j = 1, for all i. Let a random variable X has a probability

distribution given by:

Pr{X = j} =
n∑

i=1

αiP
(i)
j ,

where 0 ≤ αi ≤ 1 and
∑n

i=1 αi = 1.

Given algorithms for simulating each of the random variables X1, X2, . . . , Xn, how can
we simulate the composite variable X. Since {αi} forms a probability mass function on
{1, 2, . . . , n}, one can simulate a random value from this set according to α, call it Y .
Then, generate a value of X according to the probability mass function P (Y ).

Simulation of a composite random variable is simplified because one can perform this
process sequentially. At first, one of the individual random variable is selected according
to the weights (α) and then, conditional probability of X is identical to that of the selected
random variable, making it simple to simulate.

5.3.2 Continuous Random Variables

Continuous random variables can take uncountable number of values according a pre-defined
probability density function. There are two commonly used techniques to simulate a given
continuous random variable:

1. Inverse Transform Method: The usefulness of this method comes from the following
result:

Proposition 2 Let U be uniform in [0, 1]. If for any random variable with continuous
distribution function F we define a random variable Y according to

Y = F−1(U) ,

then the random variable Y has distribution function F .

Proof:

The probability distribution function of Y is given by

FY (a) = P{Y ≤ a} = P{F−1(U) ≤ a} .

Since F is a monotonically increasing function

F−1(U) ≤ a ⇔ U ≤ F (a)

and, therefore, FY (a) = P{U ≤ F (a)} = F (a) since U is uniform in [0, 1].

QED
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We can utilize the inverse transform method to generate a variety of random variables.
We start with the example of the exponential random variable with mean one. Its
density and distribution functions are given by

f(x) = exp(−x), x ≥ 0, F (x) = 1− exp(−x), x ≥ 0 .

To find F−1(U), let U = F (x) and solving for x provides

x = F−1(U) = − log(1− U) .

From Proposition 2, if U is uniform in [0, 1], then this x is exponentially distributed with
mean one. It should be noted that if U is uniform [0, 1] then 1−U is also a uniform [0, 1]
random variable. Therefore, to reduce computations 1− U can be replaced by U with no
change in the results. Hence, x = − log(U) is an exponential random variable with mean
one. To generate an exponential random variable with mean λ utilize x = −λ log(U).

A Gamma random variable, which is the sum of n independent exponential random
variables each with rate λ, can be generated as follows: let U1, U2, . . . , Un be independent
realizations of uniform [0, 1], the define

x = −
n∑

i=1

1
λ

log(Ui) =
−1
λ

log(
n∏

i=1

Ui) .

x is a realization of from the gamma density function.

2. Acceptance/Rejection Method: In this case we assume that we have a method for
simulating from some density function g and our task is utilize samples from g to simulate
from a given density function f . g can be fairly arbitrary except for one condition men-
tioned below. The basic idea is to simulate from g and accept the samples with probability
proportional to the ratio f/g. Let C be a constant such that

f(Y )
g(Y )

≤ C, for all Y .

Then, the simulation procedure is:

(a) Simulate Y from the density g and simulate U from uniform [0, 1].

(b) If U ≤ f(Y )
Cg(Y ) then X = Y else go to step 1.

Proposition 3 X is random variable with density f .

Proof:

Let X be the value obtained and n be the number of iterations required to reach
this value. Then,

P (X ≤ x) = P (Yn ≤ x)

= P (Y ≤ x|U ≤ f(Yn)
Cg(Yn)

)

=
P (Y ≤ x,U ≤ f(Yn)

Cg(Yn))

K
,
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where K = P (U ≤ f(Yn)
Cg(Yn)). Since Y and U are independent random variables,

their joint density function is the product of the marginals

g(y)× 1 ,

since U is uniform in [0, 1]. Therefore,

P (X ≤ x) =
1
K

∫
U≤f(Y )
Cg(Y )

∫

Y≤x
g(Y )dY dU

=
1
K

∫ x

−∞
(
∫ f(Y )

Cg(Y )

0
dU)g(Y )dY

=
1
K

∫ x

−∞

f(Y )
Cg(Y )

g(Y )dY

=
1

CK

∫ x

−∞
f(Y )dY

For x → ∞, the left side goes to 1 and the integral on the right side also goes
to 1. Therefore, CK = 1 and

P (X ≤ x) =
∫ x

−∞
f(Y )dY .

Therefore, X is random with probability density f .

QED

For a given value of Y we accept Y by generating a uniform U and comparing U with
f(Y )

Cg(Y ) . This is also called accepting Y with probability f(Y )
Cg(Y ) . Each iteration in the loop

involves independent realizations, we can compute the probability of accepting Y as X
according to

P (U ≤ f(Y )
Cg(Y )

) = K =
1
C

.

If C is large then the process, of generating samples from f using this method, will be
slow.

Next we illustrate the use of acceptance/rejection method by generating sample from
standard normal density function. As a first step we will simulate from the density
function given by

f(x) =
2√
2π

exp(
−x2

2
), x ≥ 0 .

Notice, this is the density function associated with x = |z|, where z is the standard normal
random variable. Also, we will assume that we have tools to sample from the standard ex-
ponential density function which becomes our g for the above discussion (g(x) = exp(−x)).
To bound the ratio of f to g with a constant,

f(x)
g(x)

=
√

2π exp(−(x2 − 2x)
2

)

=

√
2e

π
exp(−(x− 1)2

2
)

≤
√

2e

π
= C
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and
f(x)

Cg(x)
= exp(−(x− 1)2

2
) .

To generate a random variable with density f the following algorithm is used:

1. Generate Y , an exponential random variable with mean 1, and U , a uniform [0, 1] random
variable.

2. If U ≤ exp(−(Y−1)2

2 ) set X = Y , otherwise return to (a).

Now,

U ≤ exp(−(Y − 1)2

2
)

− log(U) ≥ (Y − 1)2

2

Since − log(U) is exponential with rate 1 we can re-formulate as follows:

1. Generate Y1 and Y2, two samples from exponential random variable with mean 1.

2. If Y2 ≥ (Y1−1)2

2 set X = Y1, otherwise return to (a).

Having generated a random variable which is the absolute value of a standard normal, we can
generate sample from standard normal according to the following algorithm.

1. Generate U a uniform random variable between [0, 1] and generate X according to the
algorithm described above.

2. If U ∈ (0, 1
2 ] set Z = X, else set Z = −X.

Polar Method: There is another method used popularly to generate samples from standard
normal density. It is also called Box-Muller method. The principle behind this method is the
following:

if X and Y are independent and standard normal random variables then for

θ = tan−1(
Y

X
), R =

√
(X2 + Y 2)

θ is uniform in [0, 2π] and R2 is exponential with mean 2.

To reverse this result, if U1 and U2 are uniform in [0, 1] then for

R = (−2 log(U1))1/2, θ = 2πU2 ,

and
X = R cos(θ), Y = R sin(θ)

X and Y are independent samples from standard normal density. It has a drawback that it
involves computing trigonometric functions which is always computationally expensive. This
method can be modified in the following way to avoid computing sines and cosines.

If U1 and U2 are uniform in [0, 1] then

V1 = 2U1 − 1, V2 = 2U2 − 1 ,
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are uniform in [−1, 1]. They may or may not lie in the circle of radius 1 and centered at (0, 0).
Generate the pair (V1, V2) until it lies in this circle and let (R̄, θ̄) be the polar coordinates of this
pair. It can be shown that R̄2 is uniform in [0, 1] and θ̄ is uniform in [0, 2π]. For these quantities

sin(θ̄) =
V2

R̄
, cos(θ̄) =

V1

R̄
.

Therefore, if U is a uniform [0, 1] random variable independent of θ̄, then

X = (−2 log(U))1/2 V1

R̄

Y = (−2 log(U))1/2 V2

R̄

are independent sample from standard normal density. Since R̄2 is uniform in [0, 1] and inde-
pendent of θ̄ it can be used in place of U . Hence X and Y can be generated according to the
equations,

X = (−2 log(R̄2))1/2 V1

R̄

Y = (−2 log(R̄2))1/2 V2

R̄

An algorithm to implement these equations to generate independent samples from standard
normal is:

1. Generate independent, uniform [0, 1] random variables.

2. Set V1 = 2U1 − 1, V2 = 2U2 − 1 and S = V 2
1 + V 2

2 .

3. If S > 1, return to (a).

Else T =
√

−2 log(S)
S and X = TV1 and Y = TV2.

To generate Y , a normal random variable with mean µ and standard deviation σ, generate
X a standard normal random variable and set

Y = σX + µ .

5.4 Simulating Stochastic Processes

We can extend the ideas associated with simulating random variables to simulate stochastic
processes. To start with, we briefly introduce the notion of stochastic process. So far we have
dealt only with real-valued, i.e. scalar, random variables but now we extend to a collection of
random variables.

Definition 15 A stochastic process is an indexed collection of random variables

Most often, the indexing variables is time. For example let X be a stochastic process, indexed
by time, such that Xt is a real-valued random variable. For a fixed time t, Xt is just a random
variable. Each realization, or sample, of Xt is now a function of time, also called a sample path.
To simulate a stochastic process is same as to generate a sample path. In general, the indexing
can be according to other variables, such as spatial location, frequency, wavelength, etc. At least
in the start, we will restrict ourselves to time-indexed, scalar-valued stochastic processes.
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In case the indexing variable t is continuous, the stochastic process called a continuous-time
process; else, it is called a discrete-time process. Similarly, if the space in which Xt takes values
is continuous, then the process is called a continuous-valued process. Otherwise, it is called
a discrete-valued process. The ideas preserned in Chapter 1 should convince us that one can
implement only discrete-time, discrete-valued processes on a digital computer. However, a study
of continuous processes is important in many regards, including the development of properties
of discrete processes. There are two main kinds of continuous stochastic processes: (i) ones with
smooth (e.g. continuous) samples paths, and (ii) ones with discontinuities, or jumps, in their
sample paths. In this section, we will study the two simplest, and most famous, examples of
each category.

5.4.1 Random Walk and Wiener Process

A random walk is one of the simplest examples of a discrete time, discrete state stochastic
process. The process transitions only at times separated by a unit time T , and takes values only
in the set of integer multiples of s. At every transition time nT , for n = 1, 2, . . . ,, toss a coin
and depending on the outcome, add +s for a head or −s for a tail to the current value of the
process. It is rather easy to simulate this process, and next we look at a way of analyzing it.

Let us assume that we start with process at time zero with the process value being zero. At
a transition time nT , the value of of the process is X(nT ) = ks− (n− k)s where the number of
heads in n tosses is k. In other words,

X(nT ) = ms, where m = (2k − n) or k =
m + n

2
.

Since k ∈ {0, 1, 2, . . . , n}, the possible values for m are {−n,−n + 1, . . . , 0, . . . , n}. The proba-
bility that X(nT ) = ms is given by

Pr{X(nT ) = ms} =
(

n
m+n

2

)
(
1
2
)n ,

assuming a fair coin. Given this probability, one can analyze this random walk for any time nT .
For example, one can easily compute the mean of X(nT ), or the variance of X(nT ), and so on.

Another interpretation of X(nT ) is given by the following:

X(nT ) = X1 + X2 + . . . + Xn , (5.2)

where Xis are i.i.d random variables. Each Xi takes on the value either +s or −s with equal
probabilities; it is easy to show that E[Xi] = 0 and var(Xi) = s2. X(nT ) is a sum of independent
and identically distributed random variables with mean zero and variance s2. Therefore, X(nT )
is a random variable with mean zero and variance ns2.

An interesting case results when we look at the following limiting situation. Let the transition
times get closer to each other by setting T → 0, and the transition sizes get smaller by setting
s → 0. We require that the transition size gets smaller at a rate slower than the rate of decrease
in step size; this is done by setting s = α

√
T for some position number α. In the limit, the

random walk becomes a continuous time, continuous state process with the following properties.
Let t = nT denote the time index of the process; t is a continuous random variable in the
limiting case. Consider the random process at time t. X(t), through its relation with X(nT ),
has the following statistics:

E[X(t)] = E[X(nT )] = 0

var(X(t) = var(X(nT )) = ns2 =
t

T
α2T = α2t .
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Figure 5.2: Simulations of Markov random walk for different parameters. The lower panels,
plotted for α = 1, show that as T gets smaller, the sample path looks increasingly continuous.
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Figure 5.3: Pictorial illustration of increasing variances of Xt as t increases.
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That is, X(t) is a continuous random variable with mean zero and variance αt. What is the
nature of this random variable. Applying central limit theorem in Eqn. 5.2, we can approximate
X(t) to be a Gaussian random variable for a large n which is the case in the limiting situation.
Therefore, X(t) ∼ N(0, α2t). This limiting process is called the Wiener process. For α = 1, it
is called the standard Wiener process. Some properties of a Wiener process can be established
directly from its definition:

1. If (t1, t2) and (t3, t4) are non-overlapping intervals, then X(t2)−X(t1) and X(t4)−X(t3)
are statistically independent random variables.

2. The increment X(t2) −X(t1) is independent of the value X(t1) or any past value of the
process. In fact, this increment is a Gaussian random variable with mean zero and variance
α2(t2 − t1).

3. For any two times t1 < t2, we have:

E[X(t1)X(t2)] = E[X(t1)(X(t2)−X(t1) + X(t1))]
= E(X(t1)2] + E[X(t1)(X(t2)−X(t1))]
= α2t1 + E[X(t1)]E[X(t2)]
= α2(t1) .

It is interesting to note that the variance of a Wiener process grows linearly with time,
although variance is a second order statistic. Shown in Figure 5.3 are some sample paths of a
standard Wiener process, and a linear increase in the variance of X(t) is apparent from these
pictures.

There is a larger family of sample-path continuous stochastic processes whose simplest ex-
ample is a Wiener process. These are called diffusion processes. A general diffusion process is
given by:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t) , (5.3)

where µ and σ are called the infinitesimal means and variances, respectively, of the diffusion
process. With appropriate smoothness conditions on µ and σ, one show that the solution X(t),
of this equation, is a sample-path continuous, Markov process with probability one. There are
several interesting properties associated with diffusion processes, and they play an important
role in statistical inferences. In particular, diffusion processes can used to generate samples
from complicated probability distributions within the framework of Markov chain Monte Carlo
methods, a topic studied later in Chapter 7.

5.4.2 One-Dimensional Poisson Process

While a Wiener process is a classical example of a sample path continuous process, a Poisson
process represents the discrete-state processes. We start with a simple homogeneous Poisson
process and later extend to heterogeneous processes.

Assume that we are interested in the occurrences of an event, and that event occurs at
random times. This event, for example, can be an automobile accident at a particular crossing,
or ringing of a particular telephone. We are interested in recording and modeling the times of
occurrences, also called the arrival times. The time lapses between the arrival times are called
inter-arrival times. Denote the arrival times by tis and the inter-arrival times by τis. They are
related according to:

ti = ti−1 + τi−1 . (5.4)
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In case of a homogeneous Poisson process with intensity λ, these τis are assumed to be inde-
pendent and identically distributed according to the exponential density with intensity λ, i.e.
τi ∼ λ exp(−λτ). The resulting Poisson counting process can defined as follows:

N(t) =
∞∑

i=1

1[0,t)(ti) , N(0) = 0 .

N(t) counts the number of arrivals, or the occurrences, till time t. It can be shown that on any
interval (s1, s2), the number of arrival times, i.e. N(s2)−N(s1), is given by a Poisson random
variable with mean λ(s2 − s1). That is:

Pr{N(s2)−N(s1) = k} =
exp(−λ)λk

k
.

Some additional properties that can be established from the earlier definition are as follows.

1. If (s1, s2) and (s3, s4) are non-overlapping intervals, then N(s2)−N(s1) and N(s4)−N(s3)
are statistically independent random variables.

2. The incremental count, given by the random variable N(s2) − N(s1), is independent of
the process value at s1 or any other previous time.

3. Assuming N(0) = 0, the expected value of N(t) is λt and its variance is also λt.

4. For any two times s1 < s2, we have:

E[N(s1)N(s2)] = E[N(s1)(N(s2)−N(s1) + N(s1))]
= E(N(s1)2] + E[N(s1)(N(s2)−N(s1))]
= λs1 + λ2s2

1 + λs1λ(s2 − s1)
= λs1(1 + λs2)

The simulation of a homogeneous Poisson process is straightforward. Generate τis from the
exponential density, and use Eqn. 5.4 to compute the arrival times. Shown in Figure 5.4 are
two examples of a homogeneous Poisson process with λ = 1. For each sample, the left figure
shows a histogram of values of inter-arrival times τis, and the right figure shows the evolution
of N(t) versus t. Also shown on the time axis are the arrival times tis.

A heterogenous Poisson process can be studied similarly. In this case, the intensity λ is not
fixed but a given function of time λ(t). Similar to the homogenous case, the number of arrival
times in any interval (s1, s2) is a Poisson random variable with intensity given by

∫ s2

s1
λ(t)dt.

Also, the inter-arrival times are exponentially distributed as earlier, except now the intensities
of these exponential variables are given by

∫
λ(t)dt. The properties of independent increments

and independent of arrival counts in disjoint intervals still hold. The next question is: How to
simulate a heterogenous Poisson process with a given intensity function? There are methods to
simulate such processes:

1. Pruning: For a fixed time interval [0, T ], find the maximum value of λ in that interval as

λmax = max
t∈[0,T ]

λ(t),

and simulate a homogeneous one-dimensional processes with intensity λmax. Let {ti}
be the collection of arrival times generate by this simulation. For each i, perform the
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Figure 5.4: Sample paths illustrating a homogeneous Poisson process with λ = 1. Left panels
show histograms of τis and the right panels show markers for tis and plot N(t) versus t.

following test: Keep ti as an arrival time with probability λ(ti)/λmax, and reject it with
probability 1 − λ(ti)/λmax. The set of accepted arrival times forms a realization of the
desired heterogeneous Poisson process.

2. Directly Simulating Arrival Times: Another possibility is to simulate the arrival
times tis directly using the given intensity function λ(t). The basic idea is to accumulate
intensity function over an interval till it exceeds an exponential random variable with mean
one.

5.4.3 Spatial Point Processes

Similar to one-dimensional processes, one can study occurrences of random events in higher
spaces using appropriate Poisson processes. In this section we consider a Poisson process in R2,
also called a spatial point process. We start the discussion with a homogeneous point process
with a constant intensity function λ. A point process consisting of randomly occurring points
in the plane is said to be a two-dimensional Poisson process having rate λ, if

1. the number of points in any given region of area A is Poisson distributed with mean λA;
and

2. the number of points in disjoint regions are independent.

Let O be the origin in IR2 and Ri be the i-th nearest Poisson point to O, i ≥ 1 (R0 = O). Then,
it can be shown that (πR2

i −πR2
i−1) are exponentially distributed with rate λ. By symmetry, the

respective angles of the Poisson points are independent and uniform [0, 2π]. Then, the following
algorithm simulates a two-dimensional Poisson process in a ball of radius r centered at O, C(r).

Algorithm 32 1. Generate independent exponentials X1, X2, . . . , with rate 1, stopping at

N = min{n :
X1 + X2 + . . . Xn

λπ
> r2}
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2. if N = 1, stop, there are no points in C(r). Otherwise, for i = 1, 2, . . . , N − 1, set

Ri =
√

(X1 + X2 + . . . + Xi)/λπ

3. Generate independent uniform [0, 1] random variables U1, U2, . . . , UN−1.

4. Return the N − 1 Poisson points in C(r) whose polar coordinates are (Ri, 2πUi), i =
1, . . . , N − 1.
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5.5 Problems

1. Write a matlab program to implement a uniform random number generator using a mul-
tiplicative congruential method with m = 213 − 1 and a = 17. Generate 500 numbers for
the starting point x0 = 100. Define the sequence ui = xi

m and plot a histogram to display
the results. Also, calculate the correlation of the pairs of successive number ui and ui+1.

2. Repeat Problem 2 with a = 85.

3. Write a matlab program to find the period of a random number generator for a given seed.
Find the period of the sequence generated by a multiplicative congruential generator for
m = 31, a = 7, and x0 = 19. Find the period if a is changed to 3.

4. Form a combination sequence using two multiplicative congruential generators. Generate
the first sequence of 30 numbers for m = 31, a = 3, and x0 = 9. Generate the second
sequence of 30 numbers using a = 12. Rearrange the order of the first sequence according
to the numbers in the second sequence. Find the correlation of successive pairs in the first
sequence before and after the rearrangement.

5. Simulate a two-dimensional Poisson process with λ = 0.5 on C(4).

6. Suppose it is relatively easy to simulate from the distributions Fi, i = 1, 2, . . . , n. If n is
small, how can we simulate from

F (x) =
n∑

i=1

PiFi(x), Pi ≥ 0,
∑

i

Pi = 1 .

Give a method to simulate from the distribution

F (x) =

{
1−e−2x+2x

3 0 < x ≤ 1
3−e−2x

3 1 < x < ∞ .

7. Suppose a function g is bounded in [0, 1], there are at least two simulation techniques
to approximate

∫ 1
0 g(x)dx: (i) Hit-Miss method covered in an earlier home-assignment,

and (ii) generating independent uniform [0, 1] realizations Ui and calculating 1
N

∑N
i g(Ui).

Show that though the two techniques converge to the same mean the variance in the second
case is smaller.

8. Binomial: To generate a sample from a binomial random variable (n, p), generate n
samples from a uniform random variable with values between 0 and 1. Count how many of
them are less than p. This number is a sample from binomial (n, p). Generate 100 samples
from binomial (10, 0.6) and histogram the samples.

9. Gaussian: Generate N samples of a Gaussian random variable with mean 5 and standard
deviation 2 using the polar method. Histogram these samples for N = 10, 100, 1000.

10. For poisson random variable, choose λ = 1. Generate N realizations of z and plot its
histogram for N = 100 and N = 500.

11. Monte-Carlo Integration: Let f(x) = ex. We will analyze a technique to approximate
the integral

∫ 1
0 f(x)dx numerically using Monte-Carlo technique.
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(a) Let S = 0 and i = 1.
(b) Generate u1 and u2, two samples of a uniform random variable between 0 and 1.
(c) If u2 ≤ f(u1), then S = S + 1.
(d) i = i + 1. If i < N , then go to Step 2.

S/N is the approximate value of the integral. Plot this value as a function of N up to
N = 50000.

12. Previously we have utilized the inverse transform method to sample from exponential
densities. Utilizing sampling from exponential densities how can we sample from the
following density:

f(x) = 0.2 exp(−x) + 0.4 exp(−2x) + 0.4 exp(−4x) .

f is a weighted sum of exponential densities. Following is an algorithm to generate samples
from f :

Algorithm 33 (a) Generate U , uniform random variable in [0, 1].
(b) If U ≤ 0.2 then λ = 1

else if U ≤ 0.6 then λ = 2
else λ = 4.

(c) Generate a sample from exponential density with parameter λ.

Generate N = 1000 samples from f and plot a histogram of the samples.

13. Computing expectations via sampling: For a given density function f , and certain
smooth function g ∫

IR
g(x)f(x)dx ,

is called the expectation of g with respect to f . A numerical technique to approximate
this quantity is to generate samples from f , call them x1, x2, . . . , xN and compute the
sample mean,

1
N

N∑

i=1

g(xi) .

For large values of N this sample mean approximates the expectation of g. For f given by
Gaussian density function with mean 5 and variance 2, compute the following expectation
via sampling for N=100,1000,10000:

∫

IR
(x− 5)2f(x)dx .

14. Estimate the value of π via random sampling using the the two variance reduction tech-
niques simultaneously: (i) variance reduction by conditioning, and (ii) variance reduction
by using antithetic variables. Use N = 50000.

15. If {pi, i = 1, . . . , n} is the probability mass function of a discrete random variable and
v = [v1, v2, . . . , vn] is any vector, then show that

(
n∑

i=1

pivi)2 ≤
n∑

i=1

piv
2
i .
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16. Write a matlab program to sample k values from the probability mass function pi = i
55 ,

i = 1, 2, . . . , 10. Plot the histogram of generated values for k = 50, 500, and 5000.

17. Write a matlab program to simulate k values of a binomial random variable with param-
eters n = 10 and p = 0.15. Plot the means and variances of these k values as functions of
k and compare the convergence to np and np(1− p).

18. Let pj and qj be the probability mass functions associated with two binomial random
variables, with parameters (20, 0.1) and (20, 0.4), respectively. Write a matlab program to
simulate a random variable X specified by the probability mass function

P{X = j} = 0.1pj + 0.9qj , j = 0, 1, . . . , n .

Simulate 1000 values of X and plot a histogram.

19. Write a matlab program to simulate k values of a normal random variable with mean µ
and variance σ2. Use this program to generate values for µ = 5 and σ2 = 4. Plot a
histogram of the samples generated for: (i) k = 500, and (ii) k = 5000.

20. Write a matlab program to simulate a random variable X with the density function

f(x)





4x 0 ≤ x < 0.5
4(1− x) 0.5 ≤ x < 1

0 otherwise
.

First calculate the cumulative distribution function and then use the inverse transform
method for simulating X. Generate 100 values from this simulator and plot a histogram.

21. Write a matlab program to simulate a Poisson random variable with mean 5. Generate
100 values and plot a histogram.

22. Write a matlab program to simulate k-values of a beta random variable with parameters
b and c. Use this program to simulate values for k = 100, b = 2, and c = 1. Plot a
histogram.

23. Given a procedure to simulate an exponential random variable with parameter λ, how
can one simulate a random variable with double-exponential distribution. The density
function of a double-exponential random variable is given by

f(x) =
λ

2
exp(−λ|x|) .

24. Write a matlab program, using polar method, to generate samples from a student’s t-
distribution with degrees of freedom 5. Generate 1000 samples and plot a histogram.

25. In this problem, you have to derive an acceptance/rejection procedure for generating a
standard normal random variable. Assume that you have a program to generate a double-
exponential random variable (from the previous assignment) with parameter 1 and density,

g(x) =
1
2

exp(−|x|) .

First, find a constant c such that f(x)/g(x) ≤ c, for all x. Then, write an acceptance-
rejection program using this values of c. Generate 1000 samples of a standard normal
using this method. What fraction of the iterations resulted in acceptance? Compare it
with 1

c .
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26. Using the classical Monte-Carlo method, estimate the value of the following integral:

I =
∫ 1

0
x(1− x)3dx.

Also, estimate the variance, V (I), of this estimator. Plot both the estimates as functions
of n, the number of samples generated.

27. Using a normal random generator, you have written previously, estimate the fourth-
moment of X, where X is normal with mean 5 and variance 4.

E[(X − µ)4] =
∫ ∞

−∞
(x− µ)4fX(x)dx .

Plot this estimate as a function of the sample size.

28. A pair of fair dice are continually rolled until all possible outcomes 2, 3, . . ., 12 have
occurred. Let n be the number of rolls needed before all outcomes have occurred. Write
a matlab program to simulate a value of n. Generate 1000 random samples of n, estimate
its mean and variance, and plot a histogram.

29. Let a discrete random variable X has a probability mass function pj = P{X = j}. Define
a new function

λn = P{X = n|X > n− 1} =
pn

1−∑n−1
j=1 pj

.

The quantities λn, n ≥ 1 are called discrete hazard rates since if we think of X as the
lifetime of some item then λn represents the probability that an item has reached the age
n will die before n + 1. If we are given the mass function p, we can simulate X. Write
a program to simulate X when only λns are given. (Do not convert λs back into pj to
simulate X, use λs directly.)

For the mass function pj = (0.9)j/9, first compute the hazard function λn for n =
1, 2, . . . , 100. Then, use these λn’s in your program to simulate 500 values of X. Plot
a histogram of these simulated values.

30. Derive and implement a method to generate samples of a Weibull random variable whose
probability distribution function is given by:

F (x) = 1− exp(−αxβ), 0 < x < ∞ .

Run your program to simulate 1000 values of Weibull random variable with α = 1 and
β = 0.5.

31. Write a matlab program that uses the composition method to sample a random variable
having the distribution function:

F (x) =
∫ ∞

0
xye−ydy, 0 ≤ x ≤ 1 .

32. Suppose it is easy to generate a random variable from any of the distributions Fi, i =
1, 2, . . . , n. How can we generate a random variable from the distribution:

F (x) =
n∏

i=1

Fi(x) .

Hint: If Xis are random variables with distributions Fis, respectively, then what random
variable X has the distribution F?
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5.6 References

The material presented in this section is taken from the textbooks by Robert-Casella [6], Ross
[7], and Gentle, and an article by George Marsaglia.
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Chapter 6

MONTE CARLO METHODS

6.1 Introduction

As stated earlier, integration plays a very important role in statistical inference. Many inference
problems can be written as integrals under some given probability measure. In many situations,
this probability measure is too difficult to analytically integrate out, and hence, numerical ap-
porximations are used. One technique for numerical approximation is via sampling, that is,
to approximate the integral using samples generated from the given probability measure. This
technique is called Monte Carlo method and is gaining wide acceptance among the statisti-
cians. In this chapter we study the classifical formulation of the Monte Carlo methods, their
improvisations, and applications.

In cases where it is not possible to directly sample from a distribution, one resorts to sam-
pling in an “approximate” fashion. The idea is to sample from a distribution which converges
to the desired distribution asymptotically. Later in this chapter, we present an important tool
commonly used for this approximate sampling, namely the Markov Chain Monte Carlo tech-
nique.

6.2 Monte Carlo Method

The main goal in this technique is to estimate the quantity Θ, where

Θ =
∫

IR
g(x)f(x)dx = E[g(X)] , (6.1)

for a random variable X distributed according to the density function f(x). g(x) is any function
on IR such that Θ and E[g(X)2] are bounded.. Suppose that we have tools to simulate inde-
pendent and identically distributed samples from f(x), call them X1, X2, . . . , Xn, then one can
approximate Θ by the quantity:

Θ̂n =
1
n

n∑

i=1

g(Xi) . (6.2)

Θ̂n is an estimator of Θ because:

E[Θ̂n] =
1
n

n∑

i=1

E[g(Xi)] = Θ ,

113
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the variance of Θ̂n is given by:

var(Θ̂n) = E[(Θ̂n −Θ)2)]
= E[Θ̂2

n]−Θ2

= E[(
1
n

n∑

i=1

g(Xi))2]−Θ2

=
1
n

(
E[g(X)2]− E[g(X)]2

)

=
1
n

var(g(X))

Therefore, as n gets larger the variance of Θ̂n goes down to zero and it converges to the mean
value Θ. This setup is called the classical Monte Carlo approach where the samples from f(x)
are generated in an i.i.d fashion.

For the estimator Θ̂n one can compute the expected error as follows. Since Θ is the mean
of Θ̂n, the expected squared error of the estimator, E[(Θ̂n − Θ)2] is also the variance of Θ̂n.
This suggests that it is possible to obtain better estimators, than the classifical estimator, by
reducing the variance of the estimator. In the next section we describe a number of techniques
to reduce the variance (or expected squared error).

6.3 Variance Reduction Techniques

Let X be a random variable with a known density function f(x). Our goal is to calculate the
expected value of a function g with respect to the density of X. Let

Θ = E(g(X))

and we want to estimate Θ using numerical techniques. We will utilize random sampling for the
purpose. That is, we will generate samples randomly from the density function, compute g of
these samples and average the resulting values. Let

X1, X2, . . . , Xn ,

be the samples obtained via random sampling and let

Ŷn =
1
n

n∑

j=1

g(Xi) .

According to the central limit theorem, for a large value of n, Ŷn is approximately normal with
mean E(Ŷn) = Θ and variance E(Ŷn − Θ)2). Ŷn is our estimator of Θ, therefore, its variance
represents the error in our estimation. This variance goes to zero and the number of samples
goes to infinity, but for practical situations restricted to some finite number of samples additional
techniques are need to reduce the variance. There are three widely used techniques to accomplish
this task:

1. Using Antithetic Variables: This method depends on generating averages from the
samples which have negative covariance between them, causing overall variance to go
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down. Let Y1 and Y2 be two identically distributed random variables with mean Θ. Then,

var(
Y1 + Y2

2
) =

1
4
(var(Y1) + var(Y2) + 2cov(Y1, Y2))

=
var(Y1)

2
+

cov(Y1, Y2)
2

If Y1 and Y2 are independent, then the last term is zero; if they are positively correlated
then the variance of var((Y1 + Y2)/2) is bigger than var(Y1/2). But if they are negatively
correlated the resulting variance reduces and this case becomes useful for us. The next
question is: how to obtain random variables Y1 and Y2 with identical distribution but
negative correlation.

We will illustrate one such method in the following situation: let X1, X2, . . . , Xn be
independent random variables with the distribution functions given by F1, F2, . . . , Fn.
Let g be a monotonous function. Using the inverse transform method, the Xi’s can be
generated according to

Xi = F−1
i (Ui), for Ui uniform [0, 1] .

Then define
Y1 = g(F−1

1 (U1), F−1
2 (U2), . . . , F−1

n (Un)) .

Since U and 1−U are identically distributed and negatively correlated random variables,
if we define

Y2 = g(F−1
1 (1− U1), F−1

2 (1− U2), . . . , F−1
n (1− Un)

then for monotonic function g, Y1 and Y2 are negatively correlated. Utilizing negatively
correlated functions not only reduces the resulting variance of the sample average but also
reduces the computation time as only half the samples need to be generated from uniform
[0, 1].

2. Variance Reduction by Conditioning: Let Y and Z be two random variables:

var(Y |Z) = E((Y −E(Y |Z))2|Y )
= E(Y 2|Z)− (E(Y |Z))2

var(Y ) = E(Y 2)−E(Y )2

Reorganizing these equations and using law of nested expectations, we obtain

E(var(Y |Z)) = E(Y 2)−E(E(Y |Z)2)
var(E(Y |Z)) = E(E(Y |Z)2)− E(Y 2)

Adding the two equations

var(Y ) = E(var(Y |Z)) + var(E(Y |Z)) .

Now compare the two random variables Y and E(Y |Z), both have the same means but
comparing the variances

var(Y ) ≥ var(E(Y |Z)) .

Therefore E(Y |Z) is a better random variable to simulate and average to estimate Θ.
Of course, an important issue is how to find an appropriate Z such that E(Y |Z) has
significantly lower variance than Y .
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3. Variance Reduction using Control Variates:
Our goal is to estimate Θ, the expected value of a function g of random variables X =
(X1, X2, . . . , Xn). Assume that we know the expected value of another function f of these
random variables, call it µ. For any constant a, define a random variable W according to

W = g(X) + a(f(X)− µ) .

We can utilize the sample averages of W to estimate Θ since E(W ) = Θ. Studying the
variance of W

var(W ) = var(g(X)) + a2var(f(X)) + 2acov(g(X), f(X)) .

Considering var(W ) as a function of a, and looking for the minimizer we get

a =
−cov(g(X), f(X))

var(f(X))
.

The resulting variance of W is given by

var(W ) = var(g(X))− (cov(f(X), g(X)))2

var(f(X))
.

6.4 Importance Sampling

Another technique commonly used for reducing variance in Monte Carlo methods is importance
sampling. Importance sampling is different from a classifical Monte Carlo method is that instead
of sampling from f(x) one samples from another density h(x), and computes the estimate of Θ
using averages of g(x)f(x)

h(x) instead of g(x) evaluated on those samples. Mathematically, we can
rearrange the definition of Θ as follows:

Θ =
∫

g(x)f(x)dx =
∫

g(x)f(x)
h(x)

h(x)dx . (6.3)

h(x) can be any density function as long as the support of h(x) contains the support of f(x).
Generate samples X1, X2, . . . , Xn from the density h(x) and compute the estimate:

Θ̂n =
1
n

n∑

i=1

g(Xi)f(Xi)
h(Xi)

.

It can be seen that the mean of Θ̂n is Θ and its variance is:

var(Θ̂n) =
1
n

(
Eh[(

g(X)f(X)
h(X)

)2]−Θ2

)
.

Recall that the variance associated with the classical Monte Carlo estimator differs in the first
term. In that case, the first term is given by Ef [g(X)2]. It possible that a suitable choice of
h can reduce the estimator variance below that of the classical Monte Carlo estimator. We
motivate this point using the following example taken from Robert and Casella.
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Example 5 Let X be a Cauchy random variable with parameters (0,1), i.e. X is distributed
according to the density function:

f(x) =
1

π(1 + x2)
,

and g(x) = 1{x>2} be an indicator function. We are interested in estimating:

Θ =
∫

g(x)f(x)dx = Pr{X > 2} .

We will do so using the notion of importance sampling although it is not too difficult to compute
the exact value of Θ analytically to be 0.15.

To start with, consider X1, X2, . . . , Xn to be i.i.d samples from the Cauchy density f(x) and
with g(x) being the indicator function, Θ̂n is just the frequency of sampled values larger than 2:

Θ̂n =
1
n

n∑

i=1

1{Xi>2} .

Variance of this estimator is simply Θ(1−Θ)
n or 0.127

n .
As a second method, we can utitlize the fact that the density f(x) is symmetric around 0,

and Θ is just half of the probability Pr{|X| > 2}. Again, assuming Xi’s to be i.i.d. Cauchy,
once can estimate Θ using the estimator:

Θ̂n =
1
2n

n∑

i=1

1{|Xi|>2} ,

and the variance of this estimator is Θ(1−2Θ)
n or 0.052

n .
If we rewrite Θ as the following integral:

Θ =
1
2
−

∫ 2

0

1
π(1 + x2)

dx ,

we can obtain another Monte Carlo estimator of Θ. Let X1, X2, . . . , Xn be samples from a
uniform random variable taking values between 0 and 2, and define an estimator:

Θ̂n =
1
2
− 1

n

2
π(1 + X2

i )
.

It is easy to show that this estimator also estimates Θ and its variance is given by: 0.0092
n . If we

rewrite Θ as the integral:

Θ =
∫ 1

2

0

x−2

π(1 + x−2)
dx .

Using i.i.d samples from U [0, 1
2 ] and evaluating average of the function g(x) = 1

2π(1+x2)
once can

futher reduce the estimator variance.

This example shows that a suitable split of the integrand between f(x) and g(x) can lead to
a reduction in variance. The question is: what should be new density h(x) that leads to an
estimator with minimum variance?

Theoretically, it is easier to answer that question, i.e. it is easy to write down the optimal
h(x), but it may not be easy to sample from this optimal density. In practice, one can try many
different densities and use experiments to select the better one.
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6.5 Tilted Sampling

This is a specific case of importance sampling where the sampling distribution is simply a tilted
version of the original density function. In cases where one is interested in estimating tail
probabilities, and where these tails are negligible, it may be useful to tilt the density while
raising the tail probability. Let f(x) be the original probability density function. Then, the
tilted density is given by:

ft(x) =
exp(tx)f(x)

M(t)
, where Mt =

∫
exp(tx)f(x)dx .

The amount of tilt is given by the parameter −∞ < t < ∞. For t > 0, the positive values of x
increase in probability while the negative values decrease in probability. Opposite happens for
t < 0.

Consider the probability where we are interested in estimating the tail probability:

θ = P{X ≥ a} =
∫ ∞

a
f(x)dx ,

and let a be much larger than the mean of X, i.e. a >> E[X]. Using random sampling from
the tilted density X1, X2,.., Xn from ft(x), and the estimator is given by:

θ̂n =
1
n

n∑

i=1

I{Xi≥a}M(t) exp(−tXi) .

To verify the estimator,

E[θ̂n] =
1
n

n∑

i=1

E[I{Xi≥a}M(t) exp(−tXi)]

=
1
n

n∑

i=1

∫ ∞

a
M(t) exp(−txi) exp(tXi)

f(xi)
M(t)

dxi

= θ

The variance of θ̂n is given by:

Var(θ̂n) =
1
n

[
∫

I2
{Xi≥a}M(t)2 exp(−2txi)ft(xi)dxi − θ2] .

The first term on the right side simplifies to:
∫ ∞

a
M(t)2 exp(−2txi) exp(txi)

f(xi)
M(t)

dxi = M(t)
∫ ∞

a
exp(−txi)f(xi)dxi .

In the interest of reducing estimating variance, we seek a value of t that minimizes this term.
However, this minimization is not straightforward and leads to an indirect solution. Assuming
t > 0, we can bound the this term by:

M(t)
∫ ∞

a
exp(−txi)f(xi)dxi ≤ M(t)

∫ ∞

a
exp(−ta)f(xi)dxi ≤ M(t) exp(−ta) .

It is easier to minimize this bounding term as follows:

d

dt
(M(t) exp(−ta)) = Ṁ(t) exp(−ta)− aM(t) exp(−ta) = 0 ,
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which implies that t should be chosen such that a = Ṁ(t)
M(t) . What does the ratio Ṁ(t)

M(t) stand for?

Since M(t) =
∫

exp(tx)f(x)dx, we have Ṁ(t) =
∫

x exp(tx)f(x), and that the ratio:

Ṁ(t)
M(t)

=
∫

x exp(tx)
f(x)
M(t)

dx =
∫

xft(x)dx .

In other words, t should be chosen such that a is the mean of the tilted density.
Example: For a standard normal random variable X, find the probability Pr{X ≥ a} for
a >> 0. The quantity to be estimated is given by:

θ =
∫ ∞

a
f(x)dx .

Since f(x) = 1√
2π

exp(−x2/2). The tilted version of f(x) is given by:

ft(x) =
exp(tx)f(x)

M(t)
.

The normalizer can be calculated:

M(t) =
∫

exp(tx)f(x)dx

=
1√
2π

∫
exp(tx) exp(−x2/2)dx

=
1√
2π

exp(t2/2)
∫

exp(
−1
2

(x− t)2)dx = exp(t2/2) .

In fact, the tilted density can also be written as:

ft(x) =
1√
2π

exp(−1
2
(x− t)2) .

The tilted density is normal with mean t and variance 1. Choosing t such that the mean of the
tilted density is a. That is, set the amount of tilt to be a.

Let Xis be sampled from the tilted density. Then, θ can be estimated as follows. Since the
ratio

f(x)
ft(x)

= exp(−tx)M(t) = exp(−ax) exp(a2/2) ,

an estimator of θ is given by:

θ̂n =
1
n

n∑

i=1

I{Xi≥a} exp(a2/2− aXi) .

A better estimator is given by:

θ̂n =
exp(a2/2)

2n

n∑

i=1

exp(−aYi) , where Yi = a + |Xi − a| .
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6.6 Problems

1. Write matlab programs to estimate the quantity θ = Pr{X < 1}, where X is an exponen-
tial random variable with mean 1, using two different Monte Carlo estimators. In other
words, the random samples used in estimators should have different probability densities.
Plot both the estimates as functions of n, the number of samples generated.

2. Suppose we want to estimated θ, where

θ =
∫ 1

0
exp(x2)dx .

Implement a Monte Carlo estimator by sampling from the uniform and averaging exp(U2
i )’s.

Also, utilize the idea of variance reduction using antithetic variables to propose another
algorithm with less variance. Plot the convergence (estimates versus the sample size) of
both the algorithms on the same plot.

3. Suppose that X is exponential with mean 1, and given that X = x, Y is exponential with
mean x. Given an efficient way to estimate P{XY ≤ 3}. Implement the algorithm and
plot the convergence versus the sample size.

4. Suggest a technique to estimate the quantity using

θ =
∫ ∞

−∞
x4e−(λ|x|α)dx ,

for given values of λ and α. It is not necessary but the use of importance sampling is
encouraged. Write a matlab program to implement your estimator and plot its convergence
for λ = 1.0 and α = 0.1.

5. Use the technique of importance sampling via tilted densities to estimate the quantity
θ = Pr{X > 3.0} where X is a standard normal random variable.

6. Use importance sampling to estimate the quantity:

θ =
∫ ∞

−∞
x

e(y−x)2e−3x

Z
dx ,

where Z =
∫

e(y−x)2e−3xdx and y = 0.5. Plot the convergence of your estimator versus
the sample size.
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Chapter 7

MARKOV CHAIN MONTE
CARLO METHODS

In this chapter, we focus on a particular family of discrete time stochastic processes that provide
us with a tool to sample from probability distributions. Let X be a continuous random variable
with a probability density function g(x), our goal is to generate samples from g. In case g is
too complicated to use one of the direct methods described in Chapter 5, one has to resort
to approximate methods for sampling from g. One such method is the use of Markov chains
to sample from complicated probability density functions, when the direct methods do not
apply. The basic idea is to construct a Markov chain Xtn , starting from almost arbitrary initial
conditions, but satisfying a set of conditions relating to g, so that as time n gets longer the
values of Xtn start resembling the samples of f .

We start this chapter with a brief introduction to Markov chains, and then develop a frame-
work for their use in sampling from given probability density functions. The material presented
in this chapter is taken from [3, 6].

7.1 Introduction to Markov Chains

Denote a discrete time stochastic process as: {Xt, t = t1, t2, . . .}. Such a process can be
characterized by nth-order joint probability density function, for any n ≥ 1,

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) .

Using the rule for total probability, we can factor the joint dendity function as:

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = fXt1

(x1)fXt2 |Xt1
(x2|x1) . . . fXtn |Xtn−1 ,...,Xt1

(xn|xn−1, . . . , x2, x1) ,

where the first term on the right side is the marginal density of the process at time t1, and the
remaining terms are the conditional densities. The joint density function is called translation
invariant if for any c ≥ 0, we have

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = fXt1+c,Xt2+c,...,Xtn+c(x1, x2, . . . , xn) . (7.1)

Definition 16 A stochastic process is called a Markov process if

fXtn |Xtn−1 ,...,Xt1
(xn|xn−1, . . . , x2, x1) = fXtn |Xtn−1

(xn|xn−1) .

123
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A Markov process is a stochastic process whose past (Xtn−2 , . . . Xt1) has no influence on the
future (Xtn) if its present (Xtn−1) is specified. This definition implies that joint density function
can be written as a product of one-step conditional densities as follows:

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = fXt1

(x1)fXt2 |Xt1
(x2|x1) . . . fXtn |Xtn−1

(xn|xn−1) . (7.2)

Note that to specify a Markov process one needs only a marginal density fXt1
and a sequence of

one-step transition densities fXtn |Xtn−1
. Therefore, the specification of a Markov process avoids

the needs for specifying all possible joint density functions.
For the definition, one can establish the following properties associated with Markov pro-

cesses:

1. The conditional expectation of the future, given the past and the present is equal to the
conditional expectation of the future given only the present.

E[Xtn |Xtn−1 , . . . , Xt2 , Xt1 ] = E[Xtn |Xtn−1 ] .

Proof: By definition,

E[Xtn |Xtn−1 , Xtn−2 , . . . , Xt1 ] =
∫

xnfXtn |Xtn−1 ,...,Xt1
(xn|xn−1, xn−1, . . . , x1)dxn

=
∫

xnfXtn |Xtn−1
(xn|xn−1)dxn = E[Xtn |Xtn−1 ]

2. A Markov process remains Markov if the time index is reversed. That is,

fXt1 |Xt2 ,...,Xtn
(x1|x2, . . . , xn) = fXt1 |Xt2

(x1|x2) .

Proof: Left side is:

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn)

fXt2 ,...,Xtn
(x2, . . . , xn)

=
fXt1

(x1)fXt2 |Xt1
(x2|x1) . . . fXtn |Xtn−1

(xn|xn−1)

fXt2
(x2)fXt3 |Xt2

(x3|x2) . . . fXtn |Xtn−1
(xn|xn−1)

=
fXt1

(x1)fXt2 |Xt1
(x2|x1)

fXt2
(x2)

= fXt1 |Xt2
(x1|x2) .

3. Conditioned on a given value of the present, the past and the future are statistically
independent of each other. That is, for t1 < t2 < t3 we have

fXt1 ,Xt3 |Xt2
(x1, x3|x3) = fXt1 |Xt2

(x1|x2)fXt3 |Xt2
(x3|x2) .

Proof:

fXt1 ,Xt3 |Xt2
(x1, x3|x2) =

fXt1 ,Xt3 ,Xt2
(x1, x3, x2)

fXt2
(x2)

= fXt3 |Xt2
(x3|x2)fXt1 |Xt2

(x1|x2)

4. A Markov process satisfies a condition, called Chapman-Kolmogoroff condition, that will
be useful later. For a Markov process,

fXt3 |Xt1
(x3|x1) =

∫
fXt2 |Xt1

(x3|x2)fXt2 |Xt1
(x2|x1)dx2 (7.3)
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Here are some example of the Markov processes. All stochastic processes with independent
increments are Markov processes. For t1 < t2, the increment Xt2 − Xt1 is independent of Xt1

implies that the variable Xt2 does not dependent on the past (t < t1) given Xt1 . As another
example, a random walk, as described next, is a Markov processes. For a fixed ∆ > 0 and s > 0,
define the process at X(i∆) = X((i− 1)∆)± s with probabilities 0.5 each. Since this defines a
process with independent increments, it is a Markov process. Among continuous time processes,
a Wiener process is a Markov process.

The concept of stationary stochastic processes is very important in development of MCMC
methods.

Definition 17 A stochastic process is called stationary if its nth-order joint density function is
translation invariance, for all n ≥ 1. In other words, for any collection of times {t1, t2, . . . , tn},
we have

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = fXt1+c,Xt2+c,...,Xtn+c(x1, x2, . . . , xn) , (7.4)

for all n > 0 and c.

In particular, for a stationary process the marginal density associated the process does not
depend upon the time t,

fXt(x) = fXt+c , ∀c ≥ 0 ,

and for all t. Similarly, the conditional probability density is also invariant in time:

fXtn |Xtn−1
(xn|xn−1) = fXt2 |Xt1

(xn|xn−1) ,

for all n. This invariance of probabilities across times makes stationary processes very important
for sampling. For example, in case we are interested in sampling a probability density function g,
we can potentially do so by constructing a stationary stochastic process such that the marginal
density function at time time is g, i.e. fXt = g. Then, along a sample path, the value Xt,
for any t, is a sample from g. Although this scheme seems simple, the problem comes in
simulating a stationary stochastic process such that its marginal density function matches the
given g. The difficulty of simulating such a stochastic process is same as simulating directly
from the original density g. Since we do not know how to simulate directly from g, we can not
simulate this stochastic process. However, there is a possibility of simulating another type of
process, called a homogeneous Markov process, that is not stationary to start with but becomes
stationary as t →∞. Furthermore, it is relatively easy to simulate this process. This idea is the
underlying principle behind MCMC methods. Next, we study the construction and properties
of homogeneous Markov processes.

Definition 18 A Markov process is called homogeneous if the conditional density is invariant
to a time shift. That is,

fXtn |Xtn−1
(xn|xn−1) = fXt2 |Xt1

(xn|xn−1), for all n . (7.5)

It is important to note that the marginal density may be, and often is, dependent upon the time
shift, i.e.

fXt1
(x) 6= fXtn

(x) , for some n .

This implies that a homogeneous process, in general, is not a stationary process. When is a
homogeneous Markov process stationary? If there exists a density function g(x) such that:

g(y) =
∫

R
fXt2 |Xt1

(y|x)g(x)dx , (7.6)
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then the resulting Markov chain is a stationary process. The density function g is called the
stationary probability density of that Markov chain. An interesting thing to note here is that g is
an eigenfunction of the transition function fXt2 |Xt1

, with an eigenvalue one! This interpretation
helps in establishing existing of a stationary probability using results from eigen analysis of
transition functions.

Our goal is to construct such homogeneous Markov processes that are not stationary to start
with, but converge to stationary processes as the process is followed for a long time. As stated
earlier, if the marginal density of this stationary process matches the desired probability density
g, then the sample paths of this process sample from g.

7.2 Markov Chains for Sampling from Probabilities

In the next few sections, we develop a framework for using Markov chains to sample from
given probability distributions. We start with the simplest case where the given probability
distribution P is restricted to a finite set. Later, we allow an infinite but countable set and end
by considering the uncountable case. This analysis can be broken into two distinct issues:

1. When does a given homogeneous Markov chain, with a given transition function, converge
to a stationary process?

2. For a given probability distribution, how to construct a homogeneous Markov chain that
samples from that distribution asymptotically?

7.2.1 Finite-State Space Case

To start with we will consider a discrete time Markov chain that takes values only in a finite set.
That is, for any time Xti ∈ {a1, a2, . . . , am}. For this finite state setup, the nth order probability
mass function is given by:

P{Xtn = an, Xtn−1 = an−1, . . . , Xt1 = a1} ,

and the Markov property implies:

P{Xtn = an|Xtn−1 = an−1, . . . , Xt1 = a1} = P{Xtn = an|Xtn−1 = an−1} .

Additionally, we will assume that the Markov chain is homogeneous, i.e. its one-step transition
probability distribution does not change in time. This transition probability is denoted by
Πn−1,n = Π, implying its independent of n, and the matrix of these elements generates one-
step transition probability matrix Π = {Πi,j}. Since the state space has cardinality of m, the
transition matrix is an m ×m matrix of non-negative elements such that each row adds up to
one. The matrix Π is used for compact statements about probabilities of transitions between
the state elements. The probability of transition from ai to aj in one step is given by Πi,j ; in
two steps is given by

∑m
k=1 Πi,kΠk,j or (Π ∗Π)i,j , and in n steps is given by (Πn)i,j . Let P [1] be

the probability of being in different states at time t = 1 (P [1] is an m-element probability mass
function), and if the transitions are made according to Π, then the probability vector associated
with time t = n is given by

P [n] = P [n− 1]Π = . . . = P [1]Πn−1 .

A special case arises when P [1] = P such that PΠ = P , i.e. P is the eigenvector of the
matrix Π with the corresponding eigenvalue given by one. In this situation, P [n] = P for all
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n and the resulting Markov process is not only homogeneous but also stationary. P is called
the stationary probability distribution associated with the Markov chain Xtn . If P [1] 6= P , i.e.
the initial probability is not an eigenvector of Π with eigenvalue one, then the resulting chain is
not stationary, and P [n] 6= P for all n. But it is possible to construct a Markov process, with a
transition matrix Π, in such a way that P [n] → P as n →∞, even if P [1] 6= P . Some additional
conditions are required on Π for this situation to hold, and we will study these conditions next.
The main question that we address is: Under what conditions on Π does the resulting Markov
chain converge to a stationary process? Alternatively, under what conditions on Π does the
probability P [n] converge to a stationary probability P? There are two ways of addressing these
questions: (i) using Peron-Frobenious theorem, and (ii) by characterizing the resulting Markov
chain.

Peron-Frobenius Theorem

There are many ways of establishing the convergence of a resulting Markov chain if the transition
matric Π satisfies certain properties. In case of finite state space, the simplest way to state the
conditions is using the Peron-Frobenious theorem.

Theorem 7 (Peron-Frobenius) If Πn >> 0 for some non-negative integer n, then

1. there exists an X >> 0 such that XΠ = X, and

2. if λ is any other eigenvalue of Π, then |λ| < 1.

The symbol A >> 0 implies that all elements of that array (vector or matrix) are strictly
positive. This theorem states that if there exists an n such that we can go from any state
to any other state in n steps with position probability, then the resulting Markov chain has
a unique stationary probability vector. This stationary probability is obtained by normalizing
X into a probability vector, i.e. P = X/(

∑m
i=1 Xi). Furthermore, it states that irrespective

of the starting condition, the resulting Markov chain converges to a stationary process whose
stationary probability is P .

So now we have a way of characterizing the condition under which a Markov chain will
sample from a given distribution P . According to Peron-Frobenious theorem, if the transition
matrix Πn has all positive elements for some n > 0 and if PΠ = P , then the Markov chain
samples from P for t →∞. For a large T > 0, the process at times t > T approximately sample
from P . The degree of approximation, or how to find T for a given level of approximation, are
discussed in a later section.

Although the condition required in Peron-Frobenious theorem is easy to state, it is difficult
to establish for a given Π. Therefore, from a practical point of view, we seek another way of
characterizing the convergence of a homogeneous Markov chain with conditions that can be
checked easily.

Characterizing Markov Chains

Another way of characterizing the convergence of a homogeneous Markov chain is using a set of
properties introduced next. In case of finite state space, Π needs to satisfy only two properties
for the Markov chain to converge. These two properties are: ireducibility and aperiodicity.
Irreducibility implies that it is possible to visit from any state to any state in a finite number
of steps. Aperiodicity implies that the Markov chain does not cycle around in the states with a
finite period. We introduce them formally next.
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Let a1, a2, . . . , am be the states in a finite state space and Π be an m×m transition matrix.
We start with a few definitions.

Definition 19 Two states are said to communicate if it is possible to go from one to another
in a finite number of steps. In other words, ai and aj are said to communicate if there exists a
positive integer n such that Πn

i,j > 0.

For example, for the transition matrix on the left, all states communicate with each other, while,
for the matrix on the right, the states a1 and a3 do not communicate.




0.1 0.3 0.4 0.2
0.2 0.4 0.0 0.4
0.0 0.3 0.5 0.2
0.5 0.3 0.2 0.0







0.5 0.5 0.0 0.0
0.5 0.5 0.0 0.0
0.0 0.0 0.5 0.5
0.0 0.0 0.5 0.5


 . (7.7)

Definition 20 A Markov chain is said to be irreducible if all states communicate with each
other for the corresponding transition matrix Π.

For example, in Eqn. 7.7 the Markov chain resulting from the first Π will be irreducible while
the chain resulting from the second matrix will be reducible into two clusters: one including
states a1 and a2, and the other including the states a3 and a4. Next we define the aperiodicity.

Definition 21 For a state ai and a given transition matrix Π, define the period of ai as:

d(ai) = GCD{n : Πn
i,i > 0} ,

where GCD implies the greatest common divisor.

In case of the following transition matrix:



0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0


 ,

the period of state a1 is:
d(a1) = GCD{2, 4, 6, 8, . . . , } = 2 .

For the left transition matrix given in Eqn. 7.7, the period of state a1 is one.

Proposition 4 If two states communicate, then their periods are same.

Therefore, in an irreducible Markov chain where all the states communicate, they all have the
same period. This is called the period of an irreducible Markov chain.

Definition 22 An irreducible Markov chain is called aperiodic if its period is one.

Irreducibility and aperiodicity are sufficient to show that the Markov chain converges to a
stationary process and it samples from a (unique) stationary probability as we let the chain run
for long time.

Theorem 8 An irreducible, aperiodic, homogeneous Markov chain on a finite state space has
the property that Πn >> 0 for some n > 0. Furthermore, this Markov chain has a unique
probability distribution P such that PΠ = P . For any arbitrary starting condition, this Markov
chain converges to a stationary process and generates samples from P as the time t goes to
infinity.
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In summary, given a probability distribution P on a finite state space, we construct a Markov
using a transition matrix Π that satisfies three conditions:

1. The resulting Markov chain is irreducible.

2. The resulting Markov chain is aperiodic.

3. P is a stationary probability of that Markov chain, i.e. PΠ = P .

How to find such a transition matrix is described later using some well-known algorithms.

7.2.2 Countable State Space

In case of infinite state space, the Markov chain convergence requires an additional property –
recurrence – to ensure that the chain has a unique stationary probability. To define and analyze
recurrence, we need some additional notation.

Let X = {a1, a2, . . . , ai, . . . , } be a countable state space. For a state ai ∈ X , let fn
ii be the

probability that a homogeneous Markov chain revisits ai for the first time in n steps. In other
words,

fn
ii = Pr{Xtn = ai, Xtn−1 6= ai, . . . Xt1 6= ai|Xt0 = ai} .

It is easy to see that f1
ii = Π1

ii and we adopt a convention that f0
ii = 0. Let Ek,i be an event that

a Markov chain, starting from ai at t0, reaches ai in n transitions although its first revisit to ai

takes place at time tk, for 1 ≤ k ≤ n. That is,

Ek,i = {Xtn = ai, Xtk = ai, Xtk−1
6= ai, . . . Xt1 6= ai|Xt0 = ai} .

The probability of this event is given by:

Pr(Ek,i) = Pr{Xtn = ai|Xtk = ai}Pr{Xtk = ai, Xtk−1
6= ai, . . . Xt1 6= ai|Xt0 = ai}

= Πn−k
ii fk

ii

Next consider the probability of going from ai to itself in n transitions, Πn
ii. For n > 0, it is

given by:

Πn
ii =

n∑

k=1

Pr(Ek,i)

=
n∑

k=1

Πn−k
ii fk

ii =
n∑

k=0

Πn−k
ii fk

ii . (7.8)

In the last equality, we have simply added a term that equals zero. It is important to note that
this equation is not valid for n = 0. Extending these ideas to go from a state ai to another state
ai, we define the quantity:

fn
ij = Pr{Xtn = aj , Xtn−1 6= aj , . . . Xt1 6= aj |Xt0 = ai} ,

and obtain a relation

Πn
ij =

n∑

k=0

fk
ijΠ

n−k
jj . (7.9)

To study and analyze recurrence of a Markov chain, we will need to relate the properties of
fn

ii and Πn
ii. In addition to using Eqn. 7.8, we will use the following ideas from the theory of

sequences.
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Definition 23 For a sequence {a1, a2, . . . , an, . . .}, we define the function

A(s) =
∞∑

n=0

ansn, |s| < 1 ,

as the generating function of that sequence.

As two examples of generating functions, let Pii(s) =
∑∞

n=0 Πn
iis

n, and Fii(s) =
∑∞

n=0 fn
iis

n.
What happens when we multiply two generating functions and seeking the corresponding re-
sulting sequence?

Proposition 5 Let A(s) =
∑∞

n=0 ansn and B(s) =
∑∞

n=0 bnsn be two generating functions.
Then, the product function has a corresponding sequence given by:

A(s)B(s) =
∞∑

n=0

cnsn, where cn =
n∑

k=0

akbn−k . (7.10)

In particular, c0 = a0b0.

Applying this idea to the production Pii(s)Fii(s), we obtain:

Pii(s)Fii(s) =
∞∑

n=0

cnsn, where
{

cn =
∑n

k=0 fk
iiΠ

n−k
ii , for n > 0

c0 = f0
iiΠ

0
ii = 0, for n = 0

.

From Eqn. 7.8, the coefficients cn = Πn
ii for n > 0. Therefore, we have

Pii(s)Fii(s) =
∞∑

n=1

Πn
iis

n = Pii(s)− P 0
iis

0 = Pii(s)− 1 ,

and that gives the relation:

Pii(s) =
1

1− Fii(s)
. (7.11)

Using similar ideas and Eqn. 7.9, we can show that

Pij(s) = Fij(s)Pjj(s) . (7.12)

Now we are ready state the definition of recurrence and to analyze its implications.

Definition 24 (Recurrence) We say that a state state ai ∈ X is recurrent under a Markov
chain if and only if

∑∞
n=0 fn

ii = 1.

Before we proceed further, we first try to understand this statement. fn
ii is the probability of

first revisit to ai in n steps. Since fn
ii and fn−1

ii are probabilities of two independent events, their
sum provides the probability of that either one occurs. Similarly,

∑N
n=0 fn

ii is the probability
that the process revisits ai for the first time in first N steps. By the definition of convergence, we
have that for any ε > 0, there exists an N such that for any M > N , we have

∑M
n=0 fn

ii > 1− ε.
In other words, the probability of first revisit being in first M steps is larger than 1− ε. Since ε
is chosen arbitrarily, this implies that the probability of revisit in a finite number of steps occurs
with probability arbitrarily close to one.

A state that is not recurrent is said to be transient. Given a transition matrix Π, it is not
easy to check whether a state is transient or recurrent. This task requires calculating fn

ii for all
n, and then checking the condition stated in Def. 24. Since the calculation of fn

ii is difficult, we
seek alternate ways of establishing recurrence of states under a Markov chain. This requires the
following lemma.
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Lemma 1 1. If
∑∞

n=0 an converges to a value a, then

lim
s→1−

A(s) = a .

2. If an ≥ 0 for all n and lims→1−A(s) = a, then
∞∑

n=0

an = a .

Based on this lemma we can establish the relation between Πn
ii and recurrence as follows.

Theorem 9 A state ai is recurrent if and only if
∑∞

n=1 Πn
ii = ∞.

Proof: First, assume that the state ai is recurrent. According to Defn. 24, this implies that∑∞
n=0 fn

ii = 1. According to Lemma 1(1), this further implies that lims→1− Fii(s) = 1. Therefore,

lim
s→1−

Pii(s) = lim
s→1−

(
1

1− Fii(s)
) = ∞ .

Now, using Lemma 1(2),
∞∑

n=1

Πn
ii = lim

s→1−
Pii(s) = ∞ .

So, we have shown that if ai is recurrent, then
∑∞

n=1 Πn
ii = ∞. Next, we show the inverse, i.e.

if
∑∞

n=1 Πn
ii = ∞, then ai is recurrent. We do so by assuming otherwise, that is,

∑∞
n=1 Πn

ii = ∞
by the state ai is transient, hoping to reach a contradiction. The state ai being transient implies
that

∑∞
n=0 fn

ii < 1, and therefore, we have lims→1− Fii(s) < 1, using Lemma 1(1). This implies
that

lim
s→1−

Pii(s) = lim
s→1−

(
1

1− Fii(s)
) = M < ∞ .

and ∞∑

n=0

Πn
ii = lim

s→1−
Pii(s) = M < ∞ .

The last statement is a contradiction since we have assumed that
∑∞

n=1 Πn
ii = ∞. Thus, we

have shown that if ai is transient, then
∑∞

n=1 Πn
ii < ∞. Therefore, we have also shown that∑∞

n=1 Πn
ii = ∞ implies that ai is recurrent.

Q. E. D.

So far we have studied recurrence of individual states. It turns out that like aperiodicity,
recurrence is also a class property. This is made precise by the following theorem.

Theorem 10 If two states ai, aj ∈ X communicate, and ai is recurrent, then aj is also recur-
rent.

Proof: Since ai and aj communicate, there exist n and m such that Πn
ij > 0 and Πm

ji > 0. For
any k > 0, we have Πn+k+m

jj ≥ Πn
ijΠ

k
iiΠ

m
ij . Therefore,

∞∑

k=0

Πn+k+m
jj ≥

∞∑

k=0

(Πn
ijΠ

k
iiΠ

m
ij ) = Πn

ijΠ
m
ij

∞∑

k=0

Πk
ii .

Since ai is recurrent, the last term in∞, and therefore,
∑∞

k=0 Πn+k+m
jj =

∑∞
k=0 Πk

jj = ∞. Hence,
aj is also recurrent.
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Q. E. D.

Based on this result, for an irreducible Markov chain, all states are recurrent if any one state is
recurrent. In that case, the Markov chain itself is called recurrent.

A useful property of transience can be the following. If a state aj is transient, then for all i,
we have

∑∞
n=0 Πn

ij < ∞. The proof is as follows: Since aj is transient, we have from Theorem
9 that

∑∞
n=0 Πn

jj < ∞. Using Lemma 1(1), this implies that lims→1− Pij(s) < ∞. Consider the
function: for |s| < 1,

Fij(s) =
∞∑

n=0

fn
ijs

n ≤
∞∑

n=0

fn
ij ≤ 1 .

The first inequality comes from the fact that sn <≤ 1 in the region |s| < 1, and the second
from the fact that

∑∞
n=0 fn

ij is a sum of probabilities of mutually exclusive events, i.e. it cannot
exceed one. Now, using Eqn. 7.12, we have:

Pij(s) = Fij(s)Pjj(s) ≤ Pjj(s) ≤ ∞ .

Finally, using Lemma 1(2), we have
∑∞

n=0 Πn
ij < ∞.

Example 6 Consider the random walk, induced by the transition matrix:

Π =




. . .
p 0 q 0 . . .
0 p 0 q . . .
...


 , 0 ≤ p, q ≤ 1, p + q = 1 .

Lets try to judge if a state ai is recurrent or not. The probability of returning to ai in odd number
of transitions is zero, while the probability for even transitions can be stated precisely,

Π2n+1
ii = 0, Π2n

ii =
(

2n
n

)
pnqn =

2n!
n!n!

pnqn .

To approximate this probability, we use the Stirling’s formula: n! ≈ nn+0.5 exp(−n)
√

2π. We
get

2n!
n!n!

≈ (2n)2n+0.5 exp(−2n)
√

2π

n2n+1 exp(−2n)2π
= 4n/

√
πn .

Therefore,

Π2n
ii = (4pq)n/

√
πn and

∞∑

n=0

Π2n
ii =

∞∑

n=0

(4pq)n/
√

πn .

There are two possible cases:

1. Case 1: p = q = 1/2. In this case, 4pq = 1, and

∞∑

n=0

Π2n
ii =

∞∑

n=0

1√
πn

= ∞ .

This implies that the state ai is recurrent. Additionally, since Π is irreducible, the resulting
Markov chain is also recurrent.
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2. Case 1: 4pq < 1. Let c = 4pq, then

∞∑

n=0

Π2n
ii =

∞∑

n=0

cn

√
πn

= M < ∞ .

This implies that the state ai is transient.

To further understand the property of recurrence, we consider another interpretation. We will
show that if a state ai is recurrent, then the Markov will visit it infinitely often with probability
one.

Let Qii = Pr{the chain starting from ai returns to ai infinitely often}.

Theorem 11 The state ai is recurrent if and only if Qii = 1.

Proof: Let QN
ii = Pr{the chain starting from ai returns to ai at least N times}. Then,

QN
ii =

∞∑

k=1

fk
iiQ

N−1
ii = QN−1

ii

∞∑

k=1

fk
ii .

Define f∗ii =
∑∞

k=1 fk
ii. Therefore,

QN
ii = f∗iiQ

N−1
ii = . . . = (f∗ii)

N−1Q1
ii .

For N = 1, we have Q1
ii =

∑∞
k=1 fk

ii = f∗ii, and therefore, we obtain QN
ii = (f∗ii)

N . Taking the
limit,

Qii = lim
N→∞

QN
ii = lim

N→∞
fN

ii =
{

1 if f∗ii = 1
0 if f∗ii < 1

.

By definition, ai is recurrent if and only if
∑∞

k=1 fk
ii = 1, or when f∗ii = 1. Hence, the state ai is

recurrent if and only if Qii = 1.

Q.E.D.

Similar results can be stated for visiting another state aj .

Theorem 12 If two states ai and aj communicate with each other, and the class containing
them is recurrent, then

f∗ij =
∞∑

k=1

fk
ij = 1 .

Let Qij be the probability that the Markov chain starts from ai and visits aj infinitely often.

Corollary 1 If the two states ai and sj communicate with each other, and the class containing
them is recurrent, then Qij = 1.

Returning to the topic of characterizing the convergence of a homogeneous Markov chain,
on a countable state space, we state the following important theorem.

Theorem 13 (Basic Limit Theorem of Markov Chains) 1. Consider a recurrent, ir-
reducible, aperiodic Markov chain. Let Πn

ii be the probability of the Markov chain entering
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the state ai in n transitions, given that it starts at ai. Let fn
ii be the probability of first

revisit to ai be at the nth step. Thus,

Πn
ii −

n∑

k=0

fk
iiΠ

n−k
ii =

{
1 if n = 0
0 if n > 0

.

Then,

lim
n→∞Πn

ii =
1∑∞

n=0 nfn
ii

. (7.13)

2. Under the same conditions,
lim

n→∞Πn
ji = lim

n→∞Πn
ii . (7.14)

The quantity
∑∞

n=0 nfn
ii is the average number of steps taken by the Markov chain for its first

revisit to the state ai. It is also called the mean recurrence time.
Let Pi = limn→∞Πn

ii. If Pi > 0 for the state ai in an aperiodic, recurrent class, then
Pj = limn→∞Πn

ij > 0 for all the states aj in that class. This class is called positive recurrent. A
Markov chain is called positive recurrent if it is irreducible, aperiodic, recurrent, and Pi > 0 for at
least one state in the class. If Pi = 0 is a recurrent class, then that class is called null recurrent.
The important result on convergence of such a chain comes in form of the next theorem.

Theorem 14 For an irreducible, aperiodic, positive recurrent Markov chain, on a countable
state space, there exists a unique probability mass function {Pj} such that

∑

i

PiΠij = Pj ,
∑

j

Pj = 1, Pj > 0, ∀j .

In other words, the resulting Markov chain has a unique stationary probability function. With
this result, we have established the conditions for a homogeneous chain to converge to a station-
ary process. Compared to the conditions we derived for the finite state space in Theorem 8, we
have an additional condition for the countable case – positive recurrence – for the Markov chain
to work. The remaining case of uncountable state space has a similar condition.

7.2.3 Uncountable State Space

In this case one has to modify the definition of irreducibility, recurrence, and positive recurrence,
to account for the fact that now we have a continuous random variable. The earlier definition
is not valid since the probability of visiting any specific value is zero, even we have a perfect
sampler from a density. Hence, the notion of revisit, or visiting infinitely often, is not applicable
here. The definition of recurrence is now related to sets of positive measure. Some books in
Markov chain has also called this recurrence as Harris recurrence.

For a set A ⊂ X , Let τA = inf{n ≥ 1|Xn ∈ A}. In other words, τA is the time of first revisit
to A. As a convention, τA = ∞, if the chain never returns to A.

Definition 25 A Markov chain is φ-irreducible if there exists a non-zero measure φ on X such
that Pr{τA < ∞|X0 = x} > 0 for all x ∈ A and A ⊂ X that satisfy φ(A) > 0.

Definition 26 A φ-irreducible Markov chain with a stationary probability density f(x) is Harris
recurrent if for all A ⊂ X with f(A) > 0 and for all x ∈ X , we have Pr{τA < ∞|X0 = x} = 1.
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Theorem 15 For a φ-irreducible, aperiodic, Harris recurrent Markov chain, with a stationary
density f , the stationary density is unique. In other words, f is the only probability density
function that satisfies:

∫

x
f(x)Π(x, y)dx = f(y) ,

∫

x
f(x) = 1, f(x) ≥ 0, ∀x .

7.3 Metropolis-Hastings Algorithm

One of the most popular MCMC technique used in approximate sampling from complicated
distributions is the Metropolis-Hastings algorithm. The setup is as earlier: we are interested
in generating samples of a random variable X distributed according to the density f(x). In
addition to f(x), we will assume having a density q(y|x) that satisfies the following properties:

1. It is easy to sample from q(·|x) for all x.

2. The support of q contains the support of f(x).

3. The functional form of q(y|x) is known or q(y|x) is symmetric in y and x. As shown later,
it is not necessary to know the normalizing constant in q(y|x) as long as it does not depend
upon x.

Given f(x) and a choice of q(y|x), that satisfies the above mentioned properties, the Metropolis-
Hastings algorithm can be stated as follows:

Algorithm 34 (Metropolis-Hastings Algorithm) Choose an initial condition X0 in the
support of f(x). The Markov chain X1, X2, . . . , Xn is constructed iteratively according to the
steps:

1. Generate a candidate Y ∼ q(y|Xt).

2. Update the state to Xt+1 accroding to:

Xt+1 =
{

Y with probability ρ(Xt, Y )
Xt with probability 1− ρ(Xt, Y )

,

where ρ(x, y) = min{ f(y)q(x|y)
f(x)q(y|x) , 1}.

q(y|x) is called the proposal density and ρ(x, y) is called the acceptance-rejection function.
In order to analyze this algorithm, consider first the case where the ratio f(Y )q(Xt|Y )

f(Xt)q(Y |Xt)
values

more than one and hence the acceptance-rejection function takes the value one. In this case,
we set Xt+1 = Y with probability one. In other words, whenever this ratio exceeds once we
change the state to the candidate. In case this ratio goes below one, we set Xt+1 to Y with
probability ρ(Xt, Y ). Higher the value of ρ(Xt, Y ) is, higher are the chances of accepting Y as
the new state. Also, note that the normalizing constants in the two densities f and q cancel out
and hence are not explicitly needed. However, if the normalizing constant for q(y|x) depends
upon x, then it does not cancel out and is neeed in the expression for ρ. In the algorithm, one
generates samples from the proposal q at every step independently but the elements of the chain
are not independent of each other. In fact, many times it is possible to have Xt and Xt+1 be
identical.

There are some special cases that occur often in practice:
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1. In case, q(y|x) is symmetric in the two arguments, the expression for the acceptance-
rejection function simplies:

ρ(x, y) = min{f(y)
f(x)

, 1} ,

where f(y)
f(x) is often called the likelihood ratio.

2. Independent M-H: In cases where the proposal density is independent of the current
state, i.e. q(y|x) = q(y), then the algorithm is called Independent Metropolis- Hastings
algorithm. In this case, the acceptance-rejection function becomes:

ρ(x, y) = min{f(y)q(x)
f(x)q(y)

, 1} .

3. Random Walk M-H: In some applications, it is useful to generate proposals using a
random walk. That is, the proposal is obtained using the equation:

Y = Xt + ε ,

where ε has density g(ε) that is symmetric and unimodal at zero. The proposal density is
symmetric:

q(y|x) = g(y − x) ,

and the algorithm simplifies.

For a broad set of proposal densities, it can be shown that the M-H algorithm generates a
Markov chain that asymptotically becomes stationary and generates samples from the target
density f(x). To study the proof, we need to define the detailed balance condition.

Definition 27 A homogenous Markov chain with transition density function Π is said to satisfy
the detailed balance condition if there exists a function f such that:

f(x)Π(x, y) = f(y)Π(y, x) , (7.15)

for every pair (x, y).

We anticipate the target density f(x) to be the function that makes a M-H Markov chain has
detailed balance.

Theorem 16 Suppose that a Markov chain with the transition function Π satisfies detailed
balance condition with f being a probability density function. Then, f is a stationary probability
density of that chain.

Proof: We want to show that, for all y ∈ R,
∫

x
f(x)Π(x, y)dx = f(y) .

In other words, we want to show that, for any measurable subset B ⊂ R, we have:
∫

y∈B
(
∫

x
f(x)Π(x, y)dx)dy =

∫

y∈B
f(y)dy .
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We start with the left side:
∫

y∈B
(
∫

x
f(x)Π(x, y)dx)dy =

∫

y∈B
(
∫

x
f(y)Π(y, x)dx)dy

=
∫

y∈B
f(y)dy(

∫

x
Π(y, x)dx)

=
∫

y∈B
f(y)dy .

Q.E.D.

Returning to the Markov chain generated by the M-H algorithm, we state the following
result.

Theorem 17 For any proposal density that satisfies the three conditions listed earlier, f is a
stationary probability density of the Markov chain produced by M-H algorithm.

Proof: We just need to that the transition function Π of the M-H Markov chain satisfies the
detailed balance condition with the given f(x). The transition kernel for the Markov chain
generated by M-H algorithm is:

Π(x, y) = ρ(x, y)q(y|x) + (1− r(x))δx(y) , (7.16)

where r(x) =
∫
y ρ(x, y)q(y|x)dy. We need to show that Eqn. 7.15 is satisfied. Once we substitute

Π in that equation, we obtain two terms on each side. We will show that respective terms balance
each other on either side:

ρ(x, y)q(y|x)f(x) + (1− r(x))δx(y)f(x) = ρ(y, x)q(x|y)f(y) + (1− r(y))δy(x)f(y) . (7.17)

Consider the case when x and y are such that f(y)q(x|y) < f(x)q(y|x). In this case,

ρ(x, y) =
f(y)q(x|y)
f(x)q(y|x)

, ρ(y, x) = 1 .

Substituting then in Eqn. 7.17, the first term on left side becomes:

f(y)q(x|y)
f(x)q(y|x)

f(x)q(y|x) = f(y)q(x|y) ,

which is what the first term on the right side is. Similar equality occurs when f(y)q(x|y) >
f(x)q(y|x), and similarly one can match the second terms on both sides. Hence, this Markov
chain satisfies the detailed balance condition, and therefore f(x) is a stationary probability
density associated with the Markov chain.

Lemma 2 If a Metropolis-Hastings Markov chain is f -irreducible, then it is Harris recurrent.

One implication of this lemma is that if we have f -irreducibility of a Markov chain, along with
aperiodicity, then the stationary probability density is unique and the Markov chain converges
to that probability density asymptotically. f -irreducibility of a M-H Markov chain comes from
the fact that q(y|x) > 0 whenever f(y) > 0. A sufficient condition for M-H Markov chain to be
aperiodic is that the algorithm allows events such as {Xt+1 = Xt}.
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Theorem 18 For a given density function f(x), and proposal density q(y|x) that satisfies the
positivity condition. Let Xt be a Markov chain generated by Metropolis-Hastings algorithm for
this setup. The, for a function h(x) that satisfies

∫
h(x)f(x)dx < ∞ .

Then, we have

lim
T→∞

1
T

T∑

t=1

h(Xt) =
∫

h(x)f(x)dx .

Example 7 Let X be a gamma random variable with shape parameter α > 0 and scale parameter
β > 0. Its density function f(x) is given by:

f(x|α, β) =
1

βΓ(α)
exp(−x

β
)(

x

β
)α−1 .

We want to use M-H algorithm to generate samples from f(x). Recall that if α is a positive in-
teger, then X is the sum of α independent random variables, each being exponentially distributed
with mean β. Let n be a positive integer closest to α. Then, a random variable Y with density
f(y|n, β) can be simulated using n independent exponential random variables. We will use Y as
a proposal in an independent M-H algorithm.

Algorithm 35 1. Generate Yt ∼ f(y|n, β).

2. Update the state to Xt+1 according to:

Xt+1 =
{

Y with probability ρ(Xt, Y )
Xt with probability 1− ρ(Xt, Y )

,

where
ρ(x, y) = min{f(y)q(x)

f(x)q(y)
, 1} =

y

x

α−n

7.4 Gibbs Sampler

Gibbs sampler is another commonly used tool for generating Markov chains with suitable asymp-
totic properties. By construction, Gibb’s sampler applies only to the problem of sampling from
multivariate densities. Let X = (X1, X2, . . . , Xp) ∈ IRp be a vector of random variables with the
joint density function given by f(x1, x2, . . . , xp). Our goal is to generate samples from f and we
will do so by constructing a Markov chain on IRp. In order to use Gibbs sampling we make the
following assumption: we know the conditional densities

fi(xi|xj , j 6= i), i = 1, 2, . . . , p ,

and have method(s) to sample from each of these. These conditional densities are called the full
conditionals and have the simplicty of univariate densities.

An algorithm for Gibbs sampler is as follows:

Algorithm 36 Let X(t) = [X(t)
1 X

(t)
2 . . . X

(t)
p ] ∈ IRp be the value of Markov chain at time t.

Following steps describe an update from X(t) to X(t+1).
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1. Generate X
(t+1)
1 ∼ f1(x1|X(t)

2 , X
(t)
3 , . . . , X

(t)
p ).

2. Generate X
(t+1)
2 ∼ f2(x2|X(t+1)

1 , X
(t)
2 , . . . , X

(t)
p ).

...

3. Generate X
(t+1)
p ∼ fp(xp|X(t+1)

1 , X
(t+1)
2 , . . . , X

(t+1)
p−1 ).

An important property of the Gibbs sampler is that even for large values of p, one samples from a
univariate density at each step. This makes Gibbs sampler very attractive for large dimensional
problems such as image analysis.

A specific case of Gibbs sampler for p = 2 is the bivariate Gibbs sampler. Let X and Y be
two scalar random variables with the joint density function f(x, y) and the full conditionals:

f1(x|y) and f2(y|x) .

Gibbs sampler can be constructed as follows: start with some initial condition (x0, y0) and
iterate according to:

Algorithm 37 (Bivariate Gibbs Sampler) 1. Generate xt+1 ∼ f1(x|yt).

2. Generate yt+1 ∼ f2(y|xt+1).

3. Set t = t + 1 and go to Step 1.

To illustrate this special case, consider the bivariate normal density:

(X,Y ) ∼ N(0,

[
1 ρ
ρ 1

]
) ,

with the full conditionals:

f1(x|y) = N(ρy, 1− ρ2), f2(y|x) = N(ρx, 1− ρ2) .

There are many interesting properties of Gibbs samplers. A Gibbs sampler can be considered
a special case of the M-H algorithm with the proposal density given by the full conditionals. Also,
in Gibbs sampler one always accepts the proposed state as opposed to the acceptance/rejection
of the M-H algorithm.

Gibbs sampler by construction apllies only to multivariate densities. What if we are inter-
ested in sampling from a univariate density f(x) with p = 1.

7.4.1 Markov Random Fields

An important applications of Gibbs sampler is in generating samples from Markov random field
models. We begin by introducing Markov randon fields.

Let S be a collection of indexed locations, e.g. indices on a uniform lattice, in a plane. For
each site s ∈ S, we assign a random variable X(s) ∈ R, and the collection X ≡ {X(s), s ∈ S} as
a field of random variables. Elements of S are often called the pixel locations and the ransom
variable X(s) is called the pixel value at s. Before we introduce specific models, we introduce
some additional notation. We will consider the sites geographically close to s ∈ S as neighbors
of s, denoted by Ns ⊂ S. For example, in a uniform, square lattice, we can choose the sites
immediately north, south, east and west to s can form a neighborhood of s. Alternatively, one
can include the diagonal neighbors also. Depending on the application, different neighborhoods
can be chosen for a random field. With this notation, a MRF is defined as follows.
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Definition 28 (Markov Random Field) If the conditional probability density of a random
variable X(s), given the remaining variables {X(r), r 6= s}, is the same as the conditional
probability density of X(s) given only its neighbors {X(s)|X(r), r ∈ Ns}, for all s, then X is
called a Markov random field. We have, for all s ∈ S,

f(X(s)|X(r), r 6= s) = f(X(s)|X(r), r ∈ Ns) . (7.18)

A simple example of MRF is the Ising model where the pixel values X(s) are allowed only two
values 1 or −1.

Example 8 (Ising Model) For positive constants H and J , the joint probability distribution
of all pixel values in an Ising model is given by: for X ≡ {X(s) ∈ {−1, 1}, s ∈ S},

P (X) =
1
Z

eH
∑

s X(s)+J
∑

s X(s)(
∑

r∈Ns
X(r)) ,

where Z is the normalizing constant, often called the partition function. The conditional proba-
bility distribution is given by:

P (X(s)|X(r), r ∈ Ns) =
e(H+J(

∑
r∈Ns

X(r)))(1+X(s))

1 + e2(H+J(
∑

r∈Ns
X(r)))

.

The Gibbs sampler algorithm for sampling from this Ising model is: for any fixed ordering
of indices, generate a sample from P (X(s)|X(r), r ∈ Ns) and use it to update X(s).

7.5 Continuous Time Markov Processes
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7.6 Problems

1. Write a matlab program to simulate a discrete-time, finite-state Markov process with the
following transition matrix:

Π =




0.2 0.2 0.1 0.5
0.1 0.3 0.4 0.2
0.3 0.2 0.3 0.2
0.1 0.3 0.1 0.5


 .

Generate ONE sample path of this Markov chain, and plot the relative frequencies (versus
i) with which the path visits the fours states.

2. Repeat the previous Problem for a Markov chain having the transition matrix:

Π =




0.5 0.5 0.0 0.0
0.1 0.9 0.0 0.0
0.0 0.0 0.3 0.7
0.0 0.0 0.2 0.8


 .

3. Let Xt be a Markov chain generated using some initial probability P [1] and the transition
matrix Π,

Π =




0.1 0.3 0.4 0.2
0.2 0.1 0.3 0.4
0.4 0.2 0.1 0.3
0.3 0.4 0.2 0.1


 .

First verify if Xt is (i) irreducible, and (ii) aperiodic, and then find the stationary prob-
ability vector for Xt. Using your program from Problem 1 verify that the averages along
a sample path converge to the stationary probability. If f : {a1, a2, a3, a4} → IR as as
follows:

f(a1) = 2.0, f(a2) = 1.0, f(a3) = 2.5, f(a4) = −1.0 ,

show through simulation that

1
n

n∑

i=1

f(Xi)
n→∞→

4∑

j=1

f(aj)P (aj) ,

where P is the stationary probability.

4. Repeat Problem 3 for the transition matrix

Π =




0.1 0.3 0.4 0.2
0.2 0.4 0.0 0.4
0.0 0.3 0.5 0.2
0.5 0.3 0.2 0.0


 .

5. Consider a Markov chain generated by the transition matrix:

Π =




p1 (1− p1) 0 0 . . .
p2 0 (1− p2) 0 . . .
...

pm . . . (1− pm) . . .
...




,
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where 0 < pm < 1 for all m. Establish the following conditions for the Markov chain:

(a) Show that the Markov chain is irreducible.

(b) Show that the Markov chain is aperiodic.

(c) Study the recurrence of this chain using the following steps: the recurrence of a chain
has been defined using the condition

∑∞
n=1 fn

ii = 1.

i. First show that fn
11 = pn

∏n−1
m=1(1− pm).

ii. Second, show that we can rewrite fn
11 = un−1 − un, where

un =
n∏

m=1

(1− pm) .

iii. Next, show that un → 0 as n →∞ if and only if
∑∞

m=1 pm = ∞.
iv. State the necessary and sufficient condition for the chain to be recurrent.

Write a matlab program to simulate this Markov chain for pm = 1
m+1 . Show 10 sample

paths for this chain on a plot.

6. Show that a finite, irreducible Markov chain whose transition matric is doubly stochastic
(all the rows and the columns each add to 1) has a unique stationary measure given by
the uniform probability vector.

7. Consider a finite state (say m-state) random walk with the following transition matrix:

Π =




1 0 0 0 . . .
p 0 (1− p) 0 . . .
0 p 0 (1− p) . . .
...
0 . . . 0 1




,

where 0 < p < 1. Define

d(k) = E[time to reach states a1 or am | initial state is ak] .

For p = 0.5 and m = 10, estimate d(k) via simulation and plot the estimated values of
d(k) versus k.

8. Write a matlab program implementing the Metropolis-Hastings algorithm to sample from
the density

f(x) =
x2|sin(πx)|e−x/2

∫
IR+

x2|sin(πx)|e−x/2dx
, x > 0 .

You have to decide what q (proposal density) you want to use. Choose positive numbers
to start the Markov chain. Show several sample paths of this Markov chain for t = 1 to
t = 10000. Estimate the value of E[X] and var(X).

9. Consider a finite state, irreducible Markov chain whose transition matrix is idempotent,
i.e. Π2 = Π. Show that the chain is aperiodic.
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10. We revisit the problem of sampling from a posterior density when it is easy to sample from
the prior density. (Earlier, we solved the problem using importance sampling.) For two
continuous random variables X and Y , the Bayes’ rule can be stated as:

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
.

fX|Y (x|y) is the posterior density, fX(x) is the prior density, fY |X(y|x) is called the like-
lihood function (as a function of x), and fY (y) is a normalizer (which is fixed for a given
y). Let X be a normal random variable with mean 5 and variance 4, and the conditional
density of Y given X = x be normal with mean 2x and variance 9. That is,

fX(x) =
1√
2π 4

exp(− 1
2 4

(x− 5)2) .

and
fY |X(y|x) =

1√
2π 9

exp(− 1
2 9

(y − 2x)2) .

Choose the prior fX(x) as the proposal density and the posterior fX|Y (x|y) as the target
density. Write a matlab program implementing Metropolis-Hastings algorithm to sample
from the posterior for y = 6. Show several sample paths of this Markov chain for t = 1 to
t = 10000 and estimate the posterior mean.

11. A gamma random variable X with parameters (α, β) has the following density function

f(x) =
βe−βx(βx)α−1

(α− 1)!
.

If α is a positive integer, then X is just the sum of α independent exponential random
variables each with parameter β. Therefore, we know how to simulate X for α being
a positive integer. When β = 1, this simulation can be used to generate samples from
gamma density with non-integer α, using Metropolis-Hastings algorithm as follows. Let
[α] denote the largest integer below α.
Gamma Metropolis-Hastings

(a) Generate Yt ∼ gamma([α], [α]/α).
(b) Take

Xt+1 =
{

Yt with probability ρt

xt otherwise

where
ρt = min{(Yt

xt
exp(

xt − Yt

α
))α−[α], 1} .

(c) Set t = t + 1, go to Step 1.

Write a matlab program to generate samples from X ∼ gamma(2.5, 1). Show several
sample paths of this Markov chain for t = 1 to t = 10000 and estimate the mean of X.

12. Write a matlab program implementing Langevin’s stochastic difference equation to simu-
late from a given density:

f(x) =
x2|sin(πx)|e−x/2

∫
IR+

x2|sin(πx)|e−x/2dx
, x > 0 .

Show a few sample paths for arbitrary initial conditions and estimate the mean of f .
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13. Use a Metropolis-adjusted Langevin’s algorithm to simulate from the same f . Show a few
sample paths and estimate the mean of this density.

14. Dynamic Monte Carlo Method Consider the following filtering situation. The state
of a system evolves according to the equation”

xt = x2
t−1sin(xt−1) + nt ,

where nt ∼ N(0, 1). Assume that x1 is known to be 1.0 (you do not have to estimate it.
The state is observed according to the observation model:

yt = x2
t + mt , where mt ∼ N(0, 1)

(a) Generate a sample path of the sequence xt for t = 1, 2, . . . , 20.

(b) Generate a sample path of the observation process, yt, for t = 1, 2, . . . , 20.

(c) Using these observations, write a program to implement the dynamic Monte Carlo
algorithm for estimating xt’s. Use M = 5000 for the sample size at each time t. Plot
the estimation error ‖xt − x̂t‖2 versus t.
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Chapter 8

SMOOTHING & DENSITY
ESTIMATION

8.1 Introduction

A fundamental problem in statistical analysis of data is to find the probability distribution that
generated the data in the first place. This problem is the exact opposite of the simulation
problem studied in Chapter 5. There we are interested in generating samples xi from a given
probability model f while here we are interested in estimating f given a collection of samples
xis from that probability.

How can one estimate f from its samples? There are two broad categories of approaches that
are followed. One is to assume a form, or a structure, on f and then find the f in that form that
“best” fits the data. An important example is to assume that f belongs to a parametric family,
i.e. f ≡ f(x; θ), f is a probability density function in x parameterized by θ such that the search
for best f reduces to that for best θ. Density estimation now reduces to parameter estimation
and techniques for maximum likelihood estimation, described in Chapter 3 can be applied. The
other, and more general, idea is not to assume any particular form on f and let the data dictate
estimation of f . This approach called nonparametric density estimation is more challenging and
is introduced here in this chapter. Please refer to the text [8] for a detailed analysis of density
estimation and smoothing techniques.

8.2 Common Techniques for Density Estimation

1. Histogram

2. Naive Density Estimation

3. Kernel Estimators:

8.3 Problems

1. Consider a real-valued random variable, X, having the density function e−H(x)

Z where
H(x) = 1

2σ2 (x−m)2. For m = 5 and σ = 0.5, generate samples of X using discrete version
of Langevin’s equation: select x(0) = 0, ∆ = 0.1 and let

x(k) = −∂H

∂x
(xk−1)∆ +

√
2∆w
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where w ∼ N(0, 1). Let {x(k)}, k = 1, . . . , 1000 be the samples generated. It may be a
good idea to arrange the samples in increasing or decreasing order. Also, use the same
sample set for each of the following methods.

(a) Plot the histogram of these samples, for window sizes 0.5 and 0.1.

(b) Calculate and plot the density estimate using the ”naive” estimator for h = 0.5 and
h = 0.1. The estimate is given by,

f̂(x) =
1
n

n∑

i=1

1
h

w(
x− x(i)

h
) ,

where w(x) =
{

1 |x| ≤ 1
0 o.w

.

(c) Calculate and plot the nearest neighbor density estimate for k = 5 and 10. The
estimate is given by,

f̂(x) =
1

ndk(x)

n∑

i=1

w(
x− x(i)
dk(x)

) ,

where dk(x) is the minimum half-width of an interval around x containing k points.

(d) Calculate and plot the density estimate using the kernel estimator assuming Biweight
kernel function and h = 0.1. The estimate is given by

f̂(x) =
1
n

n∑

i=1

1
h

K(
x− x(i)

h
) ,

where K(x) = 15
16((1− x2)+)2.

2. Consider a logistic distribution with the probability density function

f(x|θ) =
exp(−(x− θ))

(1 + exp(−(x− θ)))2

and the distribution function:

F (x|θ) =
1

1 + exp(−(x− θ))
.

The goal in this problem is to: (i) generate samples from this distribution and (ii) estimate
the density function from the generated samples. Follow these steps:

(a) Sampling: For θ = 5, generate n = 100 samples from this distribution using the
inverse transform method.

(b) Non-parametric Density Estimation: Write a matlab program that uses these
samples and a kernel based estimator to estimate the underlying density function.
Plot the estimated density function for three different kernels: (a) triangular kernel,
(b) biweight kernel, and (c) Gaussian kernel. For each case, use two different band-
widths, say h = 0.5 and h = 1.0. Compare each of these estimated densities with the
true density function f(x|5) by plotting it on the same graph.
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3. In this problem the goal is to generate samples from a multivariate distribution and then
use these sample to estimate the joint density function. Let X1 and X2 be two real values
random variables that are jointly normal with a given mean and variance. For the vector
X = [X1 X2]T , the joint density is given by:

f(X) =
1

2π det(K)
exp(−1

2
(X − µ)T ) K−1(X − µ)) ,

where det stands for the determinant. Here µ ∈ IR2 is the vector of means and K ∈ IR2×2

is the matrix of covariance.

(a) Sampling: For µ = [2 5]T and

K =
[

4 1
1 4

]
,

generate n = 100 samples of the pairs (X1, X2). Let A be a matrix such that A∗A = K
(you can use sqrtm command in matlab to compute A). Then, samples from the joint
density are given by: [

X1

X2

]
= µ + A

[
Z1

Z2

]
,

where Z1 and Z2 are independent, standard normals (randn in matlab).

(b) Non-parametric Density Estimation: Write a matlab program that uses sample
pairs and a Gaussian kernel to non-parametrically estimate the joint density function.
The kernel is given by:

K(x1, x2) =
1
2π

exp(−(x2
1 + x2

2)/2) .

Generate estimates for several values of h = 0.5, 1.0, ...

(c) Display: Show mesh plots of both the true density and the estimated density func-
tions.
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Chapter 9

STATISTICAL PATTERN
RECOGNITION

9.1 Introduction

1. Classification

2. Clustering

9.2 Classification

Consider the problem of classing an observation X ∈ Rn into one of the following classes:
C1, C2, . . . , Ck. One can view as the problem of (disjointly) partitioning the observation space
Rn into k regions; if an observation falls into region i, we declare it to be of class Ci. Another
viewpoint is that we assume there are k probability models- f1, f2, . . . , fk– associated with the
different classes. The observation X is assumed to be a random sample from one of these proba-
bilities, and the goal is to find fi it came from. One can do this either in a likelihood framework
or a Bayesian framework, as described later in this chapter. The problem of classification boils
to designing the partitions or the probability models, from the past data, so that future data
can be classified automatically.

9.2.1 Preliminaries

1. Feature Vector: Since n is too large in practice, it is practically impossible to analyze
the observations directly. In most cases, one uses a mapping from Rn to Rd for a d << n
to map observations into a more manageable space. Let g : Rn 7→ Rd be such a map. For
an observation X ∈ Rn, the vector x = g(X) is called a feature vector or a representation
of X. The choice of g is not simple and has important bearing on the resulting pattern
recognition. Once can broadly classify such dimension-reducing maps into two categories:

(a) Linear Dimension Reduction: Let U ∈ Rn×d be an orthogonal matrix, i.e. UT U =
Id, and define g(X) = UT X. This g is a linear projection to a subspace spanned
by the columns of U matrix. An example of this linear projection is U obtained
through principal component analysis (PCA), as described earlier in Chapter 2. More
examples will be presented later.
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(b) Nonlinear Dimension Reduction: In case the mapping g from Rn to Rd is not
linear, it cannot be stated in the matrix form as earlier. An example of such a mapping
is as follows. Form a histogram of the elements of X using d pre-determined, equally-
spaced bins. The bins remain fixed irrespective of the values of X. Then, left x be
the frequency vector associated with these bins, i.e. x(1) is the number of elements
in the first bin, x(2) is the number of elements in the second bin, and so on. This
define a mapping x = g(X) = hist(X) that is a nonlinear mapping from Rn to Rd.

Feature Space: The space of all feature vectors is called the feature space. This is the
space in which a statistical analysis is performed to obtain pattern classification.

As described later, several methods utilize a metric on this space to perform classification.
In case the feature space is Euclidean, Rd, one can use the p-norm:

‖x1 − x2‖p =

(
d∑

l=1

(|x1(l)− x2(l)|)p

)1/p

.

p = 2 provides the usual Euclidean norm and is use most often in practice. This metric is
also used in cases where PCA-based linear dimension reduction has been used to obtain
the feature space. For p = 1, the resulting metric is also called manhattan or city-block
metric.

In cases where the feature vectors are histograms, obtained from a nonlinear projection,
the p-norm may not be very interesting. Since a histogram has an additional constraint
that it always sums up to the number of observations, some more suitable metrics have
been proposed. For example, one can use the normalized χ2-statistic:

d(x1, x2) =
d∑

l=1

(x1(l)− x2(l))2

(x1(l) + x2(l))
,

or the Kullback-Leibler divergence:

d∑

l=1

x1(l) log(
x1(l)
x2(l)

or
d∑

l=1

x2(l) log(
x2(l)
x1(l)

,

or their sum to make it symmetric. It should be kept in mind that these are not proper
distances on the feature space, but still are useful because they provide a quantification of
differences between any two histograms.

2. Training Data: We will assume that we have some number of observations available for
each class. Let Xj

i ∈ Rn denote the jth observation for ith class, with j = 1, 2, . . . , ni and
i = 1, 2, . . . , k. This data is mostly labelled, i.e. with each observation we are provided
the class to which it belongs. The primary use of this data is to develop or derive classi-
fiers, that can then be used in future classifications. Examples of use of training data in
development of classifiers are given later in this chapter.

3. Test Data: Let Y ∈ Rn denote a new observation that we wish to classify. In general
we are not given the underlying (true) class of Y , i.e. the test data is unlabelled. The
test data serves as a set of future observations to which a classifier is applied and tested.
This data is not used in the development of a classifier but is often used in evaluation
of a classifier. One applies a classifier to the test data and measures the classification
performance to evaluate that classifier.
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4. Validation Data: In addition to the training and the test data, some methods use
another data set called the validation data. This labelled set is used in cases where the
development of a classifier is feedback-based, i.e. the classifier design is based on its
performance on a dataset different from the training data. For instance, say one designs
a classifier using the training data, evaluates its performance on the validation data, and
learns of ways to improve the classifier. After improvement this process is repeated until
no more improvement is possible.

9.2.2 Classification

In this section, we formally define the process of classification and provide simple examples.

Definition 29 A classifier is a mapping from the feature space to the set of all classes. That
is,

φ : Rd 7→ {C1, C2, . . . , Ck} , (9.1)

is a classifier. For any test observation Y , and its feature vector y = g(Y ), if φ(y) = Ci, then
Y is designated to the ith class.

There is a large variety of classifiers that used in applications, but they can be divided into two
broad categories:

1. Metric-Based Classifiers: These classifiers assume that there exists a metric in the
feature space to quantify difference between any two elements of Rd. Given such a metric,
called it d(·, ·), one can define a number of classifiers.

Examples of metric-based classifiers:

• Nearest Neighbor (NN) Classifier: In this classifier, one computes the distance
between y = g(Y ) and all possible training vectors g(Xj

i ), and assigns that class to
Y that has the nearest element to y. That is,

î =
k

argmin
i=1

(
argmin

j
d(g(Y ), g(Xj

i ))

)
.

This is one of the simplest classifiers, although it has the disadvantage of being slow
since it requires computing distances between the test data and all the training data.
Another disadvantage is that it is vulnerable to noise. If the noise moves a training
vector from the wrong class closest to y, then the classification will be wrong.

• k-Nearest Neighbor (kNN) Classifier: In order to make the classifier more im-
mune to observation noise, one uses the k-nearest neighbor classifier. Instead of the
nearest training data, here one finds k nearest training data vectors, and uses the
majority class amongst them to classify Y . In order to avoid ties, it is often useful to
take k to be odd.

Advantages and disadvantages: Makes no assumption about the probability model (im-
plicit assumptions present sometimes). Can be slow if the training data size is large.

2. Probability Based

Examples of probability-based classifiers:
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• Maximum-Likelihood Classifier:
Example: Assume a two class classification problem. For each class f(x|Ci) is multi-
variate normal with mean µi and a fixed covariance Σ.

• Bayesian Classifier:

9.3 Boosting

9.4 Clustering

9.4.1 Hierarchical Clustering

9.4.2 Partitional Clustering

1. Nearest-Neighbor Clustering

2. Mutual Neighborhood Clustering

9.5 Kernel Trick



Chapter 10

ANALYSIS OF DYNAMIC
SYSTEMS

In Chapter 6 we studied the problem of sampling from a probability distribution, using a homo-
geneous Markov with certain properties. Now we consider a similar problem of sampling with
a difference that the probability distribution is changing in time. In other words, we need to
sample from an indexed family of probability distributions, indexed by time. Assuming that
these probability distribution evolve in time according to some specific transitions, then this
task can be simplified greatly. Let {ft} be sequence of probability densities that we want to
sample from, for each t, and let St be a collection of samples from ft. A major simplification in
the sampling process can be obtained if one can use samples St of ft to obtain samples St+1 of
ft+1, rather than sampling from the start. This is the topic of study in this chapter.

This topic relates closely to a a broader class of problems where one uses observations from
a time-series to estimate the underlying process. Let x1, x2, . . . , xt, xt+1, . . . , form a process of
interest, and instead of measuring xts directly, one observes variables y1, y2, . . . , yt, yt+1, . . .. The
goal is to use the observations, and joint probability models of x and y to estimate the unknown
xts. Let f(xt|y1, y2, . . . , yτ ) be the posterior density function of xt given a set of observations
y1, . . . , yτ ). The estimation can be one of the following three kinds:

1. Smoothing: In this case the goal is to estimate a state xt using observations up to a time
τ > t. In other words,

x̂t = argmax
xt

f(xt|y1, y2, . . . , yt, . . . , yτ ) .

2. Filtering: In this case the goal is to estimate a state xt using observations up to t. In
other words,

x̂t = argmax
xt

f(xt|y1, y2, . . . , yt) .

3. Prediction: In this case the goal is to estimate a state xt using observations up to a time
τ < t. In other words,

x̂t = argmax
xt

f(xt|y1, y2, . . . , yτ ) .

Some simplifying assumptions that are often made are: (i) the process xt forms a Markov
process, and (ii) for all t, the observation yt is conditionally independent of xτ , for τ 6= t,
given the state xt. This set up is also known as a hidden Markov model (HMM) where {xt}
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is considered the hidden process and {yt} is used to discover or estimate it. This model has
been found very useful in many applications including speech analysis, steering and robotics,
engineering design. A particular case of HMM arises when the posterior density f(xt|y1, . . . , yt)
is Gaussian for all t. In that case, it is easy to summarize the posterior, since only mean and
covariance at each time t are needed, and there is no need to generate samples. In this case, one
focuses on the problem of estimating mean and covariance at time t + 1, given these quantities
at time t and the new observation yt+1. An algorithm for performing this update was proposed
by Robert Kalman and this algorithm forms one of the most important results in statistical
time-series analysis.

10.1 Nonlinear Filtering Problem

Let the state vector xt be an element of Rm and the observation vector yt take value in Rn.
Assume that state vectors and observation vectors satisfy the following equations:

xt+1 = F (xt) + Γut (10.1)
yt = G(xt) + wt (10.2)

Eqn. 10.1 is called the state equation and it models the evolution of state in time. Here,
F : Rm 7→ Rm is a given function, Γ is a given m ×m matrix and ut ∈ Rm is a vector of noise
or perturbation variables. Assuming that uts are statistically independent, the resulting process
xt is a Markov process. That is:

f(xt|xt, x2, . . . , xt−1) = f(xt|xt−1) . (10.3)

Eqn. 10.2 is called the observation equation and it relates the underlying state (xt) with the
observation yt. Here, G : Rm 7→ Rn is a given function and wt ∈ Rn is the vector of observation
noise. It is assumed that the observation noise wt is statistically independent across times, i.e.
wt is independent of ws for t 6= s, and it is also independent of xt and ut. Therefore,

f(yt|y1, y2, . . . , yt−1, xt) = f(yt|xt) . (10.4)

Combining these assumptions, one can write the full posterior of xt, as

f(xt|y1, y2, . . . , yt) =
f(xt, y1, y2, . . . , yt)

f(y1, y2, . . . , yt)

=
f(yt|xt, y1, . . . , yt−1)f(xt|y1, . . . , yt−1)f(y1, y2, . . . , yt−1)

f(yt|y1, y2, . . . , yt−1)f(y1, y2, . . . , yt−1)

=
f(yt|xt)f(xt|y1, . . . , yt−1)

f(yt|y1, y2, . . . , yt−1)

Investigating the right term in the numerator, we obtain:

f(xt|y1, . . . , yt−1) =
∫

xt−1

f(xt, xt−1|y1, . . . , yt−1)dxt−1 =
∫

xt−1

f(xt|xt−1)f(xt−1|y1, . . . , yt−1)dxt−1 .

This leads to the two equations of nonlinear filtering:
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f(xt|y1, . . . , yt−1) =
∫

xt−1

f(xt|xt−1)f(xt−1|y1, . . . , yt−1)dxt−1 (10.5)

f(xt|y1, y2, . . . , yt) =
f(yt|xt)f(xt|y1, . . . , yt−1)

f(yt|y1, y2, . . . , yt−1)
(10.6)

The first equation, Eqn. 10.5, is called the prediction equation, since it uses the past data
y1, y2, . . . , yt−1, to predict a future state xt. Note that this equation involves two densities: (i)
the posterior density of xt−1 given all the past data, and (ii) one step prediction of xt given
xt−1. The data at that time, yt, does not play a role in the prediction equation. This data
enters into the second equation, called the update equation, that involves two densities: (i) the
prediction posterior density f(xt|y1, y2, . . . , yt−1) obtained from the prediction equation, and (ii)
the likelihood function for data at time t, given by f(yt|xt).

The problem of Bayesian nonlinear filtering is to solve for estimates from the posterior density
at time t. There are several estimators that can be designed:

1. The maximum a-posterior (MAP) estimate of xt given all the data upto time t. That is,

x̂map
t = argmax

xt

f(xt|y1, . . . , yt) . (10.7)

2. The posterior mean estimator, or

x̂µ
t =

∫

xt

xtf(xt|y1, . . . , yt)dxt .

3. Other estimators, such as posterior median, are also useful in some situations.

In addition to the estimation of xt, using an estimator x̂t, one is also interested in the quality of
that estimator. This often results in the problem of estimating variance of xt under the posterior
density, f(xt|y1, . . . , yt).

10.2 Kalman Filter

A special case arises when the functions F (·) and G(·) are linear maps, i.e. F (x) = Ax for
an m ×m matrix A and G(x) = Bx for an n ×m matrix B. Additionally, if we assume that
the vectors ut and wt are multivariate Gaussians, and the initial state x0 is Gaussian, then the
resulting posterior density f(xt|y1, . . . , yt) is also Gaussian for all t. Therefore, one can specify
this posterior using a mean vector and a covariance matrix, and there is no need to generate
samples. This was realized by Kalman in his celebrated paper in [], resulting in a major tool in
area of time series analysis, called the Kalman filter. Next, we derive the two basic equations
that form a Kalman filter iteration.

Assuming the linearity of functions F and G, the state and observation equations are given
by: for t > 1,

xt+1 = Atxt + Γut, ut ∼ N(0, Q) (10.8)
yt = Btxt + wt, wt ∼ N(0, Λ) (10.9)

We will also assume that the initial state x0 ∼ N(µ0, P0) where P0 ∈ Rm×m covariance matrix.
As a first we will show that f(xt|y1, . . . , yt) is normal and we will specify its mean and variance,
for all t ≥ 1.
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Theorem 19 Assuming that: (i) x0 ∼ N(µ0, P0), (ii) xt, yt satisfy Eqns. 10.8-10.9, and (iii)
ut, wt are independent as assumed earlier, we have that f(xt+1|y1, . . . , yt, yt+1) ≡ N(µt+1, Pt+1|t+1),
where

µt+1 = Atµt + Pt+1|t+1B
T
t Λ−1(yt+1 −BtAtµt)

Pt+1|t+1 = (P−1
t+1|t + BT

t Λ−1Bt)−1, Pt+1|t = AtPt|tAT
t + ΓQΓT

Note that P0|0 = P0.
Proof: We will prove this result by induction. Assume that it is true for some t, and prove it
for t + 1. We start with t = 1.

1. Since there is no data at time t = 0, the posterior density at f(x0|y0 is same as the prior
f(x0), which by assumption, is Gaussian with mean µ0 and variance P0.

2. Fix any t > 0, let the theorem hold for that t. That is, the posterior density f(xt|y1, . . . , yt)
is Gaussian with mean µt and covariance Pt|t. That is,

xt|(y1, . . . , yt) ∼ N(µt, Pt|t) . (10.10)

We will prove this result for t + 1. As a first step, consider the probably density of xt+1

given (y1, . . . , yt). Using Eqns. 10.8 and 10.10, the conditional probability density of xt+1,
given (y1, y2, . . . , yt), is

xt+1|(y1. . . . , yt) ∼ N(Aµt, AtPt|tAT
t + ΓQΓt) .

For later convenience, let Mt = AtPt|tAT
t + ΓQΓt; Mt ∈ Rm×m is a covariance matrix.

Using Eqn. 10.9, the conditional probably density of yt+1 given xt+1 is:

yt+1|xt+1 ∼ N(Bxt+1,Λ) .

Our goal is to find the posterior density f(xt+1|y1, . . . , yt+1), we do so using the Bayes
rule,

f(xt+1|y1, . . . , yt+1) =
f(yt+1|xt+1)f(xt+1|y1, . . . , yt)

f(yt+1|y1, . . . , yt+1)

∝ 1
(
√

2π det(Λ))n
exp(−1

2
(yt+1 −Bt+1xt+1)T Λ−1(yt+1 −Bt+1xt+1))

1
(
√

2π det(Mt))n
exp(−1

2
(xt+1 −Atµt)T M−1

t (xt+1 −Atµt))

Collecting the terms in the exponent, we have:

−1
2
(yt+1Λ−1yt+1 − xT

t+1B
T λ−1yt+1 − yT

t+1Λ
−1Bxt+1 + xT

t+1B
T Λ−1Bxt+1

xT
t+1M

−1
t xt+1 − µT

t AT
t M−1

t xt+1 − xT
t+1M

−1
t Aµt + µT

t AT
t M−1

t Atµt) .

Combining the terms, we obtain,

−1
2
(xT

t+1(B
T
t Λ−1Bt + M−1

t )xt+1 − xT
t+1(B

T
t Λ−1yt+1

+M−1
t Atµt)− (yT

t+1Λ
−1Bt + µT

t AT
t M−1

t )xt+1 + yT
t+1Λ

−1yt+1 + µT
t AT

t M−1
t Atµt)
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Set P−1
t+1|t+1 = M−1

t + BT
t Λ−1Bt and M−1

t = P−1
t+1|t+1 −BT

t Λ−1Bt. The exponent changes
to,

= −1
2
(xT

t+1P
−1
t+1|t+1xt+1 − xT

t+1(B
T
t Λ−1yt+1 + (P−1

t+1|t+1 −BT
t Λ−1Bt)Atµt)

−yT
t+1Λ

−1Bt + µT
t AT

t (P−1
t+1|t+1 −BT

t Λ−1Bt)xt+1 + yT
t+1Λ

−1yt+1

+µT
t AT

t (P−1
t+1|t+1 −BT

t Λ−1Bt)Atµt)

= −1
2
(xT

t+1P
−1
t+1|t+1xt+1 − xT

t+1(B
T
t Λ−1(yt+1 −BtAtµt))− xT

t+1P
−1
t+1|t+1Atµt

−((yT
t+1 − µT

t AT
t BT

t )Λ−1Bt)xt+1 − µT
t AT

t P−1
t+1|t+1xt+1 + yT

t+1Λ
−1yt+1

+µT
t AT

t (P−1
t+1|t+1 −BT

t Λ−1Bt)Atµt)

= −1
2
(xT

t+1P
−1
t+1|t+1xt+1 − xT

t+1P
−1
t+1|t+1(Atµt + Pt+1|t+1B

T
t Λ−1(yt+1 −BtAtµt))

−(µT
t AT

t + (yT
t+1 − µtA

T
t BT

t )Λ−1BtPt+1|t+1)P
−1
t+1|t+1µ

T
t+1

+yT
t+1Λ

−1yt+1 + µT
t AT

t (P−1
t+1|t+1 −BT

t Λ−1Bt)Atµt)

= −1
2
((xt+1 − (Atµt + Pt+1|t+1B

T
t Λ−1(yt+1 −BtAtµt)))T P−1

t+1|t+1

(xt+1 − (Atµt + Pt+1|t+1B
T
t Λ−1(yt+1 −BtAtµt))))

Since this is a perfect quadratic form, the posterior density at t+1 is Gaussian with mean

µt+1 = Atµt + Pt+1|t+1B
T
t Λ−1(yt+1 −BtAtµt) , (10.11)

and covariance Pt+1|t+1 = (M−1
t + BtΛ−1Bt)−1.

This leads to a preliminary formulation of the Kalman filter for updating mean and covariance
from time t to t + 1:

Algorithm 38 (Kalman Filter – Classical) At time t we have the mean µt and the covari-
ance Pt|t.

1. Prediction Step: The first equation of nonlinear filtering leads to prediction of these
parameters:

µt+1|t = Atµt (10.12)

Pt+1|t ≡ Mt = AtPt|tAT
t + ΓQΓ (10.13)

Note that this step does not involve the data yt+1 yet. It uses past data to predict the mean
and the covariance at time t + 1.

2. Correction Step: This step uses yt+1 to update the predicted values of mean and covari-
ance:

µt+1|t+1 = µt+1|t + Pt+1|t+1B
T
t Λ−1(yt+1 −Btµt+1|t) (10.14)

Pt+1|t+1 = (P−1
t+1|t + BT

t Λ−1Bt)−1 (10.15)
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In situations where the observation space has smaller dimension that the state space, i.e. n < m,
it is possible to simplify this calculation using the Sherman-Morrison-Woodbury formula:

(A−1 + V C−1V T )−1 = A− (
AV (C + V T AV )−1V T A

)
. (10.16)

This formula provides the inverse of an m×m matrix (A−1) with a rank n update (V C−1V T ).
Define a matrix C = Pt+1|t − Pt+1|t+1. Using Sherman-Morrison-Woodbury formula, it is

given by:

C = Pt+1|t − (P−1
t+1|t + BT

t Λ−1Bt)−1

= Pt+1|t − Pt+1|t +
(
Pt+1|tBT

t (Λ + BtPt+1|tBT
t )−1BtPt+1|t

)

= Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1BtPt+1|t

Seeking to simplify the expression Pt+1|t+1B
T
t Λ−1, we copmpute:

Pt+1|t+1B
T
t Λ−1 = ((Pt+1|t − C)BT

t Λ−1

= ((Pt+1|t − Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1BtPt+1|t)BT
t Λ−1

= Pt+1|tBT
t (I − (Λ + BtPt+1|tBT

t )−1BtPt+1|tBT
t )Λ−1

= Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1(Λ + BtPt+1|tBT
t + BtPt+1|tBT

t )Λ−1

= Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1 .

With this simplification, the Kalman filter can be modified as:

Algorithm 39 (Kalman Filter) At time t we have the mean µt and the covariance Pt|t.

1. Prediction Step: The first equation of nonlinear filtering leads to prediction of these
parameters:

µt+1|t = Atµt (10.17)

Pt+1|t ≡ Mt = AtPt|tAT
t + ΓQΓ (10.18)

2. Correction Step: This step uses yt+1 to update the predicted values of mean and covari-
ance:

µt+1|t+1 = µt+1|t + Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1(yt+1 −Btµt+1|t) (10.19)

Pt+1|t+1 = Pt+1|t − Pt+1|tBT
t (Λ + BtPt+1|tBT

t )−1BtPt+1|t (10.20)

What is the advantage of using the modified update step in this version of Kalman filter. In
the earlier version, to compute Pt+1|t+1 we need to invert two m × m matrices in (P−1

t+1|t +
BT

t Λ−1Bt)−1. In the modified version, we need to compute only one matrix inverse (Λ +
BtPt+1|tBT

t )−1 involving an n × n matrix. Since computing inverse is both computationally
expensive and error-prone operation, the modified version (assuming n < m) is computationally
preferable.
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10.3 Extended Kalman Filters

In some situations it is possible to approximate the state and the observation equations in such
a way that they result in a linear Gaussian system. For example, if in Eqns. 10.5-10.6, the
additive noise ut and vt are Gaussian, and if it is possible to approximate well the functions F (·)
and G(·) by their linear approximations, then one can apply Kalman filter to this approximation.
Such a situation is termed as an extended Kalman filter.

In general, however, when linear approximations of state and observation equations are not
valid, or when the additive noise ut, vt are not Gaussian, one has to address the non-Gaussianity
of the resulting posterior density directly. The next section describes a Monte Carlo approach
to filtering in situations where the posterior density is non-Gaussian.

10.4 Sequential Monte Carlo Methods

In many problems it is not possible to assume linearity of system evolution and observation
maps, and the linearization does not yield good results. Such problems require tools to handle
nonlinearity of the underlying systems. An important consequence of nonlinear models is that
the posterior density at any time may not be Gaussian, and hence its representation using a
mean and a covariance is no longer sufficient. In such cases one resorts to Monte Carlo idea and
generates a large number of samples from the posterior, at every time t, and uses those samples
to estimate system state, the estimation error, or any other parameter of interest. Since the
posterior changes at every observation time, one would have to generate samples at every time.
However, using the relationship between evolving posteriors, one seeks an efficient algorithm
for generating samples from posterior at time t + 1, using samples from the posterior at time
t, in a recursive fashion. In this section, we describe the method of sequential Monte Carlo to
accomplish this task.

Let f(xt|y1, . . . , yt) be the posterior density function at time t, and let xi
t be a sample from

this posterior. Define the sample set

St = {xi
t, i = 1, 2, . . . , n} .

Our goal is to use elements of St, and the new observation yt+1 and the system-observation
models, to generate the sample set St+1. Using the nonlinear filtering equations (Eqns. 10.5-
10.6), this task is performed in two steps (analogous to Kalman Filtering). The first step
generates prediction and the second step updates, or corrects, these predictions using the data
yy+1.

1. Prediction Step: This step uses samples from the posterior density at time t to generate
samples from the prediction density f(xt+1|y1, . . . , yt). The basic idea is to interpret Eqn.
10.5, reproduced here, as a mixture density.

f(xt+1|y1, . . . , yt) =
∫

xt

f(xt+1|xt)f(xt|y1, . . . , yt)dxt

Since xi
t is a sample from f(xt|y1, . . . , yt), one can use a sample from the conditional density

f(xt+1|xi
t). As described in 5, the value x̃i

t ∼ f(xt+1|xi
t) can be shown to be a sample from

f(xt+1|y1, . . . , yt). We will call the set

S̃t+1 = {x̃1
t , x̃

2
t , . . . , x̃

n
t } ,
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as the prediction set. If needed, one can estimate the mean, covariance and other moments,
under the prediction density, using sample averages over this prediction set. For example,

µ̂t+1|t =
1
n

n∑

i=1

x̃i
t .

Note that this step does not use the new data yt+1, and success of this step depends upon
our ability to sample from one-step-prior f(xt+1|xi

t). As stated in Eqn. 10.1, this one-
step-prior comes from a state equation involving an update function F (·) and a random
term Γut. In this situation, sampling from this prior is straightforward, according to:

x̃i
t+1 = F (xi

t) + Γui
t ,

where ui
t is a random sample from its given density function. In examples where ut is

multivariate normal this simulation is rather simple.

2. Update Step: This step uses Eqn. 10.6 and the prediction set S̃t+1 to generate samples
from the posterior density f(xt+1|y1, . . . , yt+1). In addition, we are interested in estimating
a parameter

θt+1 =
∫

g(xt+1)f(xt+1|y1, . . . , yt+1)dxt+1 ,

for a given function g. In case of minimum mean square estimation, the function is g
is identity and we are interested in estimating the posterior mean as an estimate of the
state xt+1. However, under other estimation criteria, the function g can be different but is
always known beforehand. There two goals are accomplished using important sampling
and resampling as described next.

First, consider the goal of estimating θt+1. Using ideas from importance sampling we can
rewrite the definition of θt+1 as follows:

θt+1 =
∫

g(xt+1)f(xt+1|y1, . . . , yt+1)dxt+1

=
∫

g(xt+1)
f(yt+1|xt+1)f(xt+1|y1, . . . , yt)

f(yt+1|y1, y2, . . . , yt)
dxt+1

=
∫ (

g(xt+1)f(yt+1|xt+1)
f(yt+1|y1, y2, . . . , yt)

)
f(xt+1|y1, . . . , yt)dxt+1 (10.21)

The second term comes directly from applying Eqn. 10.6 to this situation. Now that
we have samples from f(xt+1|y1, . . . , yt), namely the elements of the set S̃t+1, we can use
them to estimate θt+1. This requires evaluating the expression inside (·) on these samples
and taking an average over n samples. However, notice that this expression involves the
quantity f(yt+1|y1, y2, . . . , yt) that is unknown. So, we have to estimate this quantity also,
in order to estimate θt+1 using importance sampling. This is done by considering:

f(yt+1|y1, y2, . . . , yt) =
∫

f(yt+1|xt+1)f(xt+1|y1, . . . , yt)dxt+1 .

Once again, since we have samples from f(xt+1|y1, . . . , yt), we can use them, and the
likelihood function f(yt+1|xt+1) to estimate the left side. Define the weights

wi
t+1 = f(yt+1|x̃i

t+1) ,
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and estimate f(yt+1|y1, y2, . . . , yt) using 1
n

∑n
i=1 wi

t+1. This is nothing but the classical
Monte Carlo idea. Now that we have an estimate for f(yt+1|y1, y2, . . . , yt), we return to
the estimation of θt using Eqn. 10.21, according to:

θ̂t+1 =
1
n

n∑

i=1

(
g(x̃i

t+1)w
i
t+1

1
n

∑n
i=1 wi

t+1

)
.

Define the normalized weights w̃i
t+1 =

wi
t+1∑n

j=1 wj
t+1

, we can restate the estimator of θt+1 as:

θ̂t+1 =
n∑

i=1

g(x̃i
t+1)w̃

i
t+1 . (10.22)

Next, we return to the task of generating samples from the posterior f(xt+1|y1, . . . , yt+1).
It can be shown that if we resample from the set S̃t+1 with probabilities given by

{w̃1
t+1, w̃

2
t+1, . . . , w̃

n
t+1} ,

then, the resulting values are samples from the posterior. Generating n such resamples,
and calling them xi

t+1, we obtain the sample set

St+1 = {x1
t+1, x

2
t+1, . . . , x

n
t+1} .

This is the basic form of a sequential Monte Carlo algorithm.

Algorithm 40 (Classical SMC) 1. Generate n samples xi
0 ∼ f(x0). Set t=0.

2. Prediction: Generate the prediction set using: x̃i
t+1 ∼ f(xt+1|xi

t), i = 1, 2, . . . , n.

3. Update: Compute the weights wi
t+1 = f(yt+1|x̃t+1), and normalize them using w̃i

t+1 =
wi

t+1∑n
j=1 wj

t+1

.

(a) Estimate θt+1 using θ̂t+1 =
∑n

i=1 g(x̃i
t+1)w̃

i
t+1.

(b) Resample from the set {x̃1
t+1, x̃

2
t+1, . . . , x̃

n
t+1} with probabilities {w̃1

t+1, w̃
2
t+1, . . . , w̃

n
t+1},

n times to obtain the samples xi
t+1, i = 1, 2, . . . , n.

4. Set t = t + 1, and return to Step 2.

In some cases it is possible that resampling leads to only a small number of distinct values
in the sample set St+1. Even though each one of these values is a sample from the posterior
f(xt+1|y1, . . . , yt+1), lack of variety in the elements of St+1 may lead to a bad estimator of θt+1.
To avoid this situation, one can use a few steps of MCMC algorithms, such a M-H algorithm,
starting from xi

t+1, to generate a better variety of values. In that case, just replace xi
t+1 by the

new value resulting from a few steps of M-H algorithm.



164 CHAPTER 10. ANALYSIS OF DYNAMIC SYSTEMS

10.5 Problems

1. Write a matlab program to simulate two processes, {xt} and {yt} defined as follows:

xt+1 = Axt + Γut ∈ IR3

yt+1 = Bxt+1 + wt IR2 ,

where

A =




1 0.1 0.2
0.3 1 0.1
0.2 0.1 1


 , B =

[
1 0.5 0.2

0.5 1 0.1

]
, Γ =




0.1 0.0 0.0
0.0 0.1 0.0
0.0 0.0 0.1


 .

Also, ut and wt are vectors of Gaussian random variables with mean zeros and variances
I3 and 0.2I2, respectively. Use x0 = rand(3, 1) as the initial condition. Show the plots of
‖xt − x1‖ and ‖yt − y1‖ versus t for three simulated processes.

2. Kalman Filtering: Consider the dynamic system specified in the last home work Problem
2.

(a) Using the program from the last homework, generate a sequence of {xt} and {yt} for
t = 1, . . . , 10.

(b) Write a matlab program to implement the Kalman filter for estimating the mean and
the covariance under the posterior f(xt|y1, . . . , yt). Use {yt} from part 1 to compute
the estimates. Plot the estimation error ‖xt − x̂t|t‖ versus t.

3. Nonlinear Systems: Consider the nonlinear dynamic system described by the equations:

xt = x2
2 + ut

yt =
√

xt + vt

where x0 ∼ N(0, 1), ut ∼ N(0, 1), and vt ∼ N(0, 0.1).

(a) Write a matlab program to simulate the system and the observation process for
t = 1, . . . , 20.

(b) Write a matlab program to implement sequential Monte Carlo algorithm for n = 1000.
(c) Plot the histograms of the samples from the posterior at times t = 1, 5, 10, 15, 20.

4. Sequential Monte Carlo Technique: Consider the nonlinear dynamic system described
by the equations:

xt =
1
2
xt−1 +

25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + ut

yt =
x2

t

20
+ vt

where x0 ∼ N(0, 10), ut ∼ N(0, 10), and vt ∼ N(0, 1).

(a) Write a matlab program to simulate the system and the observation process for
t = 1, . . . , 20.

(b) Write a matlab program to implement sequential Monte Carlo algorithm for n = 1000.
(c) Plot the histograms of the samples from the posterior at times t = 1, 5, 10, 15, 20.
(d) Estimate the posterior means for all t and plot the error ‖xt − x̂t|t‖ versus t.
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Chapter 11

BOOTSTRAP METHODS

11.1 Bootstrapping Methods

Very often in statistical analysis, involving an estimate of an unknown quantity, one is interested
in determining the quality of this estimator. Since an estimator is a random quantity, due to
the fact that data is considered random and an estimator is most often a function of the data,
it is difficult to specify a single quantity that can completely measure the estimator quality.
However, a number of quantities, including standard deviation of the estimator, also called the
standard error, or its bias, or other moments, can all be used towards this purpose. For some
estimators, mostly very simple, it is possible to analytically compute their standard deviations
and biases. In the remaining cases, one looks a computational tool to estimate this quantities.

Definition 30 Bootstrap is a technique that provides a general purpose tool for estimating stan-
dard errors and biases of given estimators, and for assigning measures of accuracy to those
estimators.

Once the technique is described, it becomes clear the central role that sampling and computation
plays in bootstrap methodology. To motivate the basic idea behind bootstrap, we start with
a simple example from [1]. In this example we take a sample mean estimator to estimate
population mean. Sixteen mice were randomly selected for a study: seven assigned to the
treatment group and the remaining nice to the control group. Shown below are their survival
times, in days, following a test surgery. In order to estimate the mean survival time for the
treatment population, we compute the sample mean:

x̄ =
∑

i

xi/7 = 86.86 .

Group Symbol Data
Treatment xi 94 197 16

38 99 141
23

Control yi 52 104 146
10 51 30
40 27 46

167
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The question is: How good is this estimator? Once can compute the bias of this estimator, and
that turns out to be zero. Furthermore, one can compute its standard error using the formula:

√
s2

7
where s2 =

1
7− 1

∑

i

(xi − x̄)2 .

This quantity turns out to be 25.24. Similarly, for the control class the standard error is 14.14.
In case one is interested in overall standard error, it is

√
(25.24)2 + (14.14)2 = 28.93. This

standard error may, for example, be used in deciding if the means associated with treatment
and control classes are equal. The difference between sample means is 30.63 and the overall
standard error is 28.93 giving the ratio 30.63/28.93 = 1.05. Since this statistic is not significant,
one can reject the hypothesis that the two population means are equal. In situation where the
standard error of an estimator is readily available, such hypothesis testing is straightforward.
However, in situations where we do not have analytical expressions for the standard errors (of the
estimators), we need to start estimating them from the data. As an example, let us consider the
question: Are the two population medians equal to each other? One can estimate these medians
using sample statistics, obtaining values 94 and 46, respectively, resulting in a difference 48. Is
this difference statistically significant? To answer this question, one needs standard error of this
estimator which is not available directly. We introduce the use of bootstrap methods to estimate
this standard error and other quantities that can be used to evaluate a given estimator.

11.1.1 Bootstrap Procedure

Let x = (x1, x2, . . . , xn) be observed samples from an underlying probability density function
f(x), or a probability distribution function F (x) =

∫ x
−∞ f(y)dy, and we are interested in studying

an estimator of θ, given by:
θ̂ = s(x) = s(x1, x2, . . . , xn) (11.1)

As the first example, we focus on estimating the standard error of θ̂. We introduce the following
definitions:

Definition 31 (Bootstrap Sample) Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n) be a random vector of quanti-

ties drawn from the set x uniformly with replacement. This vector x∗ is called a bootstrap
sample.

Elements of x∗ are taken from the elements of x but can appear multiple times in x∗.

Definition 32 (Bootstrap Replicate) The evaluation of estimator s on a bootstrap sample
x∗ is called a bootstrap replicate of θ̂. It is denoted by θ̂∗ = s(x∗).

Let X∗1, x∗2, .., and x∗B be B independent bootstrap samples of x, and let θ∗b = s(x∗b),
b = 1, 2, . . . , B, be the resulting bootstrap replicates of θ̂. Then, the bootstrap estimate of the
standard error of θ̂ is the standard deviation of the bootstrap replicates of θ̂:

ŝeB =
1

B − 1

B∑

b=1

(θ∗b − θ̄∗)2, where θ̄∗ =
1
B

B∑

b=1

θ∗b (11.2)

This expression provides a numerical technique for estimating standard errors. In case where
analytical solutions are known, the two solutions coincide as expected. For example, if s(x) =
1
n

∑n
i=1 xi, the sample mean estimator, it can be shown that as B →∞, the estimate:

ŝeB → { 1
n2

n∑

i=1

(xi − s(x))2}0.5 .
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If the factor 1
n2 in the front is replaced by 1

n(n−1) , then this limit will be identical to the standard
error of s(x) given by the analytical expression. Returning to the mouse data (treatment group),
the bootstrap estimate of standard errors are given by the table:

B 50 100 250 500 1000 ∞
Mean 19.72 23.63 22.32 23.79 23.02 23.36

Median 32.21 36.35 34.46 36.72 36.48 37.83

This method provides an ability to compute standard error associated with estimators like
median for which we do not have analytical answers. The estimated standard errors for median
estimator are: (i) treatment group 37.83 and (ii) control group (). Therefore, one can compute
the standard error of the estimator: x̂treat

med - x̂control
med , and decide if this difference is statistically

significant.

11.2 Empirical Distribution and Plug-In Principal

In order to analyze results of bootstrap estimator, we introduce the concept of empirical dis-
tribution. We assume that we are studying samples of a random variable X with a probability
density function f(x) or with a cumulative distribution function F (x) =

∫ x
−∞ f(y)dy. In this

section we will denote the random behavior of X by the distribution function F , rather than
the common technique of using the density function f .

Let x1, x2, . . . , xn be independent samples from F .

Definition 33 (Empirical Distribution) For given observations x1, . . . , xn of a random vari-
able X, its empirical probability distribution function is a discrete distribution that puts the
probability 1

n on each xi. It is denoted by F̂ .

Using Dirac delta function, one can write F̂ as:

F̂ (dx) =
1
n

n∑

i=1

δ(x− xi)dx (11.3)

For any set A, the empirical probability of A is:

F̂ (A) =
∫

A
F̂ dx =

1
n

(number of xis in A) .

Definition 34 (Plug-In Principle) This is a simple method for estimating parameters of X,
or F , where the estimator is given by simply replacing F by F̂ in the definition of that estimator.
Let θ = t(F ) is the parameter of interest where t is an appropriate functional, then the plug-in
estimator of θ is given by θ̂ = t(F̂ ).

As an example, if we are interested in population mean µ =
∫

xF (dx), then its plug-in estimator
is given by:

µ̂ =
∫

xF̂ (dx) =
1
n

∫
x(

n∑

i=1

δ(x− xi))dx =
1
n

n∑

i=1

xi .

If all the information about X comes in form of samples x1, . . . , xn, then the plug-in estimator
is often the best estimator of θ. For an exception, consider the plug-in estimator of the variance
of a population. In case some additional information is available, one can perhaps improve upon
the plug-in estimator. Empirical distribution and plug-in estimator play an important role in
analysis of bootstrap procedures, as described later.
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11.3 Estimation of Standard Error

If F is assumed to be from a parametric family, the resulting bootstrap procedure is called
parametric bootstrap; otherwise, it is called non-parametric bootstrap. We will start with a
discussion of non-parametric bootstrap and will return to the parametric procedure later.

11.3.1 Non-Parametric Estimation

As earlier, let x1, x2, .., xn are samples of a random variable X with an unknown probability
distribution function F , and we are analyzing an estimator of the parameter θ = t(F ), where t
is a known functional. Let the estimator be given by:

θ̂ = s(x1, x2, . . . , xn) .

Here s may be the plug-in estimator t(F̂ ) or something else. We are studying the question:
How accurate is θ̂. One can use one or more of the quantities – bias, standard error, confidence
intervals – associated with θ̂, to answer this question. We will focus on the standard error
first, returning to bias and confidence interval estimation later. For a given observation x =
(x1, x2, . . . , xn), let F̂ be the empirical distribution. Then, elements of a bootstrap sample x∗

can be considered as independent samples from F̂ , x∗i ∼ F̂ . A bootstrap replicate of θ̂ is given
by θ̂∗ = s(x∗).

We are interested in standard error of θ̂, denoted by seF (θ̂) to emphasize the source of
randomness in θ̂ is F , and the bootstrap estimate is given by seF̂ (θ̂∗). The last term denotes the
standard deviation of θ̂∗ with respect to the distribution F̂ . This is called the ideal bootstrap
estimate of the standard error of θ̂. In some cases one can use a direct formula to compute
seF̂ (θ̂∗); in most cases it is further estimated as follows:

Algorithm 41 (Bootstrap Estimation of Standard Error) 1. Select B independent boot-
strap samples x∗1, x∗2, . . . , x∗B, each consisting of n values drawn with replacement from
x = (x1, x2, . . . , xn).

2. Evaluate the bootstrap replication for each bootstrap sample using θ̂∗b = s(x∗b), b =
1, 2, . . . , B.

3. Compute the standard deviation of B replicates of the estimator using:

ŝeB =

(
1

B − 1

B−1∑

b=1

(θ̂∗b − θ̂∗)2
)0.5

, θ̂∗ =
1
B

B∑

b=1

θ̂∗b

Through Monte Carlo reasoning we can conclude that the bootstrap error converges to the ideal
bootstrap error as B gets larger, i.e. limB→∞ ŝeB = seF̂ (θ̂∗).

One might be tempted to exhaustively evaluate all possible x∗ rather than using random
sampling. That brings the question: For a given x, how many distinct bootstrap samples can

we obtain? For a sample size of n, we can have
(

2n− 1
n

)
distinct samples, and that can be

a very large number. For instance, n = 15 results in ∼ 107 distinct samples!

Law School Data
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Index LSAT GPA Index LSAT GPA
1 622 3.23 42 575 2.92
2 542 2.83 43 573 2.85
3 579 3.24 44 644 3.38
4 653 3.12 45 545 2.76
5 606 3.09 46 645 3.27
6 576 3.39 47 651 3.36
7 620 3.10 48 562 3.19
8 615 3.40 49 609 3.17
9 553 2.97 50 555 3.00
10 607 2.91 51 586 3.11
11 558 3.11 52 580 3.07
12 596 3.24 53 594 2.96
13 635 3.30 54 594 3.05
14 581 3.22 55 560 2.93
15 661 3.43 56 641 3.28
16 547 2.91 57 512 3.01
17 599 3.23 58 631 3.21
18 646 3.47 59 597 3.32
19 622 3.15 60 621 3.24
20 611 3.33 61 617 3.03
21 546 2.99 62 637 3.33
22 614 3.19 63 572 3.08
23 628 3.03 64 610 3.13
24 575 3.01 65 562 3.01
25 662 3.39 66 635 3.30
26 627 3.41 67 614 3.15
27 608 3.04 68 546 2.82
28 632 3.29 69 598 3.20
29 587 3.16 70 666 3.44
30 581 3.17 71 570 3.01
31 605 3.13 72 570 2.92
32 704 3.36 73 605 3.45
33 477 2.57 74 565 3.15
34 591 3.02 75 686 3.50
35 578 3.03 76 608 3.16
36 572 2.88 77 595 3.19
37 615 3.37 78 590 3.15
38 606 3.20 79 558 2.81
39 603 3.23 80 611 3.16
40 535 2.98 81 564 3.03
41 595 3.11 82 575 2.74

To illustrate the basic ideas behind bootstrap estimation of standard error, we consider the
following estimation problem. We record average LSAT and GPA scores of students in N = 82
law schools denoting the full population. To demonstrate sampling, we take a sample of n = 15
from this population and estimation the coefficient of correlation between the two variables.
Then, using bootstrap procedure we will estimate the standard error of this estimate.
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Figure 11.1: Evolution of ŝeB versus B for the sampled law school data, for four different runs
of Algorithm 41.

We randomly select n = 15 samples from this population and obtain the following indices:

x = [72 14 80 22 73 82 29 20 57 51 70 81 23 28 60]

For these sample values we obtain an estimate of coefficient of correlation, ˆcorr = 0.6141. In
order to compute the standard error of this estimator, we perform the bootstrap procedure
outlined in Algorithm 41. Shown in Figure 11.1 are four examples of evolution of the bootstrap
error ŝeB versus B. The final value is shown at the top of each plot. The values are similar
enough to imply convergence of ŝeB as B gets larger. In the problem of this scale, one can
compute the exact standard error of ˆcorr and that is found out to be 0.131. Comparing it with
the values in Figure 11.1, we find a reasonable similarity with ŝeB.

What should be the value of B in an experiment?
Another experiment underscores the value of bootstrap in studying statistics of the estimator

ˆcorr. For a fixed x, we can generate bootstrap samples x∗ and compute corresponding replicates
ˆcorr∗. A histogram of these replicates for B = 3000 is shown in Figure 11.2 top right panel.

To compare this distribution, we have also generate a histogram of ˆcorr evaluated on x that
are sampled from the original population using F ; this histogram is shown in the top left panel.
Similarity of the two histograms underlines the importance of bootstrap replication in studying
statistics of ˆcorr. To emphasize this point, we show two more histograms of ˆcorr∗ under two
different random samples of x.

11.3.2 Parametric Estimation

In this case one assumes that the unknown distribution F comes from a parametric family
F ≡ Fθ. Additionally, one assumes that it is possible to sample from Fθ for all θ. Using this
structure, we can often improve the resampling part in Bootstrap procedure. Instead of using
empirical distribution F̂ to generate elements of x∗, we will now use the distribution Fθ̂, for θ̂
estimated from the data x, to generate bootstrap samples.

The parametric bootstrap procedure can be summarized as follows:

Algorithm 42 1. Estimate the value of θ using the given estimator θ̂ = s(x) = s(x1, x2, . . . , xn).

2. Generate bootstrap samples x∗b, b = 1, 2, . . . , B, where each element of x∗b is generated
independently from the estimated distribution Fθ̂.

3. Evaluate bootstrap replicates of the estimator using θ̂∗b = s(x∗b).
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Figure 11.2: Histogram of random values of ˆcorr under two distributions: (i) Top left is for x
sampled from the population using F and ˆcorr is computed for each x, and (ii) Top right is
for ˆcorr when x∗ is sampled from F̂ for a fixed x. Bottom are two more examples of bootstrap
statistics of ˆcorr∗ for two different random samples of x.

4. Compute ŝeB as the standard deviation of θ̂∗b values.

ŝeB =

(
1

B − 1

B−1∑

b=1

(θ̂∗b − θ̂∗)2
)0.5

, θ̂∗ =
1
B

B∑

b=1

θ̂∗b

As an example, assume that the variables (LSAT and GPA scores) in the law school data are
bivariate normal. We can estimate their means and covariances from the sample of size n = 15
taken earlier. Using Algorithm 42 we find a parametric estimate of the standard error of ˆcorr
to be 0.124, not too different from non-parametric estimates and the exact value stated earlier.

11.4 Estimation of Bias

So far we have considered only the standard error of an estimator for its evaluation but other
properties such as bias also play an important role. In this section we focus on the estimation
of bias of an estimator.

Continuing with the earlier setup, let x = (x1, x2, . . . , xn) be the given observation from an
unknown distribution F , and we are studying the given estimator θ̂ = s(x1, x2, . . . , xn). If θ
takes the form t(F ), where t is a given functional, then θ̂ can take the form t(F̂ ), where F̂ is
the empirical distribution based on the sample x.

The bias of an estimator θ̂ is defined to the difference between its expected value and the
true value θ:

biasF = EF [θ̂]− θ or EF [s(x1, x2, . . . , xn)]− t(F ) . (11.4)

F is stated in this expression to emphasize that the expected values are obtained with respect
to this distribution. If biasF = 0 for an estimator, then it is called unbiased. Otherwise, it is a



174 CHAPTER 11. BOOTSTRAP METHODS

0 500 1000 1500 2000 2500 3000
−0.02

0

0.02

0.04

0.06

0.08

0.1

Bootstrap Sample Size B

bi
as

B

0.011

0 500 1000 1500 2000 2500 3000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Bootstrap Sample Size B

bi
as

B

0.012

0 500 1000 1500 2000 2500 3000
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Bootstrap Sample Size B

bi
as

B

0.014

Figure 11.3: Evolution of ˆbiasB versus B for three different runs of Algorithm 43 on the same
sample x of law school data.

biased estimator. We want to estimate biasF using a bootstrap procedure given the sample x
and the estimator s(x). The bootstrap estimator of the bias is given by simply replacing F in
Eqn. 11.4 by the empirical distribution F̂ :

biasF̂ = EF̂ [s(x∗)]− t(F̂ ) .

Note that the estimator s(x) may be different from the plug-in estimator t(F̂ ). biasF̂ is the plug-
in estimate of biasF whether or not s(x) is a plug-in estimate of θ. Similar to the last section,
biasF̂ is the ideal bootstrap estimate of the bias and is further estimated using B bootstrap
samples. An algorithm for this computation is summarized next:

Algorithm 43 (Bootstrap Estimate of Bias)

1. Generate bootstrap samples x∗1, x∗2, . . . , x∗B similar to Algorithms 41-42.

2. Compute bootstrap replicates of the estimator using θ̂∗b = s(x∗b).

3. Estimate the bias using:

ˆbiasB =
1
B

B∑

b=1

θ̂∗b − t(F̂ ) .

Applying this algorithm the law school sample studied in the previous section, we obtain a
ˆbiasB ∼ 0.011. Shown in Figure 11.3 are three examples of evolutions of ˆbiasB versus B on the

same data sample x.
As another example, consider the following data. In an experiment, the blood harmone

level, for a certain harmone, was measured under three different body patches. One patch is the
one being used currently, called the old patch, another is the new patch being tried, and third
represents a placebo. The parameter of interest is:

θ =
E[Y |new patch]− E[Y |old patch]
E[Y |old patch]− E[Y |placebo]

(11.5)

where Y denotes the harmone level. The data was collected for eight different subjects:

# placebo old patch new patch
1 9243 17649 16449
2 9671 12013 14614

. . .
8 18806 29044 26325
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Define two random variables:

Z1 = Y (under new patch)− Y (under old patch)
Z1 = Y (under old patch)− Y (placebo)

and the parameter of interest becomes θ = EF [Z1]
EF [Z2] . Using the plug-in principle, we obtain an

estimate:

θ̂ =
EF̂ [Z1]
EF̂ [Z2]

=
1
8

∑8
i=1(...)

1
8

∑8
i=1(...)

.

Substituting the observed values we get θ̂ = −0.0713. Our goal is to estimate the bias of this
estimator using bootstrap method. For B = 400, we obtain the average value of bootstrap
replicates to be θ̂∗ = −0.0670. Therefore, the bootstrap estimate of the bias is given by:

ˆbiasB = −0.0670− (−0.0713) = 0.0043 .

To check if this value of estimated bias is significant, one can compare it with the standard error:

ŝeB =

√√√√ 1
B − 1

B∑

b=1

(θ̂∗b − θ̂∗)2 = 0.1049 .

Since
ˆbiasB
ŝeB

= 0.041, one can safely decide that the bias is negligible.

Bias Correction: The process of estimation of bias can be used to correct and improve the
estimator. The corrected estimator is given by:

θ̄ = θ̂ − ˆbias . (11.6)

Since the estimated bias is ˆbias = θ̂∗ − θ̂, we have θ̄ = 2θ̂ − θ̂∗. Repeated application of this
correction will further improve the estimator.

To motivate this idea, consider an estimate that underestimates θ by 20%. If the true value
of θ is 1.0, then θ̂ = 0.80. Let us see what the value of estimated bias will be. The process of
estimating bias using bootstrap involves resampling from the data (nonparametric approach), or
from a data simulated from θ̂ (parametric approach). In either case, since the estimates under
values by 80%, we expect the bootstrap average θ̂∗ to be 0.8 × 0.8 = 0.64. The estimated bias
is.
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11.5 Problems

1. Consider the law school data studied in this chapter. Write a matlab program to generate
n = 15 sample pairs (LSAT and GPA) from the population of N = 82. Having obtained
this sample write a matlab program to compute the following:

(a) Estimate the means (µx and µy) and correlation coefficient from the sampled data.

(b) Estimate the standard errors of each of these estimators for B = 25, 50, 100, 200,
500, 1000, and 2000. Either tabulate them or plot curves.

(c) Plot a histogram of the bootstrap replicates of (estimated) correlation coefficients for
the case B = 2000.
To compare, generate n = 15 random samples from the original population and
compute the estimated correlation coefficient. Generate 2000 such values by repeated
sampling of the population to form a second histogram. Compare the two histograms.

2. Consider an artificial data set consisting of the 10 numbers:

1 2 3.5 4 7 7.3 8.6 12.4 13.8 18.1 .

Let θ̂ be the 25% trimmed mean, computed by deleting the smallest two numbers and the
largest two numbers, and then taking the average of the remaining six numbers.

(a) Calculate ŝeB for B = 25, 100, 200, 500, 1000, 2000.

(b) Repeat part (a) using ten different random number seeds and assess the variability
in the estimates. How large should we take B to provide reasonable accuracy?

3. Generate n = 11 samples of a normal random variable with mean zero and variance 3.0.
Fix these values to be x1, . . . , xn. Use your program to estimate the standard error of the
estimator:

s(x1, . . . , xn) = median(x1, x2, . . . , xn) .

Plot its variation against B.

4. Generate n values from a standard normal random variable. Let θ = mean(X), and the
estimator be the median of the observed values. Use bootstrap method to estimate the
bias of this estimator for n = 10, 20 and 100.



Chapter 12

SPECIAL TOPICS

12.1 Dynamic Programming

Dynamic Programming has emerged as an important tool in finding optimal paths in a variety of
situations. This tool is useful in finding an optimal trajectory in situations where the decisions
are made in stages and decisions made in past stages have future consequences. In particular,
the decisions are made at discrete indices. The cost associated with a trajectory is the sum of
costs associated with these individual decisions.

We start with a general state equation for a discrete time system. Let xk ∈ Rn be the state
of a system at time k, and its evolution be governed by the equation:

xk+1 = fk(xk, uk, wk) , k = 0, 1, . . . , N − 1 (12.1)

where uk is the decision selected at time k, wk is a random disturbance (or noise), and fk is a
deterministic function that relates the next state xk+1 to xk, uk, and wk. N is the considered the
final time, or horizon. The cost associated with the system at time k is given by gk(xk, uk, wk),
so that the total cost becomes:

gN (xN ) +
N−1∑

k=0

gk(xk, uk, wk) , (12.2)

where the first term is called the terminal cost. Since wk is a random variable, for each k, the
above cost involving wks is also a random quantity. Therefore, one is often interested in the
expected cost given by:

E[gN (xN ) +
N−1∑

k=0

gk(xk, uk, wk)] (12.3)

where the expectation is computed with respect to the joint probability density of all the wks.
Our goal is solve the problem: for u = (u0, u1, . . . , uN−1)

min
u

E[gN (xN ) +
N−1∑

k=0

gk(xk, uk, wk)], subject to appropriate constraints . (12.4)

This is referred to as the basic problem in dynamic programming.
To motivate dynamic programming, we introduce two examples. The first example of

scheduling is a deterministic problem, while the second one involving inventory control is stochas-
tic problem.

177
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Example 9 (Scheduling) To produce a certain product, four operations: A, B, C, and D,
must be performed on a certain machine. The constraints in the manufacturing process are: B
can be performed only when A has been performed. Similarly, D can be performed only when C
has been performed. As an example, the sequence CDAB is allowed while the sequence CDBA is
not.

We are given costs associated with all the transitions: CAB for following A by B, CCD for
following C by D, and so on. We are also given costs for starting with A and C, SA and SC ,
respectively. This way we can find the cumulative cost of any sequence. As an example, the cost
of CDAB is SC + CCD + CDA + CAB. Our goal is to find a valid sequence that has the smallest
cost. One is to exhaustively list all the paths, compute their cost, and select the optimal one.
Instead, we will study a way that avoid enumerating all possible paths.

Example 10 (Inventory Control) Consider the problem of ordering a certain product at each
of the N periods to meet a (random) demand while minimizing the incurred expected cost. The
decision relates to the quantity of this product ordered at each of the intervals, in such a way that
the purchase cost and storage expenses are minimized. Additionally, there is a cost for having
unmet demand. We set this problem up mathematically as follows.

Let xk be the stock (quantities) of that product available at the kth period, uk be the stock
purchased (and available for consumption) during that period, and wk be the random demand
whose probability distribution is given. To simplify the problem, we make the following assump-
tions. First, we assume that demands at different times, w0, w1,...wN−1, are independent of
each other. Secondly, we assume that excess demand is backlogged and filled as soon as new
inventory becomes available. In other words, any excess demand is not lost but we try to meet
it in the next periods. The models for stock at time k + 1 is:

xk+1 = xk + uk − wk . (12.5)

The cost associated with purchase of a unit is c, resulting in the total purchase cost cuk at time
k. The cost for storage (or excess demand) is given by a function r(xk + uk − wk); and for
example, r(x) = x2 penalizes both the excess demand and excess inventory quadratically. The
total expected cost over N periods is given by:

E[
N−1∑

k=0

(cuk + r(xk + uk − wk))] , (12.6)

and the goal is to minimize this cost by a proper choice of purchase orders u0, u1, ..,uN−1 subject
to the constraint that uk ≥ 0 for all k.

As the inventory problem suggests, our goal is to come up with a formula that computes an
optimal decision uk depending upon the current state xk. In other words, rather than seeking a
fixed number, we seek and optimal policy that calculates the optimal number depending upon
values of the current variables. Let this policy be denoted by the function µk(xk); depending on
the current stock xk, we will order the quantity u = µk(xk). The whole set of policies is denoted
by π = {µ0, µ1, . . . , µN−1}. The total expected cost resulting from a policy set π is given by:

Jπ(x0) = E[gN (xN ) +
N−1∑

k=0

gk(xk, µk(xk), wk)] , (12.7)
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where the expectation is taken over the probability distribution of wks. For a given policy π,
the total expected cost is simply a function of the initial stock x0. In other words, we seek

π∗(x0) = argmin
π

Jπ(x0) . (12.8)

This is a restatement of the basic problem introduced earlier.

Theorem 20 (Principle of Optimality) Let π∗ = (µ∗0, µ
∗
1, . . . , µ

∗
N−1) be an optimal policy

for the basic problem. Assume that when using π∗, a state xi occurs at time i with positive
probability. Consider the subproblem of starting from xi (at time i) and we wish to minimize
the remaining cost:

E[gN (xN ) +
N−1∑

k=i

gk(xk, µk(xk), wk)] .

Then, the truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−1} is optimal for this subproblem.

A simple example of this principle is as follows: consider an optimal (under certain criterion)
path going from Boston to Los Angeles, and assume that this path passes through Chicago.
Then, the principle of optimality states that the optimal path from Chicago to Los Angeles will
be the corresponding portion of the original optimal path.

How can this principle be used for solving problems involving path optimizations? We
illustrate its use in solving the basic problem introduced in Eqn. 12.8. In this instance we will
use a backward version of DP, although one can solve it identically using the forward version
also. We will start with the very last time k = N and work backwards till we reach the initial
time k = 0.

1. For k = N , the cost associated with this stage is

JN (xN ) = gN (xN ) .

This cost does not depend on any input and there is not optimization involved.

2. For k = N − 1, the input is based on the policy µN−1(XN−1). The cost associated with
this policy is given by

JN−1(xN−1) = EwN−1 [JN (xN ) + gN−1(xN−1, µN−1(xN−1), wN−1)] ,

where the term xN is also influenced by µN−1 and is thus a function of it. This influence can
be written as xN = fN (xN−1, µN−1(xN−1), wN−1). Therefore, the optimal cost associated
with this stage is obtained by solving:

J∗N−1(xN−1) = min
µN−1(xN−1)

EwN−1 [gN (fN (xN−1, µN−1(xN−1), wN−1))+gN−1(xN−1, µN−1(xN−1), wN−1)] .

We have also used the fact that JN (xN ) = gN (xN ). Solving this minimization results in
the minimal cost J∗N−1 and the optimal policy µ∗N−1, both as functions of the state XN−1.

3. For k = N − 2, the input is based on the policy µN−2(XN−2). The cost associated with
this policy is given by

JN−2(xN−2) = EwN−2 [J
∗
N−1(xN−1) + gN−2(xN−2, µN−2(xN−2), wN−2)] .
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The function J∗N−1(xN−1)

xN = fN (xN−1, µN−1(xN−1), wN−1). Therefore, the optimal cost associated with this
stage is obtained by solving:

J∗N−1(xN−1) = min
µN−1(xN−1)

EwN−1 [gN (fN (xN−1, µN−1(xN−1), wN−1))+gN−1(xN−1, µN−1(xN−1), wN−1)] .

We have also used the fact that JN (xN ) = gN (xN ). Solving this minimization results in
the minimal cost J∗N−1 and the optimal policy µ∗N−1, both as functions of the state XN−1.

12.2 Perfect Sampling

To be added...

12.3 Statistics of Directional Data

In applications where the variables of interest are directions, the ensuing statistical analysis
takes on additional structure. Consider the problem of estimating direction of an incoming
signal using noisy observations collected from acoustic sensors. If the system lies in a plane,
then the direction lies on a unit circle S1, and the estimation problem is restricted to S1. For
problems involving three-dimensional data collection, the space of directions is given by the
unit sphere S2. Similarly, in applications involving geometries of component one is concerned
with relative orientations of these components in forming a larger structure. For example, in
determining protein structures one is interested in learning the relative angles at which amino
acids and other elements bond each other forming primary, secondary, and tertiary chains. In
such problems requiring inferences on spaces of directions, Sn, with n = 1, 2, . . . ,, the classical
statistical methods do not directly apply. The reason is nonlinearity of Sn; we can not use the
calculus associated with vector spaces, such as Rn, on nonlinear space Sn. Using the geometry
of Sn, one can derive definitions and algorithms for computing statistics of directional data.

In this section, we describe ideas and techniques for computing statistics such as means,
covariances, and even probability distributions on S1. We will define representations, metrics,
probability models, and statistics for S1.

1. Representations: The first question we address is how to represent elements of S1. For
instance, we can denote a point on a circle using its Euclidean coordinates (x1, x2) in R2,
with the additional constraint that x2

1+x2
2 = 1. Ad advantage of this representation is that

each point is represented uniquely, although it uses two variables to represent an element of
a one-dimensional space. A point on S1 can also be denoted by an angle θ ∈ [0, 2π) where
0 is identified with 2π. The representation is unique as along as 2π is not allowed in the
space. An additional representation for planar rotation is given by the special orthogonal
group:

SO(2) = {O ∈ R2×2|OT O = I2,det(O) = 1} .

In words, SO(2) is the set of all 2 × 2 orthogonal matrices with positive determinant.
Elements of SO(2) take the form:

O =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Multiplying a vector in R2 by this O results in its counter-clockwise rotation by an angle
θ around the origin.



12.3. STATISTICS OF DIRECTIONAL DATA 181

2. Distances: Similar to different choices of representations of elements on S1, one can have
different choices of distances between its elements. For the unit vector representation, we
can choose the Euclidean distance in R2. If x = (x1, x2) and y = (y1, y2) are two points
on a circle, then a distance between them can be ‖x− y‖ =

√
(x1 − y1)2 + (x2 − y2)2; this

is also called the chord length. If points on S1 is denoted as x = [cos(θ1) sin(θ1)] and
y = [cos(θ2) sin(θ2)], then the chord length can also be expressed as:

‖x− y‖ =
√

2
√

1− cos(θ1 − θ2) .

A similar distance is obtained by representing elements of S1 as 2× 2 orthogonal matrices
and by computing Euclidean distances between them in R4. This distance turns out to
be:

‖O1 −O2‖ =

√√√√
2∑

i,j=1

(O1(i, j)−O2(i, j))2 = 2
√

1− cos(θ1 − θ2) ,

√
2 times the Euclidean distance in R2. Another distinct possibility is to use the arc length

distance between angle representations of elements of S1. This distance is given by:

d(θ1, θ2) = min{|θ1 − θ2|, |θ1 + 2π − θ2|, |θ1 − 2π − θ2|} .

This expression measures the length of shortest path between θ1, θ2 ∈ S1 on the circle.
These two distances – chord length and arc length – provide two distinct measurements of
separation between points and lead to quite distinct ways of computing statistics on S1.

3. Probability Densities on S1: Since S1 is a compact space with periodic boundaries,
the classical probability models have to be modified. As an example, the commonly used
normal density function is not applicable directly as a probability density on S1 as the
normal density has infinite tails. So, the question is: What probability densities can be
used for statistical modeling on S1? Of course, the simplest choice is the uniform density
function: f(θ) = 1

2π . All elements of S1 occur with equal probability. However, analogous
to the normal random variable on R1, one would like a density with a mean value and a
specifiable variance around it. This role is performed by the von-Mises density function
given by:

f(θ;µ, a) =
1

I0(a)
exp(a cos(θ − µ)) , (12.9)

where µ is the mean and a is a called the dispersion parameter. I0 is the modified Bessel
function of order zero, and serves as the normalizing constant for f . The parameter a
behaves as the inverse of the variance; large value of a implies smaller variance and vice-
versa. Shown in Figure 12.1 are a few examples von-Mises density for a fixed µ and
increasing values of a.

4. Sampling on S1: Next, we consider the problem of simulating a random variable taking
values on S1. Of the three methods studied in Chapter 5 – inverse transform method,
acceptance-rejection method, and composition method – the second one is general enough
to be useful here. Of course, while the strength of an acceptance-rejection method is
its wide applicability, its main weakness is the inefficiency resulting from rejection of
proposed values. Consider the problem of generating random values from a von-Mises
density function with a given mean µ and dispersion a, and let the candidate probability
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a = 0.50 a = 1.00 a = 1.50 a = 5.00 a = 100.00

Figure 12.1: Examples of von-Mises density function on S1 for increasing values of dispersion
parameter a from left to right.

Figure 12.2: Samples from von-Mises density function on S1 for increasing values of accepted
samples from left to right.

be the uniform density function. Then, the bounding coefficient is given by:

f(θ; µ, a)
1/2π

=
2π

I0(a)
exp(a cos(θ − µ)) ≤ 2π

I0(a)
exp(a) ≡ c .

Hence, the ratio:

R(θ) ≡ f(θ; µ, a)
c/2π

= exp(a(cos(θ − µ)− 1)) .

The acceptance-rejection sampling algorithm is given by:

Algorithm 44 (Acceptance-Rejection for Von-Mises Density)
1. Generate U1 ∼ U [0, 1] and set Y = 2πU1.
2. Generate U2 ∼ U [0, 1].
3. If U2 < R(Y ), then set X = Y .

Else, return to Step 1.

Shown in Figure 12.2 are examples of this sampling procedures. Each panel shows his-
tograms of samples generate using this algorithm; the number of samples increases from
left to right. The solid line shows the observed histograms and the broken line shows the
underlying von-Mises density function.

5. Sample Statistics: Now that we know how to sample from a given density, we address
the question of computing sample statistics, such as mean and variance, from the observed
samples. In view of the nonlinear geometry of S1, the definition of statistics is neither
straightforward nor unique. In fact there are two distinct ways of defining statistics:
extrinsic and intrinsic, and we we study them next.
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(a) Extrinsic Statistics: The basic idea here is to embed the underlying space in a larger
Euclidean space, and to compute statistics in that large space. Since the computed
statistic does not lie in the underlying space, one can project the solution into the
required space. We elaborate this procedure for S1, considered as an embedding in
R2. For a set of sampled values {θi, i = 1, 2, . . . , n}, find R2 coordinates of each
according to xi = [cos(θi) sin(θi)] ∈ R2, and find their mean according:

x̄ =
1
n

n∑

i=1

xi R2 .

Since x̄ is not in S1, we can project it to S1 using x̄ 7→ µ̂n ≡ x̄/‖x̄‖. Of course, this
projection is valid only if ‖x̄‖ 6= 0. In case x̄ coincides with the origin, then there
is not preferred projection, and each point of S1 is a valid estimate of the mean µ̂n.
This point, or a set of points µ̂n is called the extrinsic mean of the observed set, and
it depends on the chosen embedding. If we had chosen another way of embedding
S1 in R2, or some other higher dimensional vector space, then the resulting extrinsic
mean may take a different value.
With an eye towards the intrinsic analysis, we redefine the extrinsic mean as follows.
The extrinsic mean can be defined as:

µ̂n = argmin
x∈S1

n∑

i=1

‖x− xi‖2 , (12.10)

where ‖ ·‖ denotes the Euclidean distance as usual. It can be shown that the solution
can be computed in two steps as:

x̄ =
1
n

n∑

i=1

xi ∈ R2 and µ̂n = argmin
x∈S1

‖x− x̄‖ . (12.11)

The last minimization seeks a point on S1 that is closest to x̄ in the Euclidean distance,
and that is obtained by taking the projection x̄/‖x̄‖ as stated earlier. For a probability
density function f on S1, we can define the mean similarly. Let x(θ) be the embedding
of θ in R2, and define a probability density g on R2 such that f(θ) = g(x(θ)) and
g(x) = 0 for x /∈ S1.

µ = argmin
x∈S1

∫

S1
‖x− y‖2g(y)dy ,

and µ is computed in two steps according to: (i) define x̄ =
∫
R2 yg(y)dy, and (ii) form

the projection µ = x̄/‖x̄‖.
The variance associated with a density function is given by:

σ2 = min
x∈S1

∫

S1
‖x− y‖2g(y)dy ,

and the sample variance is given by:

s2 = argmin
x∈S1

n∑

i=1

‖x− xi‖2 .
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(b) Intrinsic Statistics: Similar to Eqn. 12.10, one can define a mean using the arc
length distance on S1 and this approach

6. Monte Carlo Estimation: Let f be a probability density on S1 and for a given function
g : S1 7→ R, we want to estimate a quantity:

φ =
∫

S1
g(θ)f(θ)dθ .

In case g is a complicated function, this integral can not be performed analytically, and
one can resort to a Monte Carlo approximation. The classical MC approach is to generate
independent samples θi ∼ f , and use the approximation:

φ̂n =
1
n

n∑

i=1

g(θi) .
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A.1 Summary of Matrix Analysis

Let A be an m× n matrix, represented by A = (aij) for

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn




We will also denote the columns of A by ai’s, A = [a1 a2 . . . an].
The vectors {a1, a2, . . . , an} are linearly independent if

∑n
j=1 αjaj = 0 implies that αj = 0

for all j. A subset of IRn that is also a vector space is called subspace of IRn. The span of vectors
a1, a2, . . . , an is defined by

span{a1, a2, . . . , an} = {
n∑

j=1

βjaj : βj ∈ IR}

If the vectors {a1, a2, . . . , an} are linearly independent abd b ∈ span{a1, a2, . . . , an} then the
coefficients of b are unique. For a subspace S ⊂ IRn, the vectors {a1, a2, . . . , an} are its basis if

S ⊂ span{a1, a2, . . . , an}

For a m× n matrix A:

• the range space of A is given by

range(A) = {r ∈ IRm : y = Ax, for some x ∈ IRn}

• the null space is given by
null(A) = {x ∈ IRn : Ax = 0}

• the rank of A is defined to be rank(A) = dimension(range(A)).

If A is a n× n matrix,

• rank(A) = rank(AT ).

• dim(null(A)) + dim(range(A)) = n.

185
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Denote ei ∈ IRn to be unit vector such that it has 1 in the i-th location and zero everywhere
else. Let In denote an ntimesn identity matrix. For a n × n matrix A, if XA = In then X is
the inverse of A, denote inv(A) or A−1. If A−1 exists then A is called non-singular.

Let A be an n× n matrix and U, V ∈ IRn×k be rank-k matrices for k ≤ n, then A + UV T is
called the rank k update of A. Assuming that A and In +V T A−1U are non-singular, the inverse
of the update is given by

(A + UV T )−1 = A−1 −A−1U(In + V T A−1U)−1V T A−1 .

This implies that the rank-k correction to the matrix results in a rank-k correction to it’s inverse.
The determinant of a matrix is defined in a recursive fashion. It is given by

det(A) =
n∑

i=1

(−1)j+1aijdet(Aij)

where Aij is (n− 1)× (n− 1) matrix obtained by deleting the i-th row and j-th column.
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