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Chapter 1

Introduction

1.1 Introduction

1.1.1 Problem Statement

The objective of this assignment is that if given observed noisy images, the goal
is to perform a Bayesian analysis of the data. We will assume a prior probability
model and an observation model to obtain a posterior density, and will generate
samples from the posterior



Chapter 2

Methodology

2.1 General Approach

Given an distorted image, by the model D = I + W, where W ~ N(0,03),
the approach must obtain an estimate for the posterior density of the image,
I € R™*™, The image of I, a matrix of R.V’s forming a Markov Random field,
is a model that has prior knowledge. Each pixel, I} is a conditional density
that is only dependent on the values of its vertical and horizontal neighbors of
the given pixel. Given that p is the mean of the horizontal and vertical pixels
of I 1, if is known that I; x ~ N(u,0%)

2.1.1 Bayesian Analysis and Methods

Using Bayesian methods, we can estimate the posterior density of I, by sampling
from the posterior of each I, ;, given D ;, by using the following Bayesian rules.

f11D) = f(oin D (2.1)

f(y)
where f(y) = [ f(D)f(I)dy.

As stated above, since the conditional density is dependent only on certian
neighbor of values, can form the following

F(Lik|Djkes Liv1.ke Li—1,k Ligsrs Lj—1) = f(DjelLi) f( Lk (2.2)
Since I ~ N(p,0%) and Dj ), ~ N(Ij,03) then

Skl Djes Lt ey L1y Ljes1s Lje1) ~ N(p, 03) - N(1; j,03) (2.3)

2.1.2 Metropolis Hastings

Metropolis Hastings is used in to approximate sampling from complicated dis-
tributions. In general, the goal is to generate samples of a random variable
distributed according to the density, say f(x). Moreover, we assume that the
conditional density, say ¢(y|z) with the following properities

1. Vz, sampling from ¢(y|z) is possible



2. The support of ¢ contains the support of f(x)

3. q(y|z) is known and symmetric in z and y.

Given a function and a conditional density with the above properities, the
M-H algorithm is the following

1. Choose an intial condition xg in support of f(x)
Construct z,, using the following steps:

2. Generate y ~ q(y|z:)

3. Update the state to x;y1 by using

B y probabilty p(z¢,y)
Ti+1 = { x; probabilty 1 — P(l’tay) (2.4)
f(Wa(zly)

f(@)aylz)’
plifed, as such the case when

where p(z,y) = min ( 1). Under certain conditions, p can be sim-

1. In cases where the density is independent of the current state, g(y|z) =
q(y), then becomes an independent M-H. Therefore the function becomes

p(x,y) = min (f(y)q(:”) 1) (2.5)

2. When ¢(y|x) is symmetric in z and y, then the likelihood rate appears,
because the function becomes

p(x,y) = min (JCE?;; 1) (2.6)

2.1.3 Gibbs Sampler

Another technique for generating Markov Chains is the process of Gibbs Sam-
pling. The goal is to generate samples by constructing a MC in R", from a
random vector, (z1,xs,...,x,), with joint pdf, f(z1,zs,...,2,). In order to
use Gibbs sampling for this problem, will assume the conditional densities are
known, so f(x;|y;) for i # j. Therefore will obtain univariate densities to apply
the algorithm to update from z* to z*+!

1. Generate X!t ~ fy (x| X3, X35, X5)
2. Generate X%H ~ fo(zo| X35, XE, X1)

3. Generate 24 it

In the procedure, each pixel, I is processed until a complete sweep which
will result in a new prior distrubtion, which in turn will be used in the next
iteration. Therefore, in order to do a complete sweep, will sample from the
posterior using the Gibbs sampling method, and update the posterior on each
squenece.



Chapter 3

Matlab Code

3.1 Main Code

clear
clc

load DataFilel.mat
I=D1;
[n1,n2]=size(D1);
sigmal=10;
sigma2=30;

figure(1)

imagesc(I(:,:));

title(’Initial Image’);

saveas(figure(1), [’Initial Image DataFile5.png’]l);

for i=1:6;
for j=1:ni1;
for k=1:n2;
mid = meani(j,k,I);
if rand>=0.5;
I(j,k) = random(’normal’,mid,sigmal,1,1);
else
I(3,k)=I(j,k);
end;
end;
end;

W=random(’normal’,0,sigma2,nl,n2);
D=I+W;

I2 = Gibbs(I,D,sigmal,sigma?2);
I=12;



figure(2)

subplot(2,3,1);

imagesc(I);

figname = sprintf(’Image of sweep %d’,i+1);

title (figname);

saveas (figure(2), [’Pictures of sweep’ int2str(i) ’ of DataFilel.mat (sigma=10).png’]l);
end;

3.2 MH Code

function [mid] = mean1(j,k,x)
[n1,n2]=size(x);
if (j==1) && (k==1)
mid=(x(j,k+1)+x(j+1,k))/2;
end;

if (j==1) && (k==n2)
mid=(x(1,k-1)+x(j+1,k))/2;
end;

if (j==nl1) && (k==1)
mid=(x(j-1,k)+x(j,k+1))/2;
end;

if (j==n1) && (k==n2)
mid=(x(j,k-1)+x(j-1,k))/2;
end;

if (j==1 && k~=1 && k~=n2)
mid=(x(j+1,k)+x(j,k-1)+x(j,k+1))/3;
end;

if (j==n1 && k™=1 && k"=n2)
mid=(x(j-1,k)+x(j,k-1)+x(j,k+1))/3;
end;

if (j7=1 &% j~=nl && k==1)
mid=(x(j-1,k)+x(j+1,k)+x(j,k+1))/3;
end;

if (j7=1 & j~=nl1 && k==n2)
mid=(x(j-1,k)+x(j+1,k)+x(j,k-1))/3;
end;

if (j7=1 && j~=n1) && (k"=1 && k~=n2)
mid=(x(j-1,k) +x(j+1,k)+x(j,k+1)+x(j,k+1))/4;
end;



3.3 Gibbs Code

function [gib] = Gibbs(I,D,sigmal,sigma?2)
[n1,n2]=size(I);
for j=1:ni1;
for k=1:n2;
mid=meanl (j,k,I);

end

mu
sd

(mid/sigmal+D(j,k)/sigma2)*(1/((1/sigmal) "2 +(1/sigma2)~2));
sqrt (1/((1/sigmal) "2+ (1/sigma2)"2));

gib(j,k)=random(’normal’ ,mu,sd,1,1);

end



Chapter 4

Results

4.1 Comparing images for different o;

4.2 Plots Datafilel.mat
4.2.1 Orginal Plot of Datafilel.mat

Image Datafilel.png

Figure 4.1: Orginal Image of Datafilel.mat

Images of Datafilel after each sweep



Image of sweep 2 Image of sweep 3 Image of sweep 4

of sweeps of datafilel.png

Figure 4.2: Image at each sweep for o1 = 10

Image of sweep 2 Image of sweep 3 Image of sweep 4

of sweepb of datafilel (sigma=20).png

Figure 4.3: Image at each sweep for o3 = 20

4.3 Plots Datafile2.mat

4.3.1 Orginal Plot of Datafile2.mat

Images of Datafile2 after each sweep
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Figure 4.4: Image at each sweep for o3 = 100
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Figure 4.5: Orginal Image of Datafile2.mat

4.4 Plots Datafile3.mat
4.4.1 Orginal Plot of Datafile3.mat

Images of Datafile3 after each sweep
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Figure 4.6: Image at each sweep for o1 = 10
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Figure 4.7: Image at each sweep for o1 = 20

4.5 Plots Datafile4.mat

4.5.1 Orginal Plot of Datafile4.mat

Images of Datafile4 after each sweep
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Figure 4.8: Image at each sweep for o1 = 100
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Image Datafile3.png
Figure 4.9: Orginal Image of Datafile3.mat

4.6 Plots Datafile5.mat
4.6.1 Orginal Plot of Datafile5.mat

Images of Datafile5 after each sweep
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Figure 4.10: Image at each sweep for o1 = 10
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Figure 4.11: Image at each sweep for o = 20
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Figure 4.12: Image at each sweep for o7 = 100
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Figure 4.13: Orginal Image of Datafile4.mat
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Figure 4.14: Image at each sweep for o1 = 10
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Figure 4.15: Image at each sweep for o1
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Figure 4.16: Image at each sweep for o; = 100
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Figure 4.17: Orginal Image of Datafile5.mat
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Figure 4.18: Image at each sweep for o1 = 10
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Figure 4.20: Image at each sweep for o; = 100
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Chapter 5

Conclusion

In this paper, it was found that the combinations of techniques applied above
improved the qualty of the images at o1 = 10. As 07 increased, the images
appeared to be more distorted, by adding more noise. As seen in plots, for
smaller values of o1, the images are closer to I, where increasing o, images
appear closer to D
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