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Abstract

This paper investigates the time–varying behavior of systematic risk
for eighteen pan–European sectors. Using weekly data over the period
1987−2005, four different modeling techniques in addition to the stan-
dard constant coefficient model are employed: a bivariate t–GARCH(1,1)
model, two Kalman filter based approaches, a bivariate stochastic volatil-
ity model estimated via the efficient Monte Carlo likelihood technique as
well as two Markov switching models. A comparison of the different mod-
els’ ex–ante forecast performances indicates that the random walk process
in connection with the Kalman filter is the preferred model to describe
and forecast the time–varying behavior of sector betas in a European con-
text.
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1 Introduction

Beta represents one of the most widely used concepts in finance. It is used by
financial economists and practitioners to estimate a stock’s sensitivity to the
overall market, to identify mispricings of a stock, to calculate the cost of capital
and to evaluate the performance of asset managers. In the context of the capi-
tal asset pricing model (CAPM) beta is assumed to be constant over time and
is estimated via ordinary least squares (OLS). However, inspired by theoreti-
cal arguments that the systematic risk of an asset depends on microeconomic
as well as macroeconomic factors, various studies over the last three decades,
e.g. Fabozzi and Francis (1978), Sunder (1980), Bos and Newbold (1984) and
Collins et al. (1987), have rejected the assumption of beta stability.

While many papers have concentrated on testing the constancy of beta,
only minor efforts have been made to explicitly model the stochastic behavior
of beta. In this study, different techniques will be approached to model and
to analyze the time–varying behavior of systematic risk. As from a practical
perspective betas prove to be especially useful in the context of sectors, the focus
will be on betas at the industry rather than at the stock level.1 The increasing
importance of the sector perspective in Europe, induced by the advancement
of European integration and the introduction of a single currency, is reflected
in the widespread sectoral organization of most institutional investors as well
as in the creation of sector specific financial products such as sector exchange
tradable funds, sector futures and sector swaps in recent years. In spite of
the empirical evidence generated that systematic risk on the industry level in
Australia, India, New Zealand, the UK and the US is time–variant, similar work
in a pan–European context is still missing. This paper aims to close this gap
by empirically analyzing the stochastic behavior of beta for eighteen European
sector portfolios.

The first technique for estimating time–varying betas is based upon the mul-
tivariate generalized autoregressive conditional heteroskedasticity (M–GARCH)
model, first proposed by Bollerslev (1990), which belongs to the class of GARCH
models, introduced by Engle (1982) and Bollerslev (1986). The conditional vari-
ance estimates as produced by a GARCH(1,1) model are utilized to generate
the series of conditional time–varying betas. This approach has been applied in
various studies to model time–varying betas. For example, Giannopoulos (1995)
uses weekly local stock market data over the period from 1984 until 1993 to es-
timate time–varying country betas. Brooks et al. (1998) estimate conditional
time–dependent betas for Australian industry portfolios using monthly data
covering the period from January 1974 to March 1996. Li (2003) studies the
time–varying beta risk for New Zealand sector portfolios by analyzing daily data
from January 3, 1997 to August 28, 2002. Although the popular GARCH(1,1)
model is able to describe the volatility clustering in financial time series as well
as other prominent stylized facts of returns, such as excess kurtosis, the stan-
dard GARCH model does not capture other important properties of volatility,
e.g. asymmetric effects on conditional volatility of positive and negative shocks.2

Therefore, nonlinear extensions of the basic GARCH model have been proposed
and adopted to the modeling of time–varying betas. For example, Braun et al.

1See Yao and Gao (2004) for details.
2A review of GARCH and related models and their empirical applications in finance can

be found in Bollerslev et al. (1992), Pagan (1996) and Franses and van Dijk (2000, Chap. 4).
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(1995) employ an exponential GARCH (EGARCH) model to test for predic-
tive asymmetry in beta and Faff et al. (2000) estimate time varying systematic
risk of UK industry indices by an EGARCH and a threshold ARCH (TARCH)
specification.

Although GARCH can be considered as being practitioners’ preferred tool
to model and forecast volatility, the class of Stochastic Volatility (SV) models
represents an attractive alternative. By adding an additional contemporane-
ous shock to the return variance, SV models are more flexible in characteriz-
ing volatility dynamics than GARCH models. Koopman et al. (2004) and Yu
(2002), for example, compare the ability of SV models to that of alternative
ARCH–type models to predict stock price volatility and conclude that the SV
model outperforms its competitors. However, despite its theoretical appeal and
its empirical superiority over GARCH models, the SV model is rarely used in
practice for volatility forecasting or to model time–varying betas. This can be
mainly attributed to the difficulties related to parameter estimation which is
substantially more difficult for SV models. Nevertheless, the results presented
by Li (2003) who estimates and compares non–constant betas for New Zealand
industry portfolios based on different techniques, including GARCH and SV,
encourage further research in the applicability of SV models to estimate time–
varying betas.

An alternative way of modeling the time–varying behavior of beta is based on
the state space form of the CAPM. In contrast to volatility–based models where
time–varying betas are calculated indirectly by utilizing estimated conditional
variance series, the state space approach allows to model and estimate time–
varying betas directly by using the Kalman filter (KF). Different models for
the dynamic process of conditional betas have been proposed. For US data
Fabozzi and Francis (1978) and Collins et al. (1987) modeled beta as a random
coefficient. The RC model has also been applied by Wells (1994) for Swedish
stocks and by Faff et al. (2000) for UK industry indices. Two of the most
prominent alternatives to the model time–varying betas are the random walk
(RW) model, recently employed by Lie et al. (2000) for Australian financial
stocks and by Li (2003) for New Zealand industry portfolios, and the mean–
reverting (MR) model which has been used by Bos and Newbold (1984) for
US data, by Brooks et al. (1998) and by Groenewold and Fraser (1999) for
Australian sectors. For their investigation of the systematic risk of Australian
industrial stock returns Yao and Gao (2004) also considered an autoregressive
moving average model (ARMA) as well as an MR model in which the mean
beta is allowed to vary over time as proposed by Wells (1994).

The last approach that will be considered in this study uses a Markov switch-
ing framework which belongs to the large class of Markov switching models
introduced in the seminal works of Hamilton (1989, 1990). Although Markov
switching regression models have been applied in many different settings, the
literature dealing with time–varying betas is relatively thin. Fridman (1994)
considered monthly data from 1980 to 1991 to analyze the excess returns of
three oil corporation securities by fitting a two–state regression model result-
ing in an improved assessment of systematic risk associated with each security.
Besides, he noted two effects: beta increases whenever the process is in the
more volatile state and the state associated with higher volatility tends to be
less persistent than the state associated with lower volatility. Huang (2000) also
considered a Markov switching model with one high–risk and one low–risk state.
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Using monthly return data from April 1986 to December 1993, he performed
several test to check the consistency of different states with the CAPM and
rejected the hypothesis that the data were from the same state.

The main purpose of the present paper is to apply various modeling tech-
niques to describe the time–varying behavior of European sector betas and to
compare their respective ability to explain sector returns by movements of the
overall market. This paper aims at contributing a comparison of modeling tech-
niques to the literature that also incorporates non–standard procedures such as
stochastic volatility and Markov switching.

The remainder of this study is organized as follows. Section 2 outlines the
competing modeling techniques. Section 3 describes the data and reports stan-
dard summary statistics. The empirical results are discussed in section 4 and
section 5 concludes.

2 Methodology

2.1 The Unconditional Beta in the CAPM

As a starting point, market risk is treated as being constant. The benchmark for
time–varying betas is the excess-return market model with constant coefficients
where an asset’s unconditional beta can be estimated via OLS:

Rit = αi + βiR0t + εit, εit ∼ (0, σ2
i ), (1)

with

β̂i =
Cov(R0, Ri)

V ar(R0)
, (2)

where R0t denotes the excess return of the market portfolio and Rit denotes
the excess return to sector i for i = 1, . . . , I , each for period t = 1, . . . , T . The
error terms εit are assumed to have zero mean, constant variance σ2

i and to be
independently and identically distributed (IID). Following the Sharpe (1964)
and Lintner (1965) version of the CAPM, where investors can borrow and lend
at a risk-free rate, all returns are in excess over a risk-free interest rate and αi

is expected to be zero.3 Table 3 summarizes the OLS estimates of the excess
market model. As expected the intercept is not different from zero at the 5%
level for any sector. If not mentioned otherwise, αi is assumed to be zero for
the rest of this paper.

2.2 GARCH Conditional Betas

While in the traditional CAPM returns are assumed to be IID, it is well es-
tablished in the empirical finance literature that this is not the case for returns
in many financial markets. Signs of autocorrelation and regularly observed
volatility clusters where quiet periods with small absolute returns are followed
by volatile periods with large absolute returns contradict the assumption of
independence and an identical return distribution over time. In this case the
variance–covariance matrix of sector and market returns is time–dependent and

3See Campbell et al. (1997, Ch. 5) for a review of the CAPM.
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a non–constant beta can be defined as

β̂GARCH
it =

Cov(Rit, R0t)

V ar(R0t)
, (3)

where the conditional beta is based on the calculation of the time–varying condi-
tional covariance between a sector and the overall market and the time–varying
conditional market variance.

A bivariate version of the M–GARCH model as introduced by Bollerslev
(1990) is used to compute time–varying betas. Let Rt be a (2 × 1) time–
series vector (Rit, R0t) where Rit represents the return series of sector i and
R0t denotes the return series of the broad market. Consider a system of n = 2
conditional mean equations:

Rt = µ + εt (4)

where µ = (µ1, µ2)
′ is a (2× 1) vector of constants and εt = (ε1t, ε2t)

′ denotes a
(2× 1) time series vector of residuals, conditioned by the complete information
set Ωt−1. A general bivariate GARCH model for the two–dimensional process
εt|Ωt−1 is given by

εt = ztH
1/2
t , (5)

where zt is a two–dimensional IID process with zero mean and the identity ma-
trix I2 as covariance matrix. These properties of zt together with equation (5)
imply that E[εt|Ωt−1] = 0 and E[εtε

′

t|Ωt−1] = Ht with

Ht =

[

h11t h12t

h21t h22t

]

, (6)

where Ht should depend on lagged errors εt−1 and on lagged conditional co-
variance matrices Ht−1. The most influential parameterizations of Ht can be
summarized as follows.

The vech model represents a general form of the bivariate GARCH(1,1)
model. Engle and Kroner (1995) employed the vech( � ) operator4 to stack all
the non–redundant elements of H t into a column vector:

vech(Ht) = Ψ∗ + Γ∗vech(εt−1ε
′

t−1) + ∆∗vech(Ht−1), (7)

with Ψ∗ being a (n(n + 1)/2 × 1) vector and Γ∗ and ∆∗ being (n(n + 1)/2 ×
n(n+ 1)/2) matrices. In the bivariate case equation (7) becomes





h11t

h21t

h22t



 =





ψ∗

11

ψ∗

21

ψ∗

22



+





γ∗11 γ∗12 γ∗13
γ∗21 γ∗22 γ∗23
γ∗31 γ∗32 γ∗33



×





ε21,t−1

ε2,t−1ε1,t−1

ε22,t−1





+





δ∗11 δ∗12 δ∗13
δ∗21 δ∗22 δ∗23
δ∗31 δ∗32 δ∗33



×





h11,t−1

h21,t−1

h22,t−1



 .

(8)

Though this general representation of a bivariate t–GARCH(1,1) model is very
flexible, it has two major drawbacks. The total number of to be estimated

4The vech( � ) operator vertically stacks the matrix elements on or below the principal di-
agonal and thus transforms an (n×n) matrix into an ((n(n+ 1)/2)× 1) vector, see Hamilton
(1994, pp. 300–301).
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parameters equals n(n+ 1)/2 + n2(n+ 1)2/2 and grows at a polynomial rate.5

Besides, it is not easy to find restrictions for Γ∗ and ∆∗ which guarantee positive
definiteness of Ht.

The diagonal vech model is a first way to restrict equation (7) and to reduce
the number of parameters. Bollerslev et al. (1988) restrict the matrices Γ∗

and ∆∗ to be diagonal such that the conditional covariance between ε1t and ε2t

depends only on lagged cross–products of the residuals and lagged values of H t.
In this specification each element of the conditional covariance matrix follows a
univariate GARCH(1,1) model:

hjkt = ψjk + γjkεj,t−1εk,t−1 + δjkhjk,t−1, (9)

where ψjk , γjk and δjk each denote the jkth element of the (n×n) matrices Ψ,
Γ and ∆, respectively. These matrices are implicitly given by Ψ∗ = vech(Ψ),
Γ∗ = diag(vech(Γ)) and ∆∗ = diag(vech(∆)). As each element of H t has three
parameters, only nine parameters remain to be estimated. Positive definiteness
of Ht is guaranteed if Ψ is positive definite and Γ and ∆ are positive semi–
definite.6

The BEKK model of Engle and Kroner (1995) is another way to restrict the
number of parameters in equation (7). Instead of restricting Γ and ∆, quadratic
forms of these matrices are used in order to guarantee positive definiteness of
Ht. The model is given by

Ht = Ψ + Γ′εt−1ε
′

t−1Γ + ∆′Ht−1∆, (10)

with Ψ being symmetric and positive definite. The number of parameters equals
(5n2+n)/2 so that for the bivariate case two more unknowns than in the diagonal
vech setting have to be estimated.

In this study, the constant correlation model by Bollerslev (1990) is employed
to reduce the computational complexity of the general multivariate GARCH(1,1)
model. By introducing the assumption of constant conditional correlations be-
tween εit and εjt the diagonal vech model with constant correlations is defined
as

hjjt = ψjj + γjjε
2
j,t−1 + δjjhjj,t−1, (11)

hjkt = ρjk

√

hjjt

√

hkkt, for all j 6= k, (12)

where equation (11) and (12) denote the conditional variance of the returns of
index j and the conditional covariance between the returns of indices j and k,
respectively, with ρjk being the constant correlation coefficient between Rit and
Rjt. In the bivariate case we are left with only seven (= n(n+5)/2) parameters.7

The univariate GARCH(1,1) models in equation (11) are covariance–stationary
if and only if γjj + δjj < 1. The conditional covariance matrix is guaranteed to
be positive definite for positive values of the constant correlation ρjk and the
parameters ψjj , γjj and δjj .

It can be seen from the descriptive statistics in Table 2 that the sector re-
turns in the selected sample are highly leptokurtic. To account for the widely

5See Pagan (1996).
6See Franses and van Dijk (2000, Ch. 4).
7The computations are carried out using the object–oriented matrix programming language

Ox 3.30 of Doornik (2001) together with the package G@RCH 2.3 by Laurent and Peters (2002).
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recognized fact that the unconditional distributions of high–frequency financial
return data have fat tails, a standardized Student’s t–distribution as proposed
by Bollerslev (1987) is considered for the innovations zt in equation (5). The
results in Table 4 suggest that the chosen t–GARCH setup, where the ’t’ refers
to the Student’s t–distribution, with non–zero constants in the mean equation
is superior to the alternatives of zero constants or normally distributed innova-
tions.

Recalling equation (2), the conditional time–varying beta of sector i can now
be estimated as the ratio of the conditional covariance between sector i and the
broad market and the conditional market variance:

β̂tGARCH
it =

Cov(R0t, Rit)

V ar(R0t)
=
h0it

h00t
=
ρ0i

√
hiit√

h00t

. (13)

2.3 Stochastic Volatility Conditional Betas

While in the GARCH framework with only one error term, the conditional
mean and the conditional volatility of the return series are characterized by
the same shocks, an alternative way of modeling time–varying volatility was
introduced by Taylor (1986) who included an additional contemporaneous shock
to the return variance. These models, referred to as SV models, offer a higher
degree of flexibility and imply excess kurtosis which qualifies them to be more
appropriate in describing financial time series.8 Therefore, SV models should
be an alternative to GARCH–type approaches in the econometric modeling of
time–varying betas.

SV models are usually represented by their first two moments. The mean
equation is given by

Rit = µit + σitεit, εit ∼ NID(0, 1), t = 1, . . . , T, (14)

where Rit is the return series of index i and µit denotes the expectation of Rit.
Following Hol and Koopman (2002) the mean is usually either modeled before
estimating the process of volatility or taken to be zero for SV models, implying
µit = 0.9 The disturbances are assumed to be identically and independently
normally distributed with zero mean and unit variance. The variance equation
is given by

σ2
it = σ∗2

i exp(vit), (15)

where the actual volatility σ2
it is the product of a positive scaling factor σ∗2 and

the exponential of the stochastic process vit which is modeled as a first–order
autoregressive process:

vit = φivi,t−1 + σηiηit, ηit ∼ NID(0, 1), vi1 ∼ NID

(

0,
σ2

ηi

1 − φ2
i

)

, (16)

with the persistence parameter φi being restricted to be positive and smaller
than one to ensure stationarity of vit. The disturbances εit and ηit are assumed

8For further discussion and a general introduction to SV models, see e.g. Ghysels et al.
(1996) or Shephard (1996).

9Alternatively, some authors use mean–corrected returns, R∗

it, defined as R∗

it = ln(Pit) −

ln(Pi,t−1) − (1/T )
∑T

i=0
(ln(Pit) − ln(Pi,t−1)), see e.g. Kim et al. (1998).
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to be uncorrelated, contemporaneously and at all lags. Franses and van Dijk
(2000, Ch. 4) offer a useful interpretation of the two different shocks where εit
represents the contents of new information (good or bad news) and ηit reflects
the shocks to the intensity of the flow of news.

Due to the inclusion of an unobservable shock to the return variance, the
variance becomes a latent process which cannot be characterized explicitly with
respect to observable past information. As a consequence, the parameters of the
SV model cannot be estimated by a direct application of standard maximum
likelihood techniques. Several procedures for estimating SV models have been
proposed, ranging from various method of moments estimators as proposed
by Taylor (1986) or Melino and Turnbull (1990), quasi–maximum likelihood as
proposed by Harvey et al. (1994), a Bayesian approach employing a Monte Carlo
Markov Chain (MCMC) technique as presented by Jacquier et al. (1994), the
Monte Carlo likelihood (MCL) estimator as proposed by Danielsson (1994) to
the efficient MCL developed by Sandmann and Koopman (1998). The fact that
there is still no consensus on how to estimate SV models explains why this class
of volatility models has been rarely used in practice so far.

In this study, SV models are estimated via the efficient MCL technique
whose finite sample performance compares well to that of MCMC while being
less computationally intense.10 Once the smoothed conditional variance series
of market and sector returns, σ2

0t and σ2
it, have been obtained, equation (12) is

recalled to construct the time–varying sector betas as

β̂SV
it =

ρ0iσit

σ0t
. (17)

2.4 Kalman Filter Based Approaches

In contrast to the volatility–based techniques where the conditional beta series
could only be constructed after the conditional variances of the market and
sector i have been obtained first, the state space approach allows to model and
to estimate the time–varying structure of beta directly. Based on the assumption
of normality, state space models are estimated numerically through a recursive
algorithm known as the Kalman filter.11

In state space form, the excess-return market model in equation (1) with αit

treated as zero is modified to become an observation equation:

Rit = βitR0t + εit, (18)

where the dynamic process of the unobserved time–varying state vector, βit, is
defined by the state equation:

βit = φiβi,t−1 + ηit, (19)

with φi denoting the constant transition parameter. The observation error εit

10The SV models are estimated using Ox 3.30 by Doornik (2001) together with the package
SsfPack by Koopman et al. (1999). The relevant Ox code for estimating the SV models has
been downloaded from www.feweb.vu.nl/koopman/sv/.

11For introductory surveys on the KF and its application, see e.g. Meinhold and Singpurwella
(1983), Harvey (1989) or Hamilton (1994, Ch. 13).
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and the state equation error ηit are assumed to be Gaussian:

E(εitε
′

iτ ) =

{

σ2
i for t = τ

0 otherwise,
(20)

E(ηitη
′

iτ ) =

{

σ2
ηi for t = τ

0 otherwise,
(21)

and to be uncorrelated at all lags:

E(εitη
′

iτ ) = 0 for all t and τ. (22)

The constant variances σ2
i and σ2

ηi and the transition parameter φi are the
hyperparameters of the system. A number of alternative specifications for the
stochastic process of βit may be derived by formulating different assumptions
on φi.

The random walk (RW) model represents the first state space specification
of the evolution of the time–varying beta in this paper. By setting the transition
parameter φi to unity, the beta coefficient develops as a random walk:

β̂KFRW
it = βi,t−1 + ηit, (23)

where the two hyperparameters σ2
i and σ2

ηi have to be estimated.12

Alternatively, the dynamic process of beta can be modeled as being mean-
reverting. In the mean–reverting (MR) model an autoregressive process of order
one, AR(1), with a constant mean is used for the evolution of beta:

β̂KFMR
it = β̄∗

i + φiβi,t−1 + ηit, (24)

with a constant β̄∗

i and the AR(1) parameter |φi| < 1. In the empirical lit-
erature, equation (24) is often rearranged to allow for a meaningful economic
interpretation according to which β̄i can be interpreted as the mean beta over
the entire sample and φi as the ”speed parameter” which measures how fast the
time–varying beta returns to its mean:13

β̂KFMR
it = β̄i + φi

(

βi,t−1 − β̄i

)

+ ηit, (25)

where overall four parameters (σ2
i , σ2

ηi, β̄i, φi) have to be estimated.

2.5 The Markov Switching Approach

The Markov switching approach also belongs to the class of state space models.
The implicit assumption of models switching between different regimes is that
the data result from a process that undergoes abrupt changes, induced e.g. by
political or environmental events.

In the Markov switching framework, the systematic risk of an asset is de-
termined by the different regimes of beta, driven by an unobserved Markov
chain. The switching behavior of beta is governed by a transition probability

12The KF models were computed using Ox 3.30 by Doornik (2001) together with the pack-
age SsfPack by Koopman et al. (1999).

13See e.g. Bos and Newbold (1984), Faff et al. (2000) or Yao and Gao (2004).
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matrix (TPM). Under the assumption of a model with two states, the TPM is
of the form

Γ =

(

γ11 γ12

γ21 γ22

)

, (26)

where the entries of each line describe the interaction of the two regimes beta
is drawn from: γ11 is the probability of staying in the first state from period t
to period t + 1, γ12 is the probability of switching from the first to the second
state. The second row of the Γ can be interpreted analogously.

In this paper two Markov switching models are employed. The first one
is a simple Markov switching regression (MS) model. Let {s1, . . . , sT } denote
the state sequence representing the different regimes; driven by the TPM of a
stationary Markov chain, the states take values in {1, . . . ,m}. Following Huang
(2000) the regime–switching CAPM is specified by

Rit = αist
+ βist

R0t + ηit, ηit ∼ N(0, σ2
ist

), (27)

which means that the regression coefficients (αist
, βist

) are selected according
to the value of state st. Note that the model is designed to accommodate both
the correlations across return series and the serial correlation of the individual
series.

The second approach entails additional assumptions on the market returns
to synchronize the switching times of beta with different market conditions and
will be denoted as Markov switching market (MSM) model. Ryden et al. (1998)
showed that the temporal and distributional properties of daily return series can
be well governed by a hidden Markov model with normal or double–exponential
variables. Following their approach, the dynamics of the assets’ returns follow
the same regime–switching regression of equation (27) with the distribution of
the market returns being given by:

R0t = µst
+ εst

, εst
∼ N(0, σ2

0st
). (28)

This means that in the MSM model the regime of the market changes together
with the regime of the regression setup as they depend on the same state se-
quence. This synchronous behavior offers the advantage of allowing for direct
conclusions from the market conditions on the asset’s risk represented by beta.

The estimation procedures for our Markov switching models are based on
the maximum likelihood method for hidden Markov models.14 The likelihood
LT of both models is available in an explicit form and hence the parameters
of the models can be estimated directly by numerical maximization of the log-
likelihood function (MacDonald and Zucchini, 1997, cf.). The estimates for the
model parameters include inter alia the state–dependent betas for each asset i
and state j denoted by β̂MS

ij or β̂MSM
ij .

As mentioned above, the state sequence cannot be observed. Therefore,
information about the state–distribution at time t has to be derived in order
to obtain in–sample estimates as well as out–of–sample forecasts of conditional
betas. The desired probabilities of a sojourn in state j at time t can be com-
puted by so–called smoothing, filtering and state prediction algorithms (see

14All estimations procedures were carried out using the statistical software package R 2.1.1
(R Development Core Team, 2005) which can be downloaded from www.r-project.org. The
code for the estimation, decoding and forecasting algorithms are provided upon request.
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e.g. Ephraim and Merhav, 2002). Given the state–distribution at time t, es-
timates for the time–varying betas can be calculated by weighting the state–

dependent β̂
MS/MSM
ij with the probability of a sojourn in the corresponding

state:

β̂
MS/MSM
it =

m
∑

j=1

[

βij · P (st = j|R01, . . . , R0T , Ri1, . . . , RiT )
]

, (29)

with

P (St = j|R01, . . . , R0T , R11, . . . , R1T ) =

{

αt(j)βt(j)
LT

for 1 ≤ t ≤ T
αt(j)(Γ

t−T )•j

LT
for T < t,

(30)
where αt(j), βt(j) are the forward-/backward probabilities from the forward–
backward algorithm (Rabiner, 1989) and (Γt−T )•j denotes the jth column of
the matrix Γt−T .

3 Data and Preliminary Analysis

3.1 Data Series

The data used in this paper are weekly excess returns calculated from the to-
tal return indices for eighteen pan–European industry portfolios, covering the
period from 2 December 1987 to 2 February 2005. All sector indices are from
STOXX Ltd. (2004), a joint venture of Deutsche Boerse AG, Dow Jones &
Company and the SWX Group that develops a global free-float weighted index
family, the Dow Jones (DJ) STOXX

�

indices. Table 1 presents the first two
tiers of the ICB sector structure.

Table 1: The DJ STOXX
�

sector classification

Industries Supersectors

Basic Materials Basic Resources, Chemicals

Consumer Goods Automobiles & Parts, Food & Beverage, Personal &

Household Goods

Consumer Services Media, Retail, Travel & Leisure

Financials Banks, Financial Services, Insurance

Health Care Health Care

Industrials Construction & Materials, Industrial Goods & Services

Oil & Gas Oil & Gas

Technology Technology

Telecommunications Telecommunications

Utilities Utilities

The DJ STOXX
�

600 return index, which includes the 600 largest stocks in
Europe, serves as a proxy for the overall market. All indices are expressed in
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euros as common currency.15 Weekly excess returns between period t and t− 1
for index i are computed continuously as

Rit = ln(Pit) − ln(Pi,t−1) − rf
t , (31)

where Pit is Wednesday’s index closing price in week t, ln is the natural loga-
rithm and rf

t is the risk–free rate of return, calculated from the 3–month Frank-
furt Interbank Offered Rate (FIBOR).16 All data were obtained from Thomson
Financial Datastream.

3.2 Univariate Statistics

Descriptive statistics for the data are provided in Table 2. Over the entire
sample, the Healthcare sector offered the highest mean excess return per week
(0.17%), while the lowest was seen in Automobiles & Parts (0.02%). The risk
as measured by the standard deviation ranges from 0.0203 for the defensive
Utilities to 0.0422 for the high risk sector Technology. The market and all its
segments are leptokurtic. Except for Healthcare and Travel & Leisure all sectors
and the market are negatively skewed. The Jarque–Bera statistic confirmes the
departure from normality for all return series at the 1% significance level.

4 Empirical Results

4.1 Unconditional Beta Estimates

The estimated parameters of the OLS model are reported in Table 3. According
to the efficient market hypothesis and the implications of the Sharpe–Lintner
version of the CAPM, all alphas should be zero. It can be seen from the first
column that none of the estimated alphas is different from zero at an acceptable
significance level. In comparison, the estimated betas are all significant at a
higher than 1% level. Over the entire sample the lowest beta was estimated for
Food & Beverages (0.65), while the beta for Technology (1.49) was the highest,
confirming the sector’s high-risk profile as discussed in subsection 3.2. From
the reported coefficients of determination (R2) it can be seen that depending
on the respective sector between 43% (Oil & Gas) and 83% (Industrial Goods
& Services) of the total return variation can be explained by movements of the
overall market.

The last two columns provide the results of the classical Lagrange mul-
tiplier (LM) ARCH test for heteroskedasticity, as proposed by Engle (1982).
With the exception of Retail, the null hypothesis of homoskedastic disturbances
can be rejected at the 3% level for all sectors for both lag orders tested.

4.2 Modeling Conditional Betas

In the chosen bivariate GARCH framework, fitting univariate t–GARCH(1,1)
models to the excess returns of each sector and the overall market is the first step

15As foreign exchange fluctuations have an impact on the results and currency risk cannot
be segregated from market risk when returns are translated into a common currency, caution
is needed when interpreting any results.

16The FIBOR yields fibt are percentage per annum. They were converted to weekly rates

rf
t , where rf

t = (1 + fibt/100)
1/52 − 1.
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in computing time–varying betas. The results are summarized in Table 5. The
coefficients for the ARCH and GARCH terms, γi and δi, are always significantly
different from zero. Besides, they are all positive and sum up to less than unity so
that positive definiteness and stationarity is guaranteed. For Basic Resources,
Technology and Telecommunications the models exhibit the highest level of
persistence while the models for Travel & Leisure, Utilities and Retail are the
least persistent. With the exception of five sectors, the constant ψi is different
from zero at the 5% level, while all but two constant terms µi in the mean
equation are statistically significant at the 1% level. As outlined in subsection
2.2, the correlation coefficient ρoi between a sector and the overall market is
the other factor that is needed to calculate GARCH conditional betas. The
correlations, estimated over the entire sample, are reported in the last column
of Table 5. All correlations are higher than 0.65, indicating a strong linear
association between the market index and each sector.

Stochastic volatility models represent the second technique from the class
of volatility models used in this study to model time–varying betas. Table 6
summarizes the estimation results of the considered SV models for European
sectors over the full sample period. The asymmetric 95% confidence intervals
for the persistence parameter φi are generally narrow indicating a high level of
significance. The degree of volatility persistence ranges from a low for Travel
& Leisure to the highest level for Technology and Telecommunications which
compares well to the GARCH results with the difference that the degree of
persistence is generally closer to unity for the SV models. For the two other
parameters, both the asymmetric confidence intervals as well as the range of
parameter estimates across sectors, are wider. For the sectors Retail, Travel
& Leisure and Utilities the combination of a low persistence parameter and
a high value for σ2

ηi, which measures the variation of the volatility process,
implies that the process of volatility is less predictable for these three sectors.
The highest levels of volatility as indicated by a high scaling parameter σ∗2

i are
found for Automobiles & Parts and the three sectors Telecommunications, Media
and Technology (TMT) which broadly corresponds to the calculated standard
deviations of weekly returns in subsection 3.2.

The Kalman filter has been applied to the two proposed state equations
(23) and (25) according to which the state vector βit is either modeled as a
random walk or as a mean–reverting process. Even though the mean-reverting
model requires the estimation of two additional parameters, the AIC is generally
smaller than for the simpler random walk specification (Table 7). While the
estimated variance for the observation equation, σ2

i , is generally higher in case of
the RW parameterization, the opposite is true with respect to σ2

ηi, the variance of
the dynamic process of the time–varying beta. For the MR model two additional
parameters have been estimated with β̄i comparing well to the estimated OLS
betas. Across all sectors the estimates for the speed parameter, the second
extra parameter of the MR model, can be clustered into three groups. In the
first group, φi is close to unity, so that the resulting series of conditional betas
become similar to the RW series. In the second group with values for φi around
0.5 the conditional betas return faster to their individual means which implies
more noisy series of conditional betas. In the third group where φi is close to
zero, the resulting beta series follow a random coefficient model.

Depending on the chosen starting values, the Kalman filter is likely to pro-
duce large outliers in the first stages of estimation. In order to avoid an unfair
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bias against the Kalman filter, the first fifty conditional beta estimates for any of
the chosen modeling techniques will not be included in the subsequent analyses.

The fit of the Markov switching MS and MSM models to the data has been
tested with a different number of regimes. According to the AIC, two states
turned out to be sufficient and therefore the results summarized in Table 8
always concern two–state models. As expected, all alphas are very close to zero
and for almost all sectors the high– and the low–risk states can be well identified.
However, the two state–dependent betas are lying quite close together in case
of the MS model for the sectors Industrials and Retail and in case of the MSM
model for Industrials. Generally, the MSM model is characterized by a less
well separation of the two regimes; the state–dependent betas are lying closer
together than the betas of the corresponding MS model. This phenomenon can
be explained by the lack of flexibility of the former model due to the enforced
synchronous switching with the market regimes. Besides, it should be mentioned
that the estimates for the expected market returns µ1 and µ2 of the MSM model
are very close to zero which supports Ryden et al. (1998) who proposed means
equal to zero for daily return series. The estimates for γ11 and γ22, mostly
taking values between 95% and 99%, show a high persistence for both the high–
and the low–risk state. We cannot confirm the observation of Fridman (1994)
who reported lower persistence of the high–risk state.

4.3 Comparison of Conditional Beta Estimates

According to the discussed estimation results for the various modeling tech-
niques, time–varying betas have been calculated for eighteen sectors. All condi-
tional beta series are summarized by their respective mean and range in Table 9.

Even though the mean conditional betas are usually close to their OLS
peers, a wide range of mean betas can be observed for every individual sector.
Outstanding in this context are the means of the SV based conditional beta
series which are smaller than unity for every sector. Theoretically, this is not
meaningful as the aggregate of all sectors constitutes the overall market. The
widest beta range across sectors is observed for the MR model, followed by the
GARCH and the RW approach. On the other hand, the minimum and maximum
of conditional betas estimated by the two Markow switching approaches do not
deviate far from their respective mean.

Figure 1 illustrates general similarities and differences between the alterna-
tive conditional beta series for the Insurance sector. As already indicated by the
range of conditional betas, the KF and GARCH based techniques display the
greatest variation. The time series of systematic risk exhibit the greatest ampli-
tude when modeled by the MR model which seems to be the technique that is
most flexible in capturing changes in a sector’s sensitivity to the overall market
over time. With the exception of the Markov switching framework the evolution
of the Insurance beta during the TMT bubble and its aftermath is described
in a similar way by all techniques. Between observations 600 and 650, which
corresponds to the twelve months period before the peak of the TMT bubble, a
sharp fall of the Insurance beta below unity is indicated. In the subsequent two
years the sector’s beta more than doubles where the highest values are reached
within the MR and the GARCH framework. The Markov switching models are
not able to reflect the developments and dramatic shifts in terms of market risk
in the course of the TMT bubble. Especially the MSM model switches back and
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force between the different states without giving a clear direction of the sector’s
sensitivity to the overall market.

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0 Garch OLS 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
SV OLS 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
KFRW OLS 

0 150 300 450 600 750 900

1

2

3 KFMR OLS 

0 150 300 450 600 750 900

1.1

1.2

1.3

1.4

1.5
MS OLS 

0 150 300 450 600 750 900

1.1

1.2

1.3

1.4

1.5
MSM OLS 

Figure 1: Various conditional betas for the Insurance sector

As mentioned in subsection 4.2, within the KF family the characteristics
of the stochastic process of systematic risk depend on the speed parameter.
Figures 6 & 7 illustrate that a beta though originally modeled as a mean–
reverting process will resemble its RW counterpart the more close to unity the
speed parameter gets. In case of Food & Beverages, Healthcare and Personal
& Household Goods the MR betas literally follow a random walk. On the
other hand Automobiles & Parts, Banks, Construction & Materials, Financial
Services, Industrial Goods & Services, Insurance, Media, Oil & Gas, Retail and
Travel & Leisure are highly mean-reverting.

Irrespective of the chosen modeling technique, the return of betas to their
pre–bubble levels can be observed for most sectors at the end of the sample
period. Visualizations of the conditional beta time series that are based on one
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of the volatility or Markov switching models are shown in Figures 4 & 5 and
Figures 8 & 9, respectively.

4.4 In–Sample Forecasting Accuracy

The results above strongly indicate that systematic risk is not stationary and
that the nature of the time–varying behavior of beta depends on the chosen mod-
eling technique. To determine which approach generates the relatively best mea-
sure of time–varying systematic risk, the different techniques are formally ranked
based on their in–sample forecast performance. Following previous studies, the
first two criteria used to evaluate and compare the respective in–sample forecasts
are the mean absolute error (MAE) and the mean squared error (MSE):

MAEi =
1

T

T
∑

t=1

|R̂it −Rit|
T

, (32)

MSEi =
1

T

T
∑

t=1

(R̂it −Rit)
2

T
, (33)

where T is the number of forecast observations and R̂it = β̂itR0t denotes the
series of return forecasts for sector i, calculated as the product of the conditional
beta series estimated over the entire sample and the series of market returns
which is assumed to be known in advance. The forecast quality is inversely
related to the size of these two error measures. The resulting MAE and MSE
for the different modeling techniques are reported in Tables 10 & 11.

A comparison of the different modeling techniques confirms the expectation
that the forecast performance of standard OLS is indeed worse than for any
time–varying technique. However, compared to the volatility based techniques
and the Markov switching approaches the degree of OLS’ inferiority is remark-
ably low.

For the investigated sample, the two KF techniques clearly outperform their
competitors. With respect to both error measures, the MR model ranks first
on each occasion. In case where the conditional betas are modeled as a random
walk the second lowest MAE is generated fifteen (MSE: seventeen) times.
Whenever the RW model does not rank second, it is outperformed by the SV
model. On average theMAE (MSE) for the RW model is 15.5% (29.2%) higher
than the error measures for the overall best model. Within the class of volatility
models, the SV approach seems to be better qualified to model the time–varying
behavior of systematic risk than the well established GARCH model. Although
the average errors are higher for the SV model, which is mainly due to its bad
performance in connection with Technology, the MAE (MSE) of the SV model
is lower in 11 (13) out of 18 occasions. Within the Markov switching framework,
the conditional MSM betas produce approximately the same forecast errors as
the volatility based beta series while the MS betas lead to lower average errors
than the MSM and the volatility techniques.

While the mean error criteria can be used to evaluate the average forecast
performance over a specified period of time for each model and each sector
individually, they do not allow for an analysis of forecast performances across
sectors. As from a practical perspective it is interesting how close the rank order
of forecasted sector returns corresponds to the order of realized sector returns at
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any time, Spearman’s rank correlation coefficient (ρS
t ), a non–parametric mea-

sure of correlation that can be used for ordinal variables in a cross–sectional
context, is introduced as the third evaluation criteria. After ranking the fore-
casted and observed sector returns separately for each point of time, where the
sector with the highest return ranks first, ρS

t can be computed as

ρS
t = 1 − 6

∑It

i=1D
2
it

It(I2
t − 1)

, (34)

with Dit being the difference between the corresponding ranks for each sector
and It being the number of pairs of sector ranks, each at time t. Figure 2
illustrates how the average in–sample rank correlations develop over time.
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This figure shows the recursively estimated in–sample means of Spearman’s rank correlations

for the various modeling techniques.

Figure 2: In–sample rank correlation coefficients

The highest in–sample rank correlations are observed for the MR (ρS = 0.46)
and the RW model (0.26). In contrast to the used error criteria above, the third
best result is observed for the SV (0.24) and not for the MS (0.17) model which
only ranks fifth behind the GARCH approach (0.18). The MSM model (0.16)
does only slightly better than OLS (0.15).

To sum up, the in–sample comparison suggests that time–varying European
sector betas as estimated by a KF approach are superior to the analyzed alter-
natives. This is in line with previous findings presented by Brooks et al. (1998)
and Faff et al. (2000) for industry portfolios in Australia and the UK.

4.5 Out–Of–Sample Forecasting Accuracy

While the in–sample analysis is useful to assess the various techniques’ ability to
fit the data, the indispensable extension is to evaluate the forecast performances
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out–of–sample. For that purpose 100 beta and return forecasts based on 100
samples of 520 weekly observations are estimated for each technique. Within
this rolling window forecast procedure, the sample is rolled forward by one
week while the sample size is kept constant at 520. The first sample, starting
24 March 1993 and ending 5 March 2003, is used to calculate the out–of–sample
conditional beta forecasts on 12 March 2003 based on the chosen modeling
technique. The 100th beta forecast is then generated based on the last sample
starting 15 February 1995 and ending 26 January 2005.

Tables 12 & 13 present the resulting out–of-sample mean error measures.
It is again a KF approach that offers the best forecast performance. However,
out–of–sample it is the RW not the MR model that yields the lowest average
errors. Within the class of volatility models, no clear winner can be proclaimed
as GARCH and SV approximately produce the same forecast errors. The worst
forecast performances are observed for the two Markov switching models which
do even worse than standard OLS. While the average errors related to OLS are
higher than for the volatility based techniques, the average relative ranks are
even lower, being only inferior to the KF models. Altogether, the superiority of
the KF is not as dominant as in–sample. For both error measures the average
rank of the overall best model drops to around 3, compared to an average rank
of 1 for the best technique in–sample. Only in four (four) occasions the RW
(MR) model yields the lowest MSE. The SV model and OLS each yield the
lowestMSE three times. The remaining four first ranks are distributed between
GARCH (2) and the two Markov switching models with one top rank each.

These findings are broadly confirmed in a cross–sectional setting as shown
in Figure 3. The RW model (ρS = 0.25) produces the best out–of–sample
forecasts for beta, followed closely by the GARCH and the SV model (each
0.24). According to the rank correlation criteria, the out–of–sample forecast
performance of the MR model (0.23) is only equivalent to that of OLS (each
0.23). The Markov switching techniques (each 0.21) produce the worst forecasts.

Generally, it can be observed that the estimated in– and out–of–sample fore-
cast errors depend positively on the standard deviation of a sector and negatively
on the reported R2 of the excess market model. On the one hand this suggests
that the ability to generate precise forecasts diminishes with an increasing level
of return volatility. On the other hand there might be third factors that influ-
ence the time–varying behavior of systematic risk which haven’t been taken into
account. On average the highest forecast errors are observed for Automobiles
& Parts and the high–risk TMT sectors which have in common that they first
strongly outperformed the overall market during the New Economy bubble at
the end of the 1990s and then jointly collapsed in the course of the subsequent
bear market. Non–high risk sectors with a high level of forecast errors are Basic
Resources, Healthcare, Oil & Gas and Retail. While the first three sectors show
a low R2 in the excess market model, Retail is neither considered being a high–
risk sector nor is the estimated R2 particularly low. A possible explanation for
a forecast error above average might be the sector’s dependency on the British
Pound: as more than 55% of the Retail sector is composed of UK stocks,17 the
sector’s volatility is positively related to the volatility of the Pound. Thus, an
increase in Retail’s beta is not necessarily caused by a shift in the sector’s sensi-

17On April 26th 2005 58.2% of the Retail sector’s market cap was listed in British Pound
(source: www.stoxx.com).
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This figure shows the recursively estimated out–of–sample means of Spearman’s rank corre-

lations for the various modeling techniques.

Figure 3: Out–of–sample rank correlation coefficients

tivity to the overall market but could rather result from an additional currency
risk.

5 Conclusion and Outlook

Despite the considerable empirical evidence that systematic risk is not constant
over time, only a few studies deal with the explicit modeling of the time–varying
behavior of betas. Previous studies focused on Australia, India, New Zealand,
the US and the UK and employed primarily Kalman filter and GARCH based
techniques. The present paper contributes an investigation of time–varying be-
tas for pan–European industry portfolios and extends the spectrum of modeling
techniques by a) incorporating two Markov switching approaches whose capa-
bilities to model time–varying betas have not been compared to the proposed
alternatives yet and b) by incorporating the stochastic volatility model which
so far has only be used by Li (2003) to model time–varying betas.

The in–sample forecast performances of the various techniques suggest that
independent from the utilized modeling approach, the extent to which sector
returns can be explained by movements of the overall market is always higher
for time–varying betas than in connection with standard OLS. This implies con-
firmation of previous findings that sector betas are not stable over time. Based
on the employed evaluation criteria the in– and out–of–sample forecast perfor-
mances of the various techniques are compared. The results of this study indi-
cate that time–varying sector betas are best described by a random walk process,
estimated by the use of the Kalman filter. While the in–sample results over-
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whelmingly support the KF approach, its superiority is only partly maintained
out–of–sample where the advantage over its competitors is less pronounced. The
findings of Li (2003) who reports that the SV approach outperforms the other
techniques cannot be confirmed in a European context. Remarkably, the out–
of–sample forecast performance of the two proposed Markov switching models
is inferior to that of any time–varying alternative and also to OLS.

The methodology used in this study can be extended in a couple of directions.
First of all, it would be of interest to see how the forecasting accuracy of the
various models depends on the chosen length of the forecasting period. Secondly,
the performance of the Kalman filter could be further improved by following the
proposition of Moonis and Shah (2002) who apply a modified Kalman filter with
heteroskedastic errors to account for the phenomenon of volatility clustering.
Another way to further optimize beta forecasts, is to use exogenous factors to
explain the time–varying behavior of systematic risk. Some first steps into this
direction have been made by Abell and Krueger (1989) and Andersen et al.
(2005) who link betas to macroeconomics and by Liodakis et al. (2003) who
use company fundamentals, momentum and liquidity data as determinants of
time–varying betas.
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6 Appendix: Tables and Figures

Table 2: Descriptive statistics of excess weekly returns

This table summarizes the weekly excess returns data of the eighteen DJ STOXX
�

sector
indices and the DJ STOXX

�

Broad as European market portfolio, covering the period from
2 December 1987 to 2 February 2005.

Sector Na Mean Std. Dev. Skew. Kurt. JBb

Broad 897 0.0010 0.0231 −0.30 6.83 560.81

Automobiles 897 0.0002 0.0330 −0.56 6.30 452.55

Banks 897 0.0014 0.0270 −0.28 7.49 765.94

Basics 897 0.0012 0.0284 −0.24 5.13 177.41

Chemicals 897 0.0009 0.0257 −0.19 7.87 890.35

Construction 897 0.0008 0.0245 −0.32 4.97 159.58

Financials 897 0.0007 0.0259 −0.63 8.73 1286.90

Food 897 0.0010 0.0212 −0.27 5.86 317.60

Healthcare 897 0.0017 0.0253 0.18 5.52 242.96

Industrials 897 0.0007 0.0248 −0.47 5.69 303.08

Insurance 897 0.0004 0.0334 −0.85 13.97 4606.70

Media 897 0.0007 0.0342 −0.62 9.89 1832.40

Oil & Gas 897 0.0015 0.0267 −0.02 5.56 245.73

Personal 683 0.0009 0.0257 −0.22 4.95 113.83

Retail 683 0.0006 0.0298 −0.78 10.32 1594.50

Technology 897 0.0007 0.0422 −0.55 6.68 553.00

Telecom 897 0.0013 0.0344 −0.18 5.36 212.89

Travel 683 0.0007 0.0234 0.10 6.36 321.69

Utilities 897 0.0015 0.0203 −0.45 5.15 203.02

aIn September 2004 STOXX Ltd. switched its sector definitions from the DJ Global Classi-
fication Standard to the Industry Classification Benchmark and replaced the sectors Cyclical
Goods & Services, Non–Cyclical Goods & Services and Retail (old) by the new sectors Travel
& Leisure, Personal & Household Goods and Retail (new), respectively. As the history for
the newly formed sectors only goes back to 31 December 1991, for these three sectors only
683 instead of 897 weekly observations are available.

bJB is the Jarque–Bera statistic for testing normality. In the selected sample the null
hypothesis of normality can be rejected at the 1% significance level for every sector as well as
for the overall market.
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Table 3: OLS estimates of excess market model

This table presents summary statistics for OLS estimation of the excess market model. Figures
in parentheses denote p–values.

Sector α β R2 ARCH(1)a ARCH(6)

Automobiles −0.001 1.148 0.64 26.14 53.38

(0.150) (0.000) (0.000) (0.000)

Banks 0.000 1.062 0.82 14.95 44.81

(0.409) (0.000) (0.000) (0.000)

Basics 0.000 0.902 0.54 61.08 171.64

(0.610) (0.000) (0.000) (0.000)

Chemicals 0.000 0.907 0.66 39.15 86.82

(0.989) (0.000) (0.000) (0.000)

Construction 0.000 0.886 0.69 25.91 47.81

(0.776) (0.000) (0.000) (0.000)

Financials 0.000 0.997 0.79 8.45 79.92

(0.470) (0.000) (0.004) (0.000)

Food 0.000 0.648 0.50 17.74 184.76

(0.443) (0.000) (0.000) (0.000)

Healthcare 0.001 0.777 0.50 5.00 58.89

(0.121) (0.000) (0.025) (0.000)

Industrials 0.000 0.977 0.83 12.44 58.00

(0.391) (0.000) (0.000) (0.000)

Insurance −0.001 1.268 0.77 16.03 74.91

(0.106) (0.000) (0.000) (0.000)

Media −0.001 1.215 0.67 21.26 74.82

(0.423) (0.000) (0.000) (0.000)

Oil & Gas 0.001 0.758 0.43 28.53 114.59

(0.268) (0.000) (0.000) (0.000)

Personal 0.000 0.907 0.74 84.39 95.63

(0.924) (0.000) (0.000) (0.000)

Retail 0.000 0.949 0.61 1.61 7.26

(0.519) (0.000) (0.204) (0.297)

Technology −0.001 1.489 0.66 15.38 98.73

(0.337) (0.000) (0.000) (0.000)

Telecom 0.000 1.194 0.64 31.76 65.18

(0.910) (0.000) (0.000) (0.000)

Travel 0.000 0.770 0.65 7.15 38.80

(0.863) (0.000) (0.008) (0.000)

Utilities 0.001 0.694 0.62 11.44 36.20

(0.068) (0.000) (0.001) (0.000)

aARCH(p) is the LM statistic of Engle’s ARCH test for lag order p. With the exception of
Retail the null of no heteroskedasticity can be rejected at the 3% significance level for both
lag orders tested for all sectors.
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Table 4: Comparison of different GARCH(1,1) specifications

To decide i) whether a non–zero constant should be included in the specification of the condi-
tional mean equation (4) and ii) whether the innovations zt in equation (5) should be modeled
by a normal or a standardized Student’s t-distribution, four different setups have been ana-
lyzed. This table reports the estimated values of the corresponding log–likelihood functions
and the Akaike Information Criteria. In the selected sample, the specification with a non–zero
constant in the conditional mean equation and a standardized Student’s t-distribution for the
innovations zt offers the best fit.

Sector [zt ∼ N,µ 6= 0] [zt ∼ N,µ = 0] [zt ∼ t,µ 6= 0] [zt ∼ t,µ = 0]

lnLa AICb lnL AIC lnL AIC lnL AIC

Broad 2215.9 −4.93 2209.6 −4.92 2228.5 −4.96 2220.1 −4.94

(3) (4) (1) (2)

Automobiles 1871.9 −4.17 1870.7 −4.16 1892.5 −4.21 1890.6 −4.21

(3) (4) (1) (2)

Banks 2112.8 −4.70 2108.0 −4.69 2132.4 −4.74 2124.1 −4.73

(3) (4) (1) (2)

Basics 1988.2 −4.42 1985.5 −4.42 2013.8 −4.48 2009.6 −4.47

(3) (4) (1) (2)

Chemicals 2110.1 −4.70 2106.3 −4.69 2117.5 −4.71 2112.2 −4.70

(3) (4) (1) (2)

Construction 2112.9 −4.70 2109.8 −4.70 2129.7 −4.74 2124.3 −4.73

(3) (4) (1) (2)

Financials 2144.4 −4.77 2137.4 −4.76 2175.7 −4.84 2168.1 −4.83

(3) (4) (1) (2)

Food 2240.5 −4.99 2238.1 −4.98 2257.3 −5.02 2252.1 −5.01

(3) (4) (1) (2)

Healthcare 2083.3 −4.64 2076.7 −4.62 2090.4 −4.65 2083.8 −4.64

(3) (4) (1) (2)

Industrials 2144.2 −4.77 2137.8 −4.76 2158.9 −4.80 2150.9 −4.79

(3) (4) (1) (2)

Insurance 1973.8 −4.39 1971.3 −4.39 2006.3 −4.46 2003.1 −4.46

(3) (4) (1) (2)

Media 1927.4 −4.29 1925.1 −4.29 1941.8 −4.32 1937.5 −4.31

(3) (4) (1) (2)

Oil & Gas 2048.7 −4.56 2044.0 −4.55 2056.8 −4.58 2052.6 −4.57

(3) (4) (1) (2)

Personal 1570.8 −4.59 1567.7 −4.58 1577.9 −4.61 1574.2 −4.60

(3) (4) (1) (2)

Retail 1466.1 −4.28 1464.6 −4.28 1521.2 −4.44 1517.6 −4.43

(3) (4) (1) (2)

Technology 1780.0 −3.96 1776.9 −3.96 1793.5 −3.99 1788.3 −3.98

(3) (4) (1) (2)

Telecom 1863.2 −4.15 1858.5 −4.14 1866.1 −4.15 1861.0 −4.14

(2) (4) (1) (3)

Travel 1640.8 −4.79 1637.4 −4.79 1652.3 −4.82 1649.7 −4.82

(3) (4) (1) (2)

Utilities 2270.9 −5.05 2265.7 −5.05 2284.4 −5.08 2276.1 −5.07

(3) (4) (1) (2)

alnL denotes the value of the corresponding log–likelihood function.
bAIC is the Akaike Information Criterion, calculated as: AIC = −2(logL/n) + 2(k/n),

with k parameters and n observations. Figures in parentheses denote the rank of the respective
AIC where the model with the smallest AIC ranks first.
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Table 5: Parameter estimates for t–GARCH(1,1) models

This table reports the estimated parameters for the t–GARCH(1,1) models for the eighteen
DJ STOXX

�

sectors and the DJ STOXX
�

broad as market index. Figures in parentheses
denote p-values.

Sector µ ψ × 104 γ δ DF a γ + δ ρ0i

Broad 0.0025 0.1645 0.1323 0.8370 9.2864 0.9693 �

(0.000) (0.033) (0.000) (0.000) (0.000)

Automobiles 0.0017 0.2467 0.0969 0.8812 7.0286 0.9781 0.8030

(0.055) (0.042) (0.000) (0.000) (0.000)

Banks 0.0026 0.1229 0.1189 0.8658 7.8772 0.9847 0.9067

(0.000) (0.036) (0.000) (0.000) (0.000)

Basics 0.0022 0.0521 0.0571 0.9383 6.6280 0.9954 0.7323

(0.004) (0.257) (0.004) (0.000) (0.000)

Chemicals 0.0022 0.2654 0.1434 0.8175 9.4763 0.9608 0.8142

(0.001) (0.024) (0.000) (0.000) (0.001)

Construction 0.0023 0.2404 0.1085 0.8515 8.2580 0.9600 0.8328

(0.001) (0.027) (0.000) (0.000) (0.000)

Financials 0.0025 0.1627 0.1345 0.8435 6.2656 0.9780 0.8866

(0.000) (0.089) (0.002) (0.000) (0.000)

Food 0.0020 0.2325 0.1088 0.8383 7.7865 0.9471 0.7040

(0.001) (0.016) (0.000) (0.000) (0.000)

Healthcare 0.0027 0.2343 0.1012 0.8626 10.5350 0.9637 0.7085

(0.000) (0.058) (0.001) (0.000) (0.001)

Industrials 0.0026 0.1624 0.1370 0.8407 8.2634 0.9777 0.9089

(0.000) (0.027) (0.000) (0.000) (0.000)

Insurance 0.0018 0.1358 0.0901 0.8958 6.0133 0.9859 0.8751

(0.012) (0.025) (0.000) (0.000) (0.000)

Media 0.0023 0.1793 0.1019 0.8801 7.7610 0.9820 0.8176

(0.003) (0.036) (0.000) (0.000) (0.000)

Oil & Gas 0.0022 0.1992 0.0780 0.8918 9.4255 0.9699 0.6559

(0.004) (0.105) (0.003) (0.000) (0.001)

Personal 0.0023 0.5125 0.1612 0.7644 12.1030 0.9255 0.8622

(0.006) (0.034) (0.001) (0.000) (0.003)

Retail 0.0024 0.6665 0.1395 0.7801 6.1656 0.9197 0.7789

(0.007) (0.025) (0.002) (0.000) (0.000)

Technology 0.0029 0.1389 0.1048 0.8887 8.6957 0.9935 0.8129

(0.001) (0.048) (0.000) (0.000) (0.000)

Telecom 0.0029 0.1440 0.0855 0.9017 15.4200 0.9872 0.8004

(0.001) (0.077) (0.000) (0.000) (0.034)

Travel 0.0017 0.5387 0.1523 0.7469 8.4281 0.8992 0.8038

(0.022) (0.027) (0.003) (0.000) (0.000)

Utilities 0.0024 0.3829 0.1473 0.7626 7.7585 0.9098 0.7878

(0.000) (0.012) (0.000) (0.000) (0.000)

aDF denotes the number of degrees of freedom of the Student’s t–distribution which has
been estimated along with the other parameters of the t–GARCH(1,1) models.
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Table 6: Parameter estimates for SV models

This table reports the estimated parameters for the SV models for the eighteen DJ STOXX
�

sectors and the DJ STOXX
�

broad as market index. Figures in parentheses denote the lower
and upper bounds of the asymmetric asymptotic 95% confidence intervals.

Sector φ σ2
η σ∗2 lnL Q(12)a

Broad 0.966 0.039 3.677 −1913.77 16.07

(0.924;0.986) (0.018;0.084) (2.498;5.414)

Automobiles 0.964 0.041 7.651 −2244.29 10.77

(0.920;0.984) (0.020;0.087) (5.255;11.139)

Banks 0.977 0.035 4.362 −2009.16 14.89

(0.947;0.990) (0.018;0.068) (2.585;7.360)

Basics 0.973 0.029 6.156 −2127.72 13.93

(0.925;0.991) (0.010;0.085) (4.066;9.320)

Chemicals 0.958 0.047 4.737 −2021.83 8.42

(0.906;0.982) (0.021;0.108) (3.346;6.706)

Construction 0.955 0.039 4.707 −2010.39 12.42

(0.903;0.980) (0.018;0.086) (3.482;6.363)

Financials 0.958 0.067 4.013 −1965.59 31.58

(0.911;0.981) (0.033;0.139) (2.662;6.049)

Food 0.941 0.053 3.446 −1880.94 11.30

(0.878;0.972) (0.025;0.114) (2.630;4.516)

Healthcare 0.953 0.038 5.031 −2048.26 13.10

(0.882;0.982) (0.014;0.103) (3.783;6.689)

Industrials 0.965 0.043 4.314 −1983.11 26.75

(0.938;0.981) (0.023;0.083) (2.831;6.574)

Insurance 0.979 0.035 5.833 −2135.02 15.40

(0.952;0.991) (0.018;0.067) (3.267;10.414)

Media 0.978 0.037 6.829 −2196.90 7.71

(0.947;0.991) (0.018;0.074) (3.950;11.808)

Oil & Gas 0.963 0.031 5.518 −2080.60 10.87

(0.894;0.988) (0.010;0.098) (4.004;7.605)

Personal 0.947 0.042 5.219 −1572.87 19.61

(0.864;0.980) (0.015;0.117) (3.842;7.088)

Retail 0.917 0.093 5.975 −1633.80 14.18

(0.830;0.962) (0.042;0.205) (4.442;8.035)

Technology 0.989 0.021 9.470 −2346.38 14.98

(0.970;0.996) (0.010;0.046) (4.138;21.672)

Telecom 0.989 0.013 7.590 −2269.84 17.80

(0.966;0.997) (0.006;0.030) (3.895;14.789)

Travel 0.905 0.089 4.074 −1496.92 8.27

(0.807;0.956) (0.039;0.206) (3.138;5.289)

Utilities 0.908 0.084 3.215 −1854.46 19.99

(0.837;0.950) (0.044;0.159) (2.561;4.038)

aQ(l) is the test statistic of the Ljung-Box portmanteau test for the null hypothesis of no
autocorrelation in the errors up to order l. The Q-statistic is asymptotically χ2 distributed
with l− p degrees of freedom where p denotes the total number of estimated parameters. The
relevant critical values at the 95% (99%) level are 16.92 (21.67).
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Table 7: Parameter estimates for KF models

This table reports the estimated parameters for the two KF–based models for the eighteen
DJ STOXX

�

sectors. All estimates for σ2 and σ2
η are significant at the 1% level. *** means

that φ is significant at the 1% level (**: 5%, *: 10%).

Sector Model σ2 × 102 σ2
η × 102 β̄ φ lnL AIC

Automobiles RW 0.0320 0.7984 2289.90 −5.10

MR 0.0261 16.6070 1.149 0.549* 2304.50 −5.13

Banks RW 0.0106 0.1940 2792.90 −6.22

MR 0.0075 9.3822 1.030 0.409*** 2808.80 −6.25

Basics RW 0.0322 0.4722 2297.70 −5.12

MR 0.0307 2.0769 0.961 0.920* 2303.60 −5.13

Chemicals RW 0.0185 0.2343 2547.90 −5.68

MR 0.0178 0.8909 0.905 0.940 2551.50 −5.68

Construction RW 0.0156 0.0578 2638.40 −5.88

MR 0.0120 11.3370 0.936 0.359** 2629.80 −5.85

Financials RW 0.0126 0.1605 2721.20 −6.06

MR 0.0088 9.9813 0.944 0.197*** 2756.70 −6.14

Food RW 0.0168 0.1975 2593.00 −5.78

MR 0.0167 0.2321 0.675 0.992 2593.70 −5.77

Healthcare RW 0.0284 0.1828 2364.90 −5.27

MR 0.0282 0.3078 0.809 0.982 2366.20 −5.27

Industrials RW 0.0098 0.0631 2843.10 −6.33

MR 0.0059 11.0350 0.997 0.000 2881.80 −6.42

Insurance RW 0.0183 0.3019 2548.50 −5.68

MR 0.0126 13.6660 1.152 0.629*** 2570.50 −5.72

Media RW 0.0300 0.5107 2326.50 −5.18

MR 0.0192 37.6910 1.179 0.258*** 2338.50 −5.21

Oil & Gas RW 0.0378 0.1355 2242.60 −5.00

MR 0.0324 12.7640 0.754 0.442*** 2249.50 −5.01

Personal RW 0.0153 0.0807 2012.10 −5.89

MR 0.0152 0.1333 0.949 0.982 2012.50 −5.88

Retail RW 0.0298 0.7802 1765.70 −5.16

MR 0.0240 16.4740 0.903 0.333* 1782.30 −5.21

Technology RW 0.0443 2.0363 2128.80 −4.74

MR 0.0414 6.2424 1.481 0.919** 2137.50 −4.76

Telecom RW 0.0351 0.5212 2258.20 −5.03

MR 0.0340 1.5511 1.251 0.949* 2262.60 −5.04

Travel RW 0.0180 0.0505 1960.80 −5.74

MR 0.0136 10.9060 0.755 0.036*** 1971.90 −5.76

Utilities RW 0.0138 0.1421 2682.90 −5.98

MR 0.0135 0.3713 0.741 0.966* 2685.50 −5.98
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Table 8: Parameter estimates for MS models

This table reports the estimated parameters for the MS/MSM model for the eighteen DJ STOXX

�

sectors.

Sector Model α1, α2 × 104 β1, β2 σ2

i1, σ
2

i2 × 102 γ11 γ22 µ1, µ2 × 103 σ2

01
, σ2

02
× 102

Automobiles MS -13.4; -4.87 1.26; 1.03 1.51; 2.89 0.993 0.980 – –
MSM -3.05; -35.5 1.22; 1.07 1.47; 2.92 0.976 0.926 2.40; -2.97 1.56; 3.70

Banks MS 1.57; 8.70 1.01; 1.11 0.70; 1.77 0.988 0.970 – –
MSM 2.02; 1.07 0.97; 1.10 0.67; 1.75 0.962 0.904 2.30; -2.02 1.58; 3.36

Basics MS -3.26; 8.62 1.05; 0.84 1.04; 2.64 0.998 0.998 – –
MSM -3.90; 9.56 1.02; 0.82 1.08; 2.95 0.972 0.917 -2.58; -2.28 1.61; 3.31

Chemicals MS 1.70; -4.37 1.00; 0.87 0.93; 2.05 0.998 0.996 – –
MSM 1.04; -12.6 0.98; 0.85 1.05; 2.38 0.978 0.901 2.65; -4.16 1.63; 3.70

Construction MS -7.04; 0.22 1.14; 0.77 0.92; 1.75 0.997 0.993 – –
MSM -4.38; -4.11 1.07; 0.79 0.94; 1.89 0.982 0.959 2.55; -3.26 1.55; 3.42

Financials MS -0.61; -3.31 0.91; 1.08 0.84; 1.82 0.997 0.990 – –
MSM -0.05; 3.33 0.91; 1.05 0.81; 1.89 0.969 0.883 2.52; -3.25 1.60; 3.62

Food MS -0.95; 1.96 0.91; 0.49 0.76; 2.23 0.993 0.984 – –
MSM -1.48; -1.47 0.89; 0.52 0.78; 2.34 0.985 0.928 2.59; -2.51 1.60; 3.33

Healthcare MS 14.5; -0.88 0.91; 0.68 1.13; 2.39 0.981 0.971 – –
MSM 10.0; 2.72 0.90; 0.73 1.16; 2.40 0.969 0.952 2.62; -1.31 1.51; 3.11

Industrials MS -0.59; -7.62 1.02; 0.96 0.62; 1.45 0.998 0.996 – –
MSM 1.52; -1.41 1.00; 0.97 0.64; 1.57 0.975 0.951 2.24; -1.45 1.59; 3.38

Insurance MS -5.81; -8.25 1.12; 1.37 1.01; 2.48 0.996 0.989 – –
MSM -6.14; 1.58 1.11; 1.39 1.05; 2.64 0.971 0.901 2.44; -2.93 1.64; 3.72

Media MS -0.81; -12.4 1.05; 1.41 1.20; 3.40 0.989 0.960 – –
MSM -2.57; -1.51 1.04; 1.32 1.21; 3.34 0.991 0.935 2.37; -4.21 1.65; 3.60

Oil & Gas MS 6.02; 3.57 0.96; 0.58 1.37; 2.86 0.992 0.983 – –
MSM 6.12; 1.92 0.91; 0.71 1.38; 2.94 0.987 0.926 2.20; -1.68 1.62; 3.45

Personal MS -2.33; 6.06 0.95; 0.80 1.03; 1.87 0.995 0.980 – –
MSM -1.76; -5.45 0.99; 0.85 1.72; 1.84 0.986 0.962 2.79; -4.19 1.72; 3.88

Retail MS 2.29; -11.9 0.90; 0.97 1.12; 2.48 0.909 0.891 – –
MSM 2.50; -19.6 0.87; 0.99 1.45; 2.83 0.967 0.872 1.68; -5.45 1.68; 4.04

Technology MS 2.45; -1.61 1.18; 1.71 1.25; 3.85 0.996 0.990 – –
MSM 3.67; -7.46 1.17; 1.60 1.25; 3.80 0.993 0.947 2.48; -2.35 1.62; 3.38

Telecom MS 6.73; -8.51 1.09; 1.31 1.49; 3.24 0.997 0.989 – –
MSM 3.29; -3.24 1.12; 1.21 1.49; 3.22 0.992 0.974 2.76; -4.10 1.69; 3.60

Travel MS 0.05; -0.20 0.82; 0.50 1.09; 2.71 0.967 0.733 – –
MSM -1.36; -8.04 0.84; 0.73 1.05; 2.13 0.976 0.922 3.04; -5.01 1.67; 3.94

Utilities MS 6.97; -8.05 0.82; 0.56 1.03; 1.63 0.994 0.977 – –
MSM 7.07; -3.89 0.81; 0.63 1.03; 1.67 0.989 0.960 2.90; -5.67 1.59; 3.69
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Table 9: Comparison of OLS betas and various conditional beta series

This table summarizes the various conditional beta series by reporting the mean betas and their range (in brackets).a

Sector βOLS βtGARCH βSV βKFRW βKFMR βMSM βMS

Automobiles 1.148 1.191 0.810 1.145 1.145 1.182 1.203
(0.555; 1.707) (0.455; 1.057) (0.123; 1.609) (0.025; 2.370) (1.065; 1.225) (1.029; 1.262)

Banks 1.062 1.034 0.943 1.019 1.034 1.014 1.041
(0.588; 1.489) (0.656; 1.228) (0.367; 1.337) (−0.156; 1.978) (0.971; 1.103) (1.011; 1.109)

Basics 0.902 0.961 0.735 0.956 0.945 0.955 0.950
(0.507; 1.597) (0.479; 1.364) (−0.018; 1.489) (−0.364; 1.616) (0.815; 1.025) (0.839; 1.047)

Chemicals 0.907 0.928 0.810 0.913 0.900 0.947 0.941
(0.496; 1.493) (0.526; 1.051) (0.122; 1.299) (0.031; 1.395) (0.849; 0.980) (0.865; 0.996)

Construction 0.886 0.941 0.833 0.964 0.933 0.980 0.992
(0.506; 1.389) (0.551; 1.186) (0.617; 1.358) (−0.036; 1.581) (0.794; 1.070) (0.766; 1.142)

Financials 0.997 0.968 0.888 0.937 0.947 0.948 0.956
(0.651; 1.436) (0.560; 1.241) (0.552; 1.267) (0.139; 2.081) (0.911; 1.049) (0.906; 1.083)

Food 0.648 0.690 0.699 0.710 0.708 0.773 0.763
(0.346; 1.181) (0.445; 0.961) (−0.345; 1.115) (−0.362; 1.116) (0.519; 0.894) (0.486; 0.910)

Healthcare 0.777 0.842 0.725 0.809 0.806 0.830 0.811
(0.380; 1.369) (0.410; 1.098) (0.055; 1.142) (0.010; 1.173) (0.731; 0.903) (0.678; 0.913)

Industrials 0.977 0.992 0.907 0.994 0.996 0.990 0.992
(0.683; 1.446) (0.692; 1.192) (0.816; 1.233) (−0.198; 1.836) (0.974; 0.997) (0.957; 1.017)

Insurance 1.268 1.173 0.914 1.144 1.155 1.177 1.197
(0.608; 2.091) (0.544; 1.429) (0.456; 1.929) (0.032; 3.055) (1.105; 1.392) (1.117; 1.372)

Media 1.215 1.168 0.847 1.184 1.181 1.110 1.132
(0.681; 2.513) (0.547; 1.780) (0.667; 2.586) (−0.538; 3.820) (1.039; 1.322) (1.049; 1.406)

Oil & Gas 0.758 0.807 0.665 0.781 0.753 0.850 0.834
(0.372; 1.393) (0.374; 1.006) (0.318; 1.056) (−0.217; 1.372) (0.713; 0.912) (0.584; 0.958)

Personal 0.907 0.991 0.821 0.956 0.952 0.955 0.913
(0.580; 1.544) (0.539; 1.223) (0.619; 1.186) (0.576; 1.186) (0.853; 0.992) (0.802; 0.949)

Retail 0.949 0.997 0.734 0.907 0.898 0.903 0.934
(0.563; 1.769) (0.481; 1.111) (0.264; 1.599) (−0.470; 2.110) (0.876; 0.994) (0.903; 0.972)

Technology 1.489 1.399 0.884 1.460 1.488 1.313 1.356
(0.684; 3.299) (0.479; 1.720) (0.853; 3.134) (0.761; 3.438) (1.174; 1.597) (1.181; 1.709)

Telecom 1.194 1.234 0.887 1.246 1.266 1.146 1.145
(0.645; 2.716) (0.546; 1.683) (0.738; 2.256) (0.679; 2.290) (1.122; 1.213) (1.088; 1.314)

Travel 0.770 0.835 0.755 0.791 0.752 0.810 0.781
(0.499; 1.312) (0.505; 1.131) (0.500; 0.981) (−0.342; 1.453) (0.728; 0.837) (0.501; 0.814)

Utilities 0.694 0.760 0.799 0.753 0.742 0.762 0.744
(0.417; 1.096) (0.354; 1.206) (0.239; 1.024) (0.175; 1.018) (0.626; 0.812) (0.561; 0.819)

aAs the Kalman filter is likely to produce large outliers in the first stages of estimation, the first fifty conditional beta estimates for any of the chosen techniques
to model conditional betas are not included in the subsequent analyses to avoid an unfair bias against the Kalman filter.
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Table 10: In–sample mean absolute errors

This table reports the estimated in–sampleMAE (×102) for the eighteen DJ STOXX
�

sectors.
For each sector i, figures in parentheses denote the relative rank of a model’s MAE where the
model with the smallest MAE ranks first.

Sector βOLS βtGARCH βSV βKFRW βKFMR βMSM βMS

Automobiles 1.4693 1.4838 1.5433 1.3497 1.1195 1.4682 1.4556

(5) (6) (7) (2) (1) (4) (3)

Banks 0.7964 0.7954 0.7663 0.7357 0.5357 0.7862 0.7906

(7) (6) (3) (2) (1) (4) (5)

Basics 1.3645 1.3826 1.4208 1.2404 1.1914 1.3553 1.3532

(5) (6) (7) (2) (1) (4) (3)

Chemicals 1.0948 1.0902 1.0681 1.0066 0.9733 1.0901 1.0890

(7) (6) (3) (2) (1) (5) (4)

Construction 1.0153 0.9821 0.9704 0.9315 0.7243 0.9877 0.9786

(7) (5) (3) (2) (1) (6) (4)

Financials 0.8686 0.8783 0.7967 0.8100 0.6000 0.8559 0.8537

(6) (7) (2) (3) (1) (5) (4)

Food 1.0423 1.0389 0.9926 0.8837 0.8811 0.9784 0.9558

(7) (6) (5) (2) (1) (4) (3)

Healthcare 1.3274 1.3437 1.3143 1.2499 1.2415 1.3153 1.3041

(6) (7) (4) (2) (1) (5) (3)

Industrials 0.7348 0.7259 0.6973 0.6915 0.4552 0.7344 0.7322

(7) (4) (3) (2) (1) (6) (5)

Insurance 1.1457 1.0761 1.0975 0.9883 0.7265 1.1303 1.1318

(7) (3) (4) (2) (1) (5) (6)

Media 1.3616 1.2762 1.3602 1.1835 0.8120 1.3404 1.3243

(7) (3) (6) (2) (1) (5) (4)

Oil & Gas 1.4861 1.4981 1.4934 1.4329 1.2310 1.4725 1.4510

(5) (7) (6) (2) (1) (4) (3)

Personal 0.9712 0.9629 0.9779 0.9175 0.9122 0.9658 0.9667

(6) (3) (7) (2) (1) (4) (5)

Retail 1.3502 1.3688 1.3477 1.2461 1.0258 1.3470 1.3497

(6) (7) (4) (2) (1) (3) (5)

Technology 1.6932 1.5501 1.8403 1.4021 1.3275 1.6160 1.5945

(6) (3) (7) (2) (1) (5) (4)

Telecom 1.5154 1.4690 1.5824 1.3970 1.3565 1.5143 1.4991

(6) (3) (7) (2) (1) (5) (4)

Travel 0.9930 1.0147 0.9435 0.9591 0.7465 0.9953 0.9698

(5) (7) (2) (3) (1) (6) (4)

Utilities 0.9795 0.9651 0.8970 0.9032 0.8809 0.9636 0.9491

(7) (6) (2) (3) (1) (5) (4)

Average MAE 1.1783 1.1612 1.1728 1.0738 0.9300 1.1620 1.1527

Average Rank 6.22 5.28 4.56 2.17 1.00 4.72 4.06
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Table 11: In–sample mean squared errors

This table reports the estimated in–sampleMSE (×103) for the eighteen DJ STOXX
�

sectors.
For each sector i figures in parentheses denote the relative rank of a model’s MSE where the
model with the smallest MSE ranks first.

Sector βOLS βtGARCH βSV βKFRW βKFMR βMSM βMS

Automobiles 0.3935 0.3978 0.4244 0.3069 0.2129 0.3925 0.3855

(5) (6) (7) (2) (1) (4) (3)

Banks 0.1336 0.1328 0.1173 0.1043 0.0571 0.1314 0.1323

(7) (6) (3) (2) (1) (4) (5)

Basics 0.3821 0.4022 0.3983 0.3158 0.2894 0.3781 0.3778

(5) (7) (6) (2) (1) (4) (3)

Chemicals 0.2308 0.2304 0.2140 0.1852 0.1727 0.2289 0.2291

(7) (6) (3) (2) (1) (4) (5)

Construction 0.1889 0.1741 0.1664 0.1568 0.0958 0.1800 0.1724

(7) (5) (3) (2) (1) (6) (4)

Financials 0.1472 0.1502 0.1220 0.1240 0.0682 0.1447 0.1428

(6) (7) (2) (3) (1) (5) (4)

Food 0.2333 0.2442 0.2239 0.1680 0.1670 0.2170 0.2099

(6) (7) (5) (2) (1) (4) (3)

Healthcare 0.3324 0.3509 0.3277 0.2884 0.2842 0.3288 0.3238

(6) (7) (4) (2) (1) (5) (3)

Industrials 0.1116 0.1105 0.1003 0.0994 0.0421 0.1115 0.1112

(7) (4) (3) (2) (1) (6) (5)

Insurance 0.2713 0.2325 0.2459 0.1811 0.0968 0.2608 0.2624

(7) (3) (4) (2) (1) (5) (6)

Media 0.4035 0.3443 0.3911 0.2966 0.1344 0.3909 0.3836

(7) (3) (6) (2) (1) (5) (4)

Oil & Gas 0.4173 0.4366 0.4240 0.3810 0.2879 0.4106 0.3937

(5) (7) (6) (2) (1) (4) (3)

Personal 0.1741 0.1816 0.1739 0.1535 0.1515 0.1718 0.1713

(6) (7) (5) (2) (1) (4) (3)

Retail 0.3559 0.3766 0.3397 0.2855 0.1931 0.3538 0.3551

(6) (7) (3) (2) (1) (4) (5)

Technology 0.6282 0.5652 0.7143 0.4282 0.3803 0.6002 0.5900

(6) (3) (7) (2) (1) (5) (4)

Telecom 0.4412 0.4091 0.4654 0.3495 0.3295 0.4406 0.4340

(6) (3) (7) (2) (1) (5) (4)

Travel 0.1928 0.1997 0.1777 0.1765 0.1089 0.1912 0.1798

(6) (7) (3) (2) (1) (5) (4)

Utilities 0.1613 0.1571 0.1367 0.1365 0.1308 0.1556 0.1498

(7) (6) (3) (2) (1) (5) (4)

Average MSE 0.2888 0.2831 0.2868 0.2298 0.1779 0.2827 0.2780

Average Rank 6.22 5.61 4.44 2.06 1.00 4.67 4.00
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Table 12: Out–of–sample mean absolute errors

This table reports the estimated out–of–sample MAE (×102) for the eighteen DJ STOXX
�

sectors. For each sector i figures in parentheses denote the relative rank of a model’s MAE
where the model with the smallest MAE ranks first.

Sector βOLS βtGARCH βSV βKFRW βKFMR βMSM βMS

Automobiles 1.3089 1.2865 1.2940 1.2889 1.3355 1.2791 1.2990

(6) (2) (4) (3) (7) (1) (5)

Banks 0.4555 0.4887 0.4824 0.4780 0.4466 0.4586 0.4545

(3) (7) (6) (5) (1) (4) (2)

Basics 1.5837 1.4955 1.5166 1.4852 1.4954 1.5680 1.5831

(7) (3) (4) (1) (2) (5) (6)

Chemicals 1.1064 0.9908 1.0259 0.9307 0.9592 1.0829 1.0900

(7) (3) (4) (1) (2) (5) (6)

Construction 0.9378 0.8721 0.8634 0.8697 0.9260 0.9091 0.9163

(7) (3) (1) (2) (6) (4) (5)

Financials 0.6787 0.7099 0.6987 0.6941 0.6665 0.6733 0.6727

(4) (7) (6) (5) (1) (3) (2)

Food 0.9411 0.9588 0.9575 0.9314 FTCa 0.9333 0.9510

(3) (6) (5) (1) (–) (2) (4)

Healthcare 1.0324 1.0964 1.0954 1.0243 1.0218 1.0461 1.0114

(4) (7) (6) (3) (2) (5) (1)

Industrials 0.7940 0.7383 0.7281 0.7403 0.7884 0.8059 0.7995

(5) (2) (1) (3) (4) (7) (6)

Insurance 1.0975 0.9913 1.0110 1.0168 1.0795 1.1271 1.0973

(6) (1) (2) (3) (4) (7) (5)

Media 0.9409 1.0115 1.0276 0.9639 0.9561 0.9747 1.0319

(1) (5) (6) (3) (2) (4) (7)

Oil & Gas 1.2316 1.2609 1.2513 1.2439 1.2385 1.2594 1.2611

(1) (6) (4) (3) (2) (5) (7)

Personal 0.6649 0.6656 0.6668 0.6621 0.6549 0.6615 0.6680

(4) (5) (6) (3) (1) (2) (7)

Retail 1.0722 1.1413 1.1230 1.1223 1.1083 1.1067 1.0991

(1) (7) (6) (5) (4) (3) (2)

Technology 1.8179 1.7783 1.7524 1.8199 1.8134 1.8996 1.8854

(4) (2) (1) (5) (3) (7) (6)

Telecom 1.1611 1.0889 1.0779 1.0569 1.0533 1.1470 1.1286

(7) (4) (3) (2) (1) (6) (5)

Travel 0.7384 0.7568 0.7531 0.7393 0.7412 0.7478 0.7606

(1) (6) (5) (2) (3) (4) (7)

Utilities 0.8333 0.8379 0.8243 0.8461 0.8426 0.9025 0.8310

(3) (4) (1) (6) (5) (7) (2)

Average MAE 1.0220 1.0094 1.0083 0.9952 1.0075 1.0324 1.0300

Average Rank 4.11 4.44 3.94 3.11 2.94 4.50 4.72

aFailed to converge.
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Table 13: Out–of–sample mean squared errors

This table reports the estimated out–of–sample MSE (×103) for the eighteen DJ STOXX
�

sectors. For each sector i figures in parentheses denote the relative rank of a model’s MSE
where the model with the smallest MSE ranks first.

Sector βOLS βtGARCH βSV βKFRW βKFMR βMSM βMS

Automobiles 0.3146 0.3101 0.3205 0.3176 0.3223 0.3027 0.3128

(4) (2) (6) (5) (7) (1) (3)

Banks 0.0349 0.0373 0.0362 0.0364 0.0328 0.0344 0.0344

(4) (7) (5) (6) (1) (3) (2)

Basics 0.4062 0.3566 0.3744 0.3538 0.3606 0.3962 0.4057

(7) (2) (4) (1) (3) (5) (6)

Chemicals 0.2177 0.1670 0.1789 0.1424 0.1443 0.2198 0.2184

(5) (3) (4) (1) (2) (7) (6)

Construction 0.1500 0.1317 0.1297 0.1312 0.1462 0.1443 0.1441

(7) (3) (1) (2) (6) (5) (4)

Financials 0.0878 0.0959 0.0886 0.0894 0.0817 0.0879 0.0826

(3) (7) (5) (6) (1) (4) (2)

Food 0.1384 0.1471 0.1457 0.1374 FTCa 0.1952 0.1476

(2) (4) (3) (1) (–) (6) (5)

Healthcare 0.1864 0.2179 0.2151 0.1838 0.1815 0.1952 0.1780

(4) (7) (6) (3) (2) (5) (1)

Industrials 0.1095 0.1026 0.0992 0.1027 0.1082 0.1124 0.1114

(5) (2) (1) (3) (4) (7) (6)

Insurance 0.2695 0.1996 0.2134 0.2495 0.2362 0.2737 0.2622

(6) (1) (2) (4) (3) (7) (5)

Media 0.1499 0.1740 0.1788 0.1564 0.1535 0.1626 0.1845

(1) (5) (6) (3) (2) (4) (7)

Oil & Gas 0.2510 0.2665 0.2646 0.2528 0.2549 0.2613 0.2641

(1) (7) (6) (2) (3) (4) (5)

Personal 0.0715 0.0737 0.0745 0.0696 0.0686 0.0702 0.0722

(4) (6) (7) (2) (1) (3) (5)

Retail 0.2237 0.2623 0.2527 0.2356 0.2360 0.2329 0.2369

(1) (7) (6) (3) (4) (2) (5)

Technology 0.5790 0.5409 0.5428 0.5822 0.5735 0.6448 0.6322

(4) (1) (2) (5) (3) (7) (6)

Telecom 0.2316 0.2045 0.1993 0.1905 0.1895 0.2274 0.2213

(7) (4) (3) (2) (1) (6) (5)

Travel 0.0944 0.0976 0.0986 0.0911 0.0938 0.0977 0.1014

(3) (4) (6) (1) (2) (5) (7)

Utilities 0.1127 0.1103 0.1087 0.1194 0.1192 0.1269 0.1150

(3) (2) (1) (6) (5) (7) (4)

Average MSE 0.2016 0.1942 0.1957 0.1912 0.1943 0.2103 0.2069

Average Rank 3.94 4.11 4.11 3.11 2.94 4.89 4.67

aFailed to converge.

34



0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Automobiles) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Banks) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Basics) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Chemicals) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Construction) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Financials) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Food) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Healtcare) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0
GARCH SV   (Industrials) 

0 150 300 450 600 750 900

0.5

1.0

1.5

2.0 GARCH SV   (Insurance) 

Figure 4: t–GARCH and SV conditional betas (for i ≤ 10)
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Figure 5: t–GARCH and SV conditional betas (for i > 10)
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Figure 6: Kalman filter conditional betas (for i ≤ 10)
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Figure 7: Kalman filter conditional betas (for i > 10)
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Figure 8: Markov switching conditional betas (for i ≤ 10)
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Figure 9: Markov switching conditional betas (for i > 10)
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