$$R(\mu, \tau) = \hat{\mu}y_{..} + \sum_{i=1}^{4} \hat{\tau}_{i}y_{i.} = 59.83$$

with 4 degrees of freedom.

$$R(\beta|\mu,\tau) = R(\mu,\tau,\beta) - R(\mu,\tau) = 138.78 - 59.83 = 78.95 = SS_{Blocks}$$

with 7-4=3 degrees of freedom.

Source	DF	SS(exact)	SS(approximate)
Tips	3	39.53	39.98
Blocks	3	78.95	79.53
Error	8	6.22	6.22
Total	14	125.74	125.73

Note that for the exact analysis, $SS_T \neq SS_{Tips} + SS_{Blocks} + SS_E$.

4-31 An engineer is studying the mileage performance characteristics of five types of gasoline additives. In the road test he wishes to use cars as blocks; however, because of a time constraint, he must use an incomplete block design. He runs the balanced design with the five blocks that follow. Analyze the data from this experiment (use $\alpha = 0.05$) and draw conclusions.

			Car		
Additive	1	2	3	4	5
1		17	14	13	12
2	14	14		13	10
3	14		13	14	9
4	13	11	11	12	
5	11	12	10		8

There are several computer software packages that can analyze the incomplete block designs discussed in this chapter. The Minitab General Linear Model procedure is a widely available package with this capability. The output from this routine for Problem 4-27 follows. The adjusted sums of squares are the appropriate sums of squares to use for testing the difference between the means of the gasoline additives.

Minitab Output

•			G	eneral Linear	Model		
Factor Additive Car	Type fixed random	~ -	2 3 4 5				
			z 3 4 5 Mileage, usin	g Adjusted	SS for	Tests	
Source	DF	Seq SS	Adj SS	Adj MS	F	P	
Additive	4	31.7000	35.7333	8.9333	9.81	0.001	
Car	4	35.2333	35.2333	8.8083	9.67	0.001	
Error	11	10.0167	10.0167	0.9106			
Total	19	76.9500					

4-32 Construct a set of orthogonal contrasts for the data in Problem 4-31. Compute the sum of squares for each contrast.

One possible set of orthogonal contrasts is:

$$H_0: \mu_4 + \mu_5 = \mu_1 + \mu_2$$
 (1)
 $H_0: \mu_1 = \mu_2$ (2)

$$H_0: \mu_4 = \mu_5 \tag{3}$$

$$H_0: 4\mu_3 = \mu_4 + \mu_5 + \mu_1 + \mu_2 \tag{4}$$

The sums of squares and *F*-tests are:

.

Brand ->	1	2	3	4	5			
Qi	33/4	11/4	-3/4	-14/4	-27/4	$\sum c_i Q_i$	SS	F_0
(1)	-1	-1	0	1	1	-85/4	30.10	39.09
(2)	1	-1	0	0	0	-22/4	4.03	5.23
(3)	0	0	0	-1	1	-13/4	1.41	1.83
(4)	-1	-1	4	-1	-1	-15/4	0.19	0.25

Contrasts (1) and (2) are significant at the 1% and 5% levels, respectively.

4-33 Seven different hardwood concentrations are being studied to determine their effect on the strength of the paper produced. However the pilot plant can only produce three runs each day. As days may differ, the analyst uses the balanced incomplete block design that follows. Analyze this experiment (use $\alpha = 0.05$) and draw conclusions.

Hardwood				Days			
Concentration (%)	1	2	3	4	5	6	7
2	114				120		117
4	126	120				119	
6		137	114				134
8	141		129	149			
10		145		150	143		
12			120		118	123	
14				136		130	127

There are several computer software packages that can analyze the incomplete block designs discussed in this chapter. The Minitab General Linear Model procedure is a widely available package with this capability. The output from this routine for Problem 4-33 follows. The adjusted sums of squares are the appropriate sums of squares to use for testing the difference between the means of the hardwood concentrations.

			(General Linea	r Model			
Factor Concentr Days	Type fixed random		ues 4 6 8 10 3 4 5 6 7	12 14				
Analysis	of Var	iance for S	trength, usi	ing Adjuste	ed SS fo	r Tests		
Analysis Source	of Var	iance for S Seq SS	trength, usi	ing Adjuste Adj MS	ed SS fo F	r Tests P		
-			<i>J</i> ,	Adj MS				
Source	DF	Seq SS	Adj SS	Adj MS 219.57	F	P		
Source Concentr	DF 6	Seq SS 2037.62	Adj SS 1317.43	Adj MS 219.57	F 10.42	P 0.002		