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Abstract

The subject of this study is the representation and the comparison of univariate time series

and interest rate models with reference to the one-step-ahead forecasts of the inflation rate.

The analysis is based on the monthly seasonally adjusted price index for the living standard

of all private households in West Germany in the periods 1/1963 to 12/1994 in-sample and

1/1995 to 1/1999 out-of-sample. With the comparison of an ARMA(1,1) time series model,

an ARMA(1,1) interest rate model and a naïve interest rate model in-sample a construction

dependent superiority of the time series model is determined. Within the out-of-sample

period for none of the specified models is a better forecast performance statistically provable.

This is attributed to the variability of monthly changes of the historical West German

inflation rate falling over time. Altogether, the economically founded interest rate models —

in particular the naïve interest rate model, which can be regarded as an approximation of the

subtler ARMA interest rate model — seem to become more attractive out-of-sample.
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1. Introduction

Forecasting the inflation rate plays an important role in many economic questions. Above all

there are financial equilibrium models, which seek to explain market prices of risky financial

investments. Thus Friend / Landskroner / Losq (1976) extend the basic version of the Capital

Asset Pricing Model (CAPM) based on nominal sizes in the light of inflation expectations. In

the context of the Arbitrage Pricing Theory (APT) for instance, Chen / Roll / Ross (1986),

McElroy / Burmeister (1988) as well as Young / Berry / Harvey / Page (1991) point out that

under different macroeconomic factors the expected inflation rate in particular represents an

important explanation-factor of capital market returns. A problem in testing these models is

that the overall expected inflation rate is latent. Therefore, it has to be modelled in a suitable

and transparent manner. Derived forecasts from such an inflation model can then be used as

proxies for the expected inflation rate.

A similar problem exists in the empirical analysis of inflation hedge abilities of different

forms of investments. Thus Fama / Schwert (1977) examine whether short-term nominal

yields of American shares, securities at fixed interest and real estates are independent of

changes in the inflation expectation. The methodology of this investigation was refined in

numerous other empirical studies. Especially in the real estate literature, hedging potentials of

different kinds of real estates form a standard question. Thus for instance Gyourko /

Linneman (1988), Hartzell / Hekman / Miles (1987) and Miles / Mahoney (1997) examine

the inflation protection characteristics of US-American real estates of different locations and

types of use. The question whether the yields of investing in different forms of real estate

companies (e.g. REITS, real estate funds) protect against expected inflation risks has been

investigated for different countries among others by Liu / Mei (1992), Glascock / Davidson

(1995), Liu / Hartzell / Hoesli (1997) and Maurer / Sebastian (1999) on the basis of inflation

forecasts.

Also in the popular actuarial stochastic investment models univariate forecasts of the future

inflation rate play an important role due to the recursive structure of these models. See for

example the stochastic investment model of Wilkie (1986, 1995) for Great Britain, the

analogous works of Carter (1991), Harris (1995a, 1995b) and Sherris / Tedesco / Zehnwirth

(1999) for Australia, in all of which inflation represents the driving force, as well as Claasen

(1993) and Thomson (1996) for South Africa and Pentikäinen et al. (1994) for different

industrialized countries. These stochastic investment models are used as a basic tool in the

asset management and the asset liability management of insurance companies.
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Apart from expert questionings (like the Livingston Survey), time series and interest rate

models are most commonly used for the generation of inflation expectations. However,

survey-based inflation forecasts have considerable disadvantages in the context of their

specific applications to West German financial markets. Firstly, there is no sufficiently long

history of such inflation forecasts available for Germany. Secondly, expert expectations for

one point in time cannot be updated because of the inherent lack of transparency in the

forecasting mechanism. For these reasons throughout the remainder of this paper only the

representation and the comparison of time series and interest rate models are focused on.

2. Time series models

The aim of the extrapolation of time series models is the prognosis of the future inflation rate

based on its past development. Explicitly, a stochastic model for the observed process is

assumed, on whose validity the forecast quality depends. Therefore, the ARIMA model

family of the Box / Jenkins (1970) generation is frequently taken into consideration. When

using ARIMA(p,d,q) models, the inflation rate RI(t) is specified by the following process

(t=1,2,...)
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where ∇d means the backwards difference operator of order d (d=0,1,2,...), ∇d =(1-B)d,

whereby B represents the backshift operator, Bi RI(t):= RI(t-i),

RI(t) are the inflation rates in each period t (with E(∇dRI
 (t)) = µ),

ϕi, θj are unknown process parameters which have to be estimated (i=1,..,p; j=1,..,q),

U(t) represent from each other and of the delayed ∇dRI(t-i), i=1,2,..., independent

and identically (0,σ2)-distributed error terms.

An ARIMA(p, d, q) model for RI(t) defines an ARMA(p, q) model for ∇dRI(t). The d-th order

difference of the origin series is assumed to be weakly stationary. With the weakly stationary

AR(p) process component the present value of the explained variables is described by a long-

term average value µ and the deviations from this value in the last p periods. Autocorrelations

between the error terms of the AR process, that is ∑ −θ−= 
=

q

1j
j )jt(U)t(U)t(U

~ , can be captured

by the MA(q) process component.
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The monthly inflation rate is determined as the change of the price index Q(t) for the living

standard over the appropriate period. For the following studies the continuously compounded

inflation rate

RI(t) = lnQ(t) – lnQ(t-1) = ln[Q(t)/Q(t-1)] (2)

is used. The following figure shows the development of this rate calculated on the basis of the

price index of the living standard of all private households in West Germany (1991=100),

seasonally adjusted by the German Federal Bank with the Census X-11 procedure.

(Source of Data: Statistical supplements to the monthly reports of the German Federal Bank, 4,
Seasonally adjusted economic data)

The average monthly inflation rate M during the observation period from 1/1962 to 12/1994

amounts to 0.2826 % with a standard deviation SD of 0.2583 %. Significant positive

autocorrelations at lag one, AC(1), to four, AC(4), and twelve, AC(12), point to positive

dependencies of the inflation rate on its previous development, which are reproduceable by

ARMA(p,q) modelling.1 For the purpose of forecasting, not only the fit to the historical time

series is considered but also the principle of parsimonously parameterizing. Under different

ARMA(p,q) processes (p ≤ 12, q ≤ 2) for the German monthly inflation rate in the estimating

period from 1/1962 to 12/1994 the most favorable value of the Bayes information criterion

(BIC) results for an ARMA(1,1) process.2 Thus in the following, this time series model is

used. Its estimation by the method of non-linear least squares results in the following process

(with estimated standard deviations of estimated coefficients in parentheses)
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Figure 1
Monthly seasonally adjusted inflation rate from 1/1962 to 12/1994

M = 0.002826, SD = 0.002583, AC(1) = 0.293, AC(2) = 0.280, AC(3) = 0.263, AC(4) = 0.236, AC(12) = 0.228
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For the process being I(0), that is d = 0, it is necessary that all eigenvalues of the AR section

have modulus less than 1. To see whether 1ϕ̂  is significantly smaller than 1, an appropriate

unit root test in consideration of the MA(1) component has to be chosen. The unit root test on

the basis of an AR(12) approximation of the ARMA(1,1) process concludes rejecting the

non-stationarity of the time series.3 Intuitively, an exploding inflation rate over time is indeed

not economically convincing in a stable economic system such as the West German.4

The estimated autocorrelations of the empirical ARMA(1,1) residuals are with AC(1) =

0.016, AC(2) = -0.018, AC(3) = -0.020, AC(4) = -0.069 and AC(12) = 0.005 not significantly

different from zero. Accordingly, the monthly West German inflation rate, calculated from

the seasonally adjusted price index for the living standard of all private households, can be

illustrated in the past sufficiently well by an ARMA(1,1) process. This agrees with the results

of inflation investigations in other countries. Thus ARMA(p,q) model specifications of low

order can be found for example in Wilkie (1986) and in Speed (1997) for the U. K., in Metz /

Ort (1993) for Switzerland as well as in Fama (1975), in Ibbotson / Sinquefield (1976) and in

Caporale / Jung (1997) for the USA.

In the literature for empirical inflation modelling, the consideration of conditional

heteroscedasticity has aquired special meaning. As examples one can find an AR(4) -

ARCH(1,1) model in Engle / Kraft (1983) and an AR(4) - GARCH(1,1) model in Bollerslev

(1986) for the USA, a revised ARCH model in Wilkie (1995) for Great Britain as well as

AR(12) - GARCH(1,1) respectively – GARCH(2,2) models for different industrial countries

in Grier / Perry (1998). However, with AC(1) = 0.044, AC(2) = 0.041, AC(3) = 0.015, AC(4)

= 0.032 and AC(12) =-0.025 none of the estimated correlations of the squared residuals from

the above model (3) are significantly different from zero. So for the West German inflation

rate no GARCH effects are indicated.

3. Interest rate models

While univariate time series models explain the inflation development essentially according

to the information available in its past rates, multivariate methods additionally use the close

mutual relations of financial time series. A simple popular system for the prognosis of the

inflation rate is based on the classic Fisher hypothesis concerning the connection of nominal
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interest RG(t), real interest RG
real(t) and inflation RI(t). The Fisher hypothesis has attained

popularity in the following formalization going back on Fama (1975)5

RG(t) = E[RG
real(t)] + E[RI(t)].  (4)

So the expected inflation rate is implicitly described as the nominal interest rate minus the

expected real interest rate. The short term nominal interest rate at the beginning of period t is

a well-known risk less size. At the same time the inflation rate of the period is still unknown

and has therefore to be forecasted. Under the assumption that no effect proceeds from

inflation on the expected real interest rate, a simultaneous equation bias is excluded so that

the expected inflation rate for the period t is directly derivable from (4). It is then possible to

specify the expected real interest rate by a suitable model and to derive the expected inflation

by subtraction from the nominal interest rate. Forecasts of inflation rates from interest rate

models implicitly assume that real interest rates are easily forecastable (because of persistent

behaviour for example) so that inflation rates are more accurately predictable from past

interest rates than from their own history. In the basic version of Fama (1975) it is assumed

that real interest rates are constant. With the validity of this hypothesis inflation forecasts can

be derived directly from current nominal interest rates, and changes of inflation expectations

correspond exactly to the changes of nominal interest rates. If real interest rates are not

constant, they have to be specified by a suitable model. In the context of so-called naïve

interest rate models the expected real interest rate is estimated by the moving average of the

last n observed real interest rates. The idea is to thereby illustrate the persistence of the real

interest rates and their slow modification over time. So the resulting inflation forecast gives








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


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n
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Fama / Gibbons (1984) vary n from 1 to 24. For US American monthly data they conclude

that with the selection of different factors from 6 to 24 inflation forecast characteristics hardly

differ, but that n = 12 minimizes the one-step-ahead forecast mean squared error.

For the nominal interest rate RG(t) the monthly money market rate published by the German

Federal Bank is used in the following (transformed into their continuous monthly

equivalents). The historical monthly real interest rate calculates itself as RG
real(t) = RG(t) –

RI(t). The following line graph shows that the assumption of its constancy does not hold.
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(Source of Data: Statistical sections of the monthly reports of the German Federal Bank)

Specifying a naïve interest rate model we use the factor n = 12 without further statistical

analysis due to the used monthly frequency. Furthermore it seems natural to forecast real

interest rates by an adequate ARIMA time series model because of the continuously

significant positive autocorrelations in the observed series. For monthly US American real

interest rates from 1953 to 1977 Fama / Gibbons (1982) specify an ARIMA(0,1,1) process for

example. However, the instationarity of German real interest rates cannot be confirmed.

Instead, using the Bayes information criterion (BIC) an ARMA(1,1) process is most

favourable in the ARMA(p,q) model class with p ≤ 12, q ≤ 2 for the estimation period from

1/1962 to 12/1994. Non-linear least squares estimation of this process equation results in the

following process (with estimated standard deviations of the estimated coefficients in

parentheses)6

).t(U.)t(U)t(R..)t(R Zi
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The autocorrelations of the residuals are, with estimated values of AC(1) = 0.037, AC(2) =

0.003, AC(3) = -0.013, AC(4) = -0.070 to AC(12) = -0.010 with the exception of AC(8) =

0.119 not significantly different from zero. Therefore, the explanation of the real interest rates

by an ARMA(1,1) process seems to be sufficiently accurate. The inflation process can be

derived as

[ ])t(U.)t(U)t(R..)t(R)t(R ZiZiG
real

GI 1780193000230 −−+−+−= . (7)
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Figure 2
Monthly real interest rates from 1/1962 to 12/1994

M = 0.002145, SD = 0.002673, AC(1) = 0.324, AC(2) = 0.280, AC(3) = 0.246, AC(4) = 0.191, AC(12) = 0.133
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When using interest rate models to forecast inflation, the financial literature has concentrated

on the short run (with mixed results). Nevertheless, the Fisher equation is also exploitable for

the long run although several difficulties arise. The longer the maturity of the underlying

bond, the lower constant real interest rates are. Long-term nominal interest yields attainable

on the market are no longer a well-known and risk less size, so that their data generating

process also has to be modelled stochastically. However, a more extensive examination of the

resulting problems is beyond the scope of this paper.

4. Comparison of one-step ahead forecasts

4.a. In-sample analysis

In the following, the univariate ARMA(1,1) time series model (3), the naïve interest rate

model (5) and the ARMA(1,1) interest rate model (7) are compared for the estimation period

1/1963 to 12/1994 concerning the one-step ahead inflation forecasts.7 The in-sample

comparison applied here is based on a deviation analysis of the one-step-ahead forecast

values of the different models from the actual inflation rates. Purely graphic comparisons are

unclear due to the multiplicity of observations. Therefore, their information can be bundled in

different ways. One possibility suggested by Fama / Gibbons (1984) is to regress the actual

inflation rate on the respective inflation point forecasts. Table 1 contains six regression

equations estimated by the least squares method for West German data. With equations (1) to

(3) linear single regressions are reported, whose quality is to be judged as follows:

(i) The nearer the regression coefficient α for the constant term is to zero and the nearer the

regression coefficient of the forecast variable is to one, the better the respective forecast

model adapts to the actual inflation generating process on average, so that the

explanatory power of the model is high.

(ii) The residuals should be uncorrelated and should indicate only a small standard deviation

σu, so that no evidence against uncorrelated and identically distributed error terms and

the validity of the statistical tests arises.

For regressions (1) to (3) of the table 1 condition (ii) holds equally well. The coefficients of

determination R², which rise with removing mean squared error (MSE), also hardly differ,

being best however for the time series model. In addition, only for the univariate time series

model the null hypotheses α = 0 respectively β = 1 are not rejected by parameter t-tests. For



Table 1

In-sample regressions from 1/1963 to 12/1994 (T = 384) of the monthly German inflation rate on the one-step-ahead forecasts of the

ARMA(1,1) time series model )1t(8656,0)1t(R9763,00028,0)t(R̂ ZRUII
ZR −−−+=

naïve interest rate model ∑ −−=
=

12

1i

G
real12

1GI
naïve )it(R)t(R)t(R̂

ARMA(1,1) interest rate model [ ])1t(U78,0)1t(R93,00023,0)t(R)t(R̂ ZiG
real

GI
Zi −−−+−=

AutocorrelationsNo. Estimated effects of

         α RI
ZR(t) RI

naïve(t) RI
Zi(t) R2 SU AC(1) AC(2) AC(3) AC(4) AC(12)

(1) -0.00003

(0.0003)

1.0078

(0.1003)

0.21 0.0023 0.002

(0.001)

-0.007

(0.002)

-0.021

(0.194)

-0.049

(1.118)

0.002

(15.697)

(2) 0.0012

(0.0002)

0.5663

(0.0619)

0.18 0.0023 0.087

(2.935)

0.058

(4.219)

0.027

(4.508)

-0.014

(4.812)

-0.040

(15.545)

(3) 0.0010

(0.0002)

0.6306

(0.0684)

0.18 0.0023 0.030

(0.341)

0.019

(0.475)

-0.000

(0.475)

-0.031

(0.858)

0.031

(20.038)

(4) 0.0001

(0.0003)

0.7082

(0.1557)

0.2363

(0.0944)

0.22 0.0023 -0.003

(0.005)

-0.019

(0.150)

-0.039

(0.755)

-0.071

(2.725)

-0.022

(13.859)

(5) 0.0001

(0.0003)

0.7216

(0.1741)

0.2343

(0.1167)

0.22 0.0023 -0.018

(0.125)

-0.027

(0.399)

-0.042

(1.099)

-0.070

(3.033)

-0.050

(16.406)

(6) 0.0011

(0.0002)

0.2547

(0.1935)

0.3636

(0.2141)

0.19 0.0023 0.048

(0.873)

0.029

(1.1924)

0.005

(1.202)

-0.030

(1.565)

0.009

(15.384)

Notes: Columns 2 to 5 show the parameter estimators of the regression equations. Estimated standard deviations are indicated in parentheses. R2 indicates the
coefficient of determination and Su is the estimated standard error of the residuals. AC(i) in columns 8 to 12 are the estimated autocorrelations of the residuals to lag i.
The Ljung / Box Q-statistic for testing the null hypothesis that up to lag i no autocorrelation exists is reported in parentheses. Under the null the test statistic is
asymptotically χ2-distributed with i degrees of freedom.
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the two interest rate models the estimated coefficients are significantly different from the

required values. To that extent the time series model has the most favourable characteristics

among the three models. This contradicts Fama / Gibbons (1984), who observe a superiority

of a naïve and an ARIMA(0,1,1) interest rate model over an ARIMA(0,1,1) time series model

in a comparable study for the US American inflation in the period from 1953 to 1977.

Equations (4) to (6) in table 1 describe two-fold regressions. The aim of these multiple

regressions is to compare directly the explanatory power of the inflation forecasts. Assuming

independence between the different inflation models, the coefficient estimators concerning

the different one-step forecasts can be interpreted as marginal explanation contributions.

Equations (4) and (5) contain pair-wise comparisons of the time series model with the naïve

and with the ARMA interest rate model. It is shown that the respective interest rate model as

well as the time series model have significant positive marginal explanatory power for the

inflation process. So it can be concluded that the time series model ignores forecast

information which is contained in the interest rate models and vice versa. However, the

inflation coefficient from the time series model is clearly higher than the one from the

respective interest rate model. To that extent the time series model dominates both interest

rate models. In equation (6) a comparison of the two interest rate models is made. But due to

the high standard deviations no inferences can be derived. This is attributable particularly to

the high collinearity of the two inflation forecasts — with an estimated correlation of 0.95.

Altogether the in-sample regression study points out that under the three alternative forecast

models only the univariate time series model sufficiently explains the development of the

historical inflation rate. As far as the interest rate models are concerned, the above results

indicate that the naïve interest model is already a good approximation for the substantially

more subtle ARMA interest rate model. In fact, this is precisely the intention behind the use

of naïve interest rate models: The AR(∞) representation of an invertible ARMA(1,1) process

is approximated by an equivalently weighted moving average of a certain number of past

observations.

4.b. Out-of-sample analysis

The favourable in-sample characteristics of the time series model are based on the BIC model

selection principle on the one hand and on the chosen model evaluation method on the other.

Thereby model selection and evaluation access the same target criterion and the same data
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basis. A part of the BIC selection criterion is the minimization of the mean squared error,

which is also minimized by the least squares estimation in the course of model evaluation. In

contrast, the two fitted interest rate models are not — at least not directly — based on a

statistical selection criterion for the optimization of adjustment quality and parsimony, but on

an economic hypothesis of the forecasting ability of the inflation rate from real interest rates.

For a comparative out-of-sample study of the three forecast models specified above the 49

months from 1/1995 to 1/1999 are used. The following figure shows the respective one-step-

ahead forecasts as well as the seasonally adjusted inflation rates.

In the out-of-sample comparison the adjustment of the forecast values to such data is

examined, which themselves have not been used during the model estimation. Again it

appears that the two interest rate models generate very similar inflation forecasts so that the

accurate approximation of the ARMA interest rate model by the naïve interest rate model is

corroborated. In the examined out-of-sample period the time series model generates higher

forecast values than the two interest rate models. In all models the actual volatility of the

seasonally adjusted inflation rates is not expressed.

Due to the systematic bias of the above regression based evaluation criteria in favour of the

time series model now one-step-ahead forecast errors are observed. For the purpose of

forecasting this criterion is particularly valuable. In table 2 the mean one-step-ahead forecast

errors (MFE) and the appropriate mean squared forecast errors (MSFE) of the out-of-sample

period are compiled. For comparison the in-sample forecast values are also reported.

-0.002

0.000

0.002

0.004

0.006

95:01 95:07 96:01 96:07 97:01 97:07 98:01 98:07 99:01

Actually inflation rate
ARMA(1,1) time series model

Naïve interest rate model
ARMA(1,1) interest rate model

Figure 3
Out-of-sample one-step-ahead forecasts from 1/1995 to 1/1999



Table 2

Comparison of monthly inflation rate forecasts

Forecast model MFE RMSFE AC(1) AC(2) AC(3) AC(4) AC(12)

In-sample one-step-ahead forecasts from 1/1963 to 12/1994 (T = 384)

ARMA(1,1) time series model -0.000004
(0.0023)

0.00229 0.002
(0.002)

-0.006
(0.016)

-0.020
(0.178)

-0.048
(1.069)

0.002
(15.757)

Naïve interest rate model -0.000050
(0.0025)

0.00248 0.144*
(7.979*)

-0.096
(11.566*)

0.052
(12.619*)

-0.006
(12.634*)

-0.092
(21.210*)

ARMA(1,1) interest rate model -0.000006
(0.0024)

0.00242 0.027
(0.274)

0.009
(0.304)

-0.015
(0.390)

-0.054
(1.527)

-0.112
(16.004)

Out-of-sample one-step-ahead forecasts from 1/1995 to 1/1999 (T = 49)

ARMA(1,1) time series model -0.00045
(0.00158)

0.00153 -0.088
(0.407)

-0.126
(1.244)

-0.021
(1.280)

-0.224
(4.180)

-0.175
(22.278*)

Naïve interest rate model -0.00004
(0.00152)

0.00150 -0.170
(0.014)

-0.048
(0.137)

0.038
(0.215)

-0.144
(2.307)

-0.178
(18.982)

ARMA(1,1) interest rate model 0.00013
(0.00152)

0.00151 -0.077
(0.308)

-0.109
(0.937)

-0.009
(0.941)

-0.220
(3.639)

-0.175
(21.211*)

Notes: MFE indicates the mean forecast error (with estimated standard deviations in parentheses), RMSFE is the root of the mean squared forecast error. The AC(i)
are the estimated autocorrelations of the residuals to lag i. With * marked values are significantly different from zero at the 5% level (with an absolute value larger
than 1.96 / T0.5). The Ljung / Box Q-statistic for testing the null hypothesis that up to lag i no autocorrelation exists is reported in parentheses. Under the null
hypothesis it is asymptotically χ2-distributed with i degrees of freedom. Values marked with * are at the 5% significance level within the rejection region.
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In both sample periods the MFE is not significantly different from zero whereby the

estimated standard deviations do not differ in dimension within the same period. In-sample

autocorrelations of the one-step-ahead forecast errors significantly differ from zero for the

naïve interest rate model. This points to the fact that the model neglects information

systematically. Furthermore, the time series model indicates the smallest MSFE in-sample.

This once again repeats the regression results: Due to the highest R2 within the single

regressions in table 1 the mean squared error (MSE) is necessarily smallest for the time

series model. The MSE in turn represents a lower bound for the MSFE, which is exactly

achieved, if the regression parameters reach the theoretical values of 0 and 1 – which applies

at at best only for the time series model. Out-of-sample the MSFE of the three forecast

models have the same dimension and the uncorrelatedness of the forecast errors at low lags

cannot be rejected. A statistical inference concerning the superiority of one of the models out-

of-sample can therefore not be derived from the forecast errors. Due to the constant term in

the ARMA process, the time series model necessarily has a MFE of zero in the in-sample-

period. This does not apply out-of-sample. Accordingly, it is remarkable that the MFE of the

naïve interest rate model in the period 1/1963 to 12/1994 is around more than ten times as

large as that of the time series model, out-of-sample the case is almost diametrically the

opposite. Altogether, with the transition from the in-the-sample to the out-of-sample period a

reduction of the forecast quality of the time series model relative to the interest rate models

turns up. Thereby, especially the naïve interest rate model gains in attractiveness.

Finally in table 3 a sub sample comparison of the one-step-ahead forecast error is employed

in-sample to receive potential further explanation factors of the out-of-sample forecast

performance. Therefore, the period from 1/1963 to 12/1994 is divided into four sub periods á

96 points of observation. It is shown again that the MFE is not significantly different from

zero for all sub periods with the MFE of the time series model being smallest in absolute

value in all periods. Out-of-sample the MFE is absolutely largest for the time series model.

Altogether the in-sample results of the total period reaffirm themselves in the sub periods.

The estimated standard deviations and the MSFE have the same dimensions within a sub

period, which points to the fact that the forecast qualities of the different inflation models do

not clearly differ. Slight advantages of the time series model concerning the MSFE can again

be observed in all sub periods. However, as already discussed, these are in-sample

construction dependent to a large extent.



Table 3
Sub sample comparisons of monthly one-step-ahead inflation forecasts

Forecast model MFE RMSFE AC(1) AC(2) AC(3) AC(4) AC(12)

Sub period from 1/1963 to 12/1970 (T = 96)

ARMA(1,1) time series model
-0.00004
(0.0026)

0.0026 -0.127
(1.589)

0.013
(1.607)

-0.004
(1.609)

-0.098
(2.588)

0.082
(12.32)

Naïve interest rate model
-0.00023
(0.0027)

0.0027 -0.039
(0.151)

0.045
(0.355)

0.013
(0.372)

-0.086
(1.130)

0.051
(9.202)

ARMA(1,1) interest rate model
0.00005
(0.0027)

0.0027 -0.116
(1.340)

0.015
(1.362)

-0.015
(1.385)

-0.101
(2.432)

0.103
(12.87)

Sub period from 1/1971 to 12/1978 (T = 96)

ARMA(1,1) time series model
0.00017
(0.0023)

0.0023 -0.093
(0.862)

-0.004
(0.864)

-0.067
(1.312)

-0.147
(3.518)

-0.026
(17.65)

Naïve interest rate model
0.00020
(0.0027)

0.0027 0.223*
(4.919*)

0.218*
(9.663*)

0.110
(10.882*)

-0.011
(10.894*)

-0.143
(23.85*)

ARMA(1,1) interest rate model
0.00052
(0.0025)

0.0026 0.025
(0.063)

0.063
(0.460)

-0.024
(0.517)

-0.117
(1.920)

-0.078
(13.99)

Sub period from 1/1979 to 12/1986 (T = 96)

ARMA(1,1) time series model
-0.00017
(0.0023)

0.0023  0.214*
(4.540*)

-0.020
(4.578)

0.071
(5.092)

0.032
(5.198)

-0.027
(10.53)

Naïve interest rate model
-0.00024
(0.0024)

0.0024 0.228*
(5.152*)

-0.010
(5.162)

0.040
(5.320)

-0.031
(5.416)

-0.108
(10.58)

ARMA(1,1) interest rate model
-0.00034
(0.0023)

0.0024 0.119
(1.398)

-0.122
(2.822)

-0.015
(2.905)

-0.079
(3.540)

-0.074
(9.755)

Sub period from 1/1987 to 12/1994 (T = 96)

ARMA(1,1) time series model
0.000 01
(0.0020)

0.0020  0.009
(0.080)

-0.060
(0.369)

-0.199
(4.395)

-0.031
(4.496)

-0.015
(24.53*)

Naïve interest rate model
0.000 08
(0.0020)

0.0020 0.096
(0.914)

0.022
(0.961)

-0.110
(2.195)

0.094
(3.100)

-0.048
(17.14)

ARMA(1,1) interest rate model
-0.000 25
(0.0020)

0.0021 0.027
(0.071)

-0.041
(0.241)

-0.176
(3.362)

0.040
(3.524)

-0.011
(22.88*)

Notes: MFE indicates the mean forecast error (with estimated standard deviations in parentheses), RMSFE is the root of the mean squared forecast error. The AC(i) are the
estimated autocorrelations of the residuals to lag i. With * marked values are significantly different from zero at the 5% level (with an absolute value larger than 1.96 / T0.5).
The Ljung / Box Q-statistic for testing the null hypothesis that up to lag i no autocorrelation exists is reported in parentheses. Under the null hypothesis it is asymptotically
χ2-distributed with i degrees of freedom. Values marked with * are at the 5% significance level within the rejection region.
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Apart from this, it is interesting to observe that the estimated standard deviations of the mean

forecast errors (MFE) and of the mean squared forecast errors (MSFE) decrease

continuously over time. Also in the period from 1/1995 to 1/1999 this trend carries on. A

reason for this may be that the variability of the historical seasonally adjusted inflation rate

from one month to the next has sunk in time, so that inflation has become increasingly easy

to forecast. This hypothesis is supported by the estimated standard deviations of the monthly

changes of the inflation rate — with continually decreasing values of 0.0036, 0.0032, 0.0028

and 0.0026 for the in-sample sub periods and 0.0021 out-of-sample. For model comparison

this has the disadvantage that the different forecast models can hardly be evaluated

concerning their forecast qualities. We think that this is exactly why out-of-sample no

statistical inferences of the relative forecasting abilities are possible. To that extent it seems

to be of subordinate importance that the evaluation period contains only 49 monthly

observations.

5. Conclusion and further research

Since the eighties at the latest, time series models have been evaluated as effective

forecasting tools. Additionally, for inflation forecasting models which are based on the

economical Fisher hypothesis have gained attention. For the analysed West German financial

data a superiority of univariate time series forecasts can be construction-dependently

confirmed in-sample, but not in the out-of-sample period. Because of the lack of variability in

the present West German inflation rates, it is not statistically provable for the one-step-ahead

forecast errors that the interest rate forecast models become more attractive. It may be

supposed that particularly in the long run, i.e. for more than one-step-ahead inflation

forecasts, interest rate models are favourable out-of-sample. But due to the low variability in

the present West German inflation time series, a more extensive study must be undertaken by

others.
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Endnotes

1 All tests in this study are based on an a priori level of significance of 5%.
2 For all estimations and tests in this study the software package EViews3.1 is used.
3 For problems of the approximation quality according to a large MA-parameter in the ARMA(1,1) model viz.

Schwert (1989), Pantula (1991).
4 In the literature — in particular in the context of cointegration analysis — the inflation rate is also found to

follow an I(1) process, viz. for example Nelson / Schwert (1977), Fama / Gibbons (1984), Barsky (1987),
Crowder / Hoffmann (1996), Freeman (1998) for the USA and Carter (1991) for Australia.

5 The approach applies to discrete growth sizes Xt/Xt-1-1 approximately, with the use of the continuous
equivalents (∆lnXt) it holds exactly.

6 The unit root test on the basis of an AR(12) approximation of the ARMA(1,1) process shows that the
estimated AR coefficient is significantly smaller than one thus that the real interest follows a stable process.
For problems of the AR approximation of an ARMA process viz. also note 3.

7 For the naïve interest rate model with factor n = 12 the first one-step-ahead forecast value exists for January
1963. Therefore the in-sample-period is uniformly only regarded here starting from 1/1963.


