library(dyn) library(forecast) data = read.csv("C:\\Documents and Settings\\Jaime Frade\\Desktop\\project\\4-17\\dataproj.csv", header=TRUE) data1 = read.table("C:\\Documents and Settings\\Jaime Frade\\Desktop\\project\\4-17\\data7.txt", header=TRUE) data1 attributes(data) yr30_ts = ts(data$TCMNOMY30, start=c(2006, 4), frequency=365) mon3LIB_ts = ts(data$EDM3, start=c(2006, 4), frequency=365) mon3_ts = ts(data$TCMNOMM3, start=c(2006, 4), frequency=365) at LIBchange = ts(data1$change, start=c(2006, 4), frequency=365) Spread = ts(data1$spread, start=c(2006, 4), frequency=365) length(yr30_ts) length(mon3LIB_ts) length(mon3_ts) par(mfrow=c(2,2)) plot.ts(yr30_ts, ylab="30 Year T-rate", main="Mar 06-Apr 08", col="red") plot.ts(mon3LIB_ts, ylab="3 month LIBOR", main="Mar 06-Apr 08", col="red") plot.ts(mon3_ts, ylab="3 month T-rate", main="Mar 06-Apr 08", col="red") length(lag(mon3_ts,-1)) data = data.frame(mon3LIB_ts, yr30_ts, mon3_ts) cor(data) y=log(lag(mon3_ts,-2)) fit1 = dyn$lm(mon3LIB_ts~lag(mon3_ts,-7)) summary(fit1) par(mfrow=c(2,2)) plot(fit1) fit2 = dyn$lm(mon3LIB_ts~y) summary(fit2) par(mfrow=c(2,2)) plot(fit2) fit3 = dyn$lm(LIBchange~Spread) summary(fit3) par(mfrow=c(2,2)) plot(fit3) x = .011 y = sum(x*fit1$coef) y z = qt(0.975,260) bm = sqrt(x)*z*0.3568/258 c(y-bm, y+bm) x2 = .011 y2 = sum(x2*fit2$coef) y2 par(mfrow=c(2,1)) plot(fit1$fitted.values, ) plot.ts(data2_ts) par(mfrow=c(2,2)) plot(fit1)