
Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1
3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n→ 0 as n→∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n
2

log (2πθ)− 1
2

∑
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
∑
x2

i + nθ)/(2θ3), yielding an expected
Fisher information of

I(θ) = −Eθ
−2
∑
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write ∑
XiYi∑
X2

i

=
∑
Xi(Xi + εi)∑

X2
i

= 1 +
∑
Xiεi∑
X2

i

.

From normality and independence

EXiεi = 0, VarXiεi = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xiεi) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E
(∑

XiYi∑
X2

i

)
≈ 1 and Var

(∑
XiYi∑
X2

i

)
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. ∑
Yi∑
Xi

= β +
∑
εi∑
Xi

with approximate mean β and variance σ2/(nµ2).
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c.
1
n

∑ Yi

Xi
= β +

1
n

∑ εi
Xi

with approximate mean β and variance σ2/(nµ2).
10.5 a. The integral of ET 2

n is unbounded near zero. We have

ET 2
n >

√
n

2πσ2

∫ 1

0

1
x2
e−(x−µ)2/2σ2

dx >

√
n

2πσ2
K

∫ 1

0

1
x2
dx = ∞,

where K = max0≤x≤1 e
−(x−µ)2/2σ2

b. If we delete the interval (−δ, δ), then the integrand is bounded, that is, over the range of
integration 1/x2 < 1/δ2.

c. Assume µ > 0. A similar argument works for µ < 0. Then

P (−δ < X < δ) = P [
√
n(−δ − µ) <

√
n(X − µ) <

√
n(δ − µ)] < P [Z <

√
n(δ − µ)],

where Z ∼ n(0, 1). For δ < µ, the probability goes to 0 as n→∞.
10.7 We need to assume that τ(θ) is differentiable at θ = θ0, the true value of the parameter. Then

we apply Theorem 5.5.24 to Theorem 10.1.12.
10.9 We will do a more general problem that includes a) and b) as special cases. Suppose we want

to estimate λte−λ/t! = P (X = t). Let

T = T (X1, . . . , Xn) =
{

1 if X1 = t
0 if X1 6= t.

Then ET = P (T = 1) = P (X1 = t), so T is an unbiased estimator. Since
∑
Xi is a complete

sufficient statistic for λ, E(T |
∑
Xi) is UMVUE. The UMVUE is 0 for y =

∑
Xi < t, and for

y ≥ t,

E(T |y) = P (X1 = t|
∑

Xi = y)

=
P (X1 = t,

∑
Xi = y)

P (
∑
Xi = y)

=
P (X1 = t)P (

∑n
i=2Xi = y − t)

P (
∑
Xi = y)

=
{λte−λ/t!}{[(n− 1)λ]y−te−(n−1)λ/(y − t)!}

(nλ)ye−nλ/y!

=
(
y

t

)
(n− 1)y−t

ny
.

a. The best unbiased estimator of e−λ is ((n− 1)/n)y.
b. The best unbiased estimator of λe−λ is (y/n)[(n− 1)/n]y−1

c. Use the fact that for constants a and b,

d

dλ
λabλ = bλλa−1(a+ λ log b),

to calculate the asymptotic variances of the UMVUEs. We have for t = 0,

ARE

((
n− 1
n

)nλ̂

, e−λ

)
=

[
e−λ(

n−1
n

)nλ log
(

n−1
n

)n
]2

,
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and for t = 1

ARE

(
n

n− 1
λ̂

(
n− 1
n

)nλ̂

, λ̂e−λ

)
=

[
(λ− 1)e−λ

n
n−1

(
n−1

n

)nλ [1 + log
(

n−1
n

)n]
]2

.

Since [(n− 1)/n]n → e−1 as n→∞, both of these AREs are equal to 1 in the limit.
d. For these data, n = 15,

∑
Xi = y = 104 and the MLE of λ is λ̂ = X̄ = 6.9333. The

estimates are
MLE UMVUE

P (X = 0) .000975 .000765
P (X = 1) .006758 .005684

10.11 a. It is easiest to use the Mathematica code in Example A.0.7. The second derivative of the
log likelihood is

∂2

∂µ2
log
(

1
Γ[µ/β]βµ/β

x−1+µ/βe−x/β

)
=

1
β2
ψ′(µ/β),

where ψ(z) = Γ′(z)/Γ(z) is the digamma function.
b. Estimation of β does not affect the calculation.
c. For µ = αβ known, the MOM estimate of β is x̄/α. The MLE comes from differentiating

the log likelihood
d

dβ

(
−αn log β −

∑
i

xi/β

)
set= 0 ⇒ β = x̄/α.

d. The MOM estimate of β comes from solving
1
n

∑
i

xi = µ and
1
n

∑
i

x2
i = µ2 + µβ,

which yields β̃ = σ̂2/x̄. The approximate variance is quite a pain to calculate. Start from

EX̄ = µ, VarX̄ =
1
n
µβ, Eσ̂2 ≈ µβ, Varσ̂2 ≈ 2

n
µβ3,

where we used Exercise 5.8(b) for the variance of σ̂2. Now using Example 5.5.27 and (and
assuming the covariance is zero), we have Varβ̃ ≈ 3β3

nµ . The ARE is then

ARE(β̂, β̃) =
[
3β3/µ

] [
E
(
− d2

dβ2
l(µ, β|X

)]
.

Here is a small table of AREs. There are some entries that are less than one - this is due
to using an approximation for the MOM variance.

µ

β 1 3 6 10
1 1.878 0.547 0.262 0.154
2 4.238 1.179 0.547 0.317
3 6.816 1.878 0.853 0.488
4 9.509 2.629 1.179 0.667
5 12.27 3.419 1.521 0.853
6 15.075 4.238 1.878 1.046
7 17.913 5.08 2.248 1.246
8 20.774 5.941 2.629 1.451
9 23.653 6.816 3.02 1.662
10 26.546 7.704 3.419 1.878
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10.13 Here are the 35 distinct samples from {2, 4, 9, 12} and their weights.

{12, 12, 12, 12}, 1/256 {9, 12, 12, 12}, 1/64 {9, 9, 12, 12}, 3/128
{9, 9, 9, 12}, 1/64 {9, 9, 9, 9}, 1/256 {4, 12, 12, 12}, 1/64
{4, 9, 12, 12}, 3/64 {4, 9, 9, 12}, 3/64 {4, 9, 9, 9}, 1/64
{4, 4, 12, 12}, 3/128 {4, 4, 9, 12}, 3/64 {4, 4, 9, 9}, 3/128
{4, 4, 4, 12}, 1/64 {4, 4, 4, 9}, 1/64 {4, 4, 4, 4}, 1/256
{2, 12, 12, 12}, 1/64 {2, 9, 12, 12}, 3/64 {2, 9, 9, 12}, 3/64
{2, 9, 9, 9}, 1/64 {2, 4, 12, 12}, 3/64 {2, 4, 9, 12}, 3/32
{2, 4, 9, 9}, 3/64 {2, 4, 4, 12}, 3/64 {2, 4, 4, 9}, 3/64
{2, 4, 4, 4}, 1/64 {2, 2, 12, 12}, 3/128 {2, 2, 9, 12}, 3/64
{2, 2, 9, 9}, 3/128 {2, 2, 4, 12}, 3/64 {2, 2, 4, 9}, 3/64
{2, 2, 4, 4}, 3/128 {2, 2, 2, 12}, 1/64 {2, 2, 2, 9}, 1/64
{2, 2, 2, 4}, 1/64 {2, 2, 2, 2}, 1/256

The verifications of parts (a) − (d) can be done with this table, or the table of means
in Example A.0.1 can be used. For part (e),verifying the bootstrap identities can involve
much painful algebra, but it can be made easier if we understand what the bootstrap sample
space (the space of all nn bootstrap samples) looks like. Given a sample x1, x2, . . . , xn, the
bootstrap sample space can be thought of as a data array with nn rows (one for each
bootstrap sample) and n columns, so each row of the data array is one bootstrap sample.
For example, if the sample size is n = 3, the bootstrap sample space is

x1 x1 x1

x1 x1 x2

x1 x1 x3

x1 x2 x1

x1 x2 x2

x1 x2 x3

x1 x3 x1

x1 x3 x2

x1 x3 x3

x2 x1 x1

x2 x1 x2

x2 x1 x3

x2 x2 x1

x2 x2 x2

x2 x2 x3

x2 x3 x1

x2 x3 x2

x2 x3 x3

x3 x1 x1

x3 x1 x2

x3 x1 x3

x3 x2 x1

x3 x2 x2

x3 x2 x3

x3 x3 x1

x3 x3 x2

x3 x3 x3

Note the pattern. The first column is 9 x1s followed by 9 x2s followed by 9 x3s, the second
column is 3 x1s followed by 3 x2s followed by 3 x3s, then repeated, etc. In general, for the
entire bootstrap sample,
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◦ The first column is nn−1 x1s followed by nn−1 x2s followed by, . . ., followed by nn−1 xns
◦ The second column is nn−2 x1s followed by nn−2 x2s followed by, . . ., followed by nn−2

xns, repeated n times
◦ The third column is nn−3 x1s followed by nn−3 x2s followed by, . . ., followed by nn−3

xns, repeated n2 times
...

◦ The nth column is 1 x1 followed by 1 x2 followed by, . . ., followed by 1 xn, repeated nn−1

times

So now it is easy to see that each column in the data array has mean x̄, hence the entire
bootstrap data set has mean x̄. Appealing to the 33 × 3 data array, we can write the
numerator of the variance of the bootstrap means as

3∑
i=1

3∑
j=1

3∑
k=1

[
1
3
(xi + xj + xk)− x̄

]2

=
1
32

3∑
i=1

3∑
j=1

3∑
k=1

[(xi − x̄) + (xj − x̄) + (xk − x̄)]2

=
1
32

3∑
i=1

3∑
j=1

3∑
k=1

[
(xi − x̄)2 + (xj − x̄)2 + (xk − x̄)2

]
,

because all of the cross terms are zero (since they are the sum of deviations from the mean).
Summing up and collecting terms shows that

1
32

3∑
i=1

3∑
j=1

3∑
k=1

[
(xi − x̄)2 + (xj − x̄)2 + (xk − x̄)2

]
= 3

3∑
i=1

(xi − x̄)2,

and thus the average of the variance of the bootstrap means is

3
∑3

i=1(xi − x̄)2

33

which is the usual estimate of the variance of X̄ if we divide by n instead of n − 1. The
general result should now be clear. The variance of the bootstrap means is

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

[
1
n

(xi1 + xi2 + · · ·+ xin)− x̄

]2
=

1
n2

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

[
(xi1 − x̄)2 + (xi2 − x̄)2 + · · ·+ (xin

− x̄)2
]
,

since all of the cross terms are zero. Summing and collecting terms shows that the sum is
nn−2

∑n
i=1(xi − x̄)2, and the variance of the bootstrap means is nn−2

∑n
i=1(xi − x̄)2/nn =∑n

i=1(xi − x̄)2/n2.

10.15 a. As B →∞ Var∗B(θ̂) = Var∗(θ̂).
b. Each Var∗Bi

(θ̂) is a sample variance, and they are independent so the LLN applies and

1
m

m∑
i=1

Var∗Bi
(θ̂) m→∞→ EVar∗B(θ̂) = Var∗(θ̂),

where the last equality follows from Theorem 5.2.6(c).
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10.17 a. The correlation is .7781
b. Here is R code (R is available free at http://cran.r-project.org/) to bootstrap the data,

calculate the standard deviation, and produce the histogram:

cor(law)
n <- 15
theta <- function(x,law){ cor(law[x,1],law[x,2]) }
results <- bootstrap(1:n,1000,theta,law,func=sd)
results[2]
hist(results[[1]])

The data “law” is in two columns of length 15, “results[2]” contains the standard deviation.
The vector “results[[1]]” is the bootstrap sample. The output is

V1 V2
V1 1.0000000 0.7781716
V2 0.7781716 1.0000000
$func.thetastar
[1] 0.1322881

showing a correlation of .7781 and a bootstrap standard deviation of .1323.
c. The R code for the parametric bootstrap is

mx<-600.6;my<-3.09
sdx<-sqrt(1791.83);sdy<-sqrt(.059)
rho<-.7782;b<-rho*sdx/sdy;sdxy<-sqrt(1-rho^2)*sdx
rhodata<-rho
for (j in 1:1000) {
y<-rnorm(15,mean=my,sd=sdy)
x<-rnorm(15,mean=mx+b*(y-my),sd=sdxy)
rhodata<-c(rhodata,cor(x,y))
}
sd(rhodata)
hist(rhodata)

where we generate the bivariate normal by first generating the marginal then the condid-
ional, as R does not have a bivariate normal generator. The bootstrap standard deviation
is 0.1159, smaller than the nonparametric estimate. The histogram looks similar to the
nonparametric bootstrap histogram, displaying a skewness left.

d. The Delta Method approximation is

r ∼ n(ρ, (1− ρ2)2/n),

and the “plug-in” estimate of standard error is
√

(1− .77822)2/15 = .1018, the smallest so
far. Also, the approximate pdf of r will be normal, hence symmetric.

e. By the change of variables

t =
1
2

log
(

1 + r

1− r

)
, dt =

1
1− r2

,

the density of r is

1√
2π(1− r2)

exp

(
−n

2

[
1
2

log
(

1 + r

1− r

)
− 1

2
log
(

1 + ρ

1− ρ

)]2)
, −1 ≤ r ≤ 1.

More formally, we could start with the random variable T , normal with mean 1
2 log

(
1+ρ
1−ρ

)
and variance 1/n, and make the transformation to R = e2T +1

e2T−1
and get the same answer.
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10.19 a. The variance of X̄ is

VarX̄ = E(X̄ − µ)2 = E

(
1
n

∑
i

Xi − µ

)2

=
1
n2

E

∑
i

(Xi − µ)2 + 2
∑
i>j

(Xi − µ)(Xj − µ)


=

1
n2

(
nσ2 + 2

n(n− 1)
2

ρσ2

)
=

σ2

n
+
n− 1
n

ρσ2

b. In this case we have

E

∑
i>j

(Xi − µ)(Xj − µ)

 = σ2
n∑

i=2

i−1∑
j=1

ρi−j .

In the double sum ρ appears n− 1 times, ρ2 appears n− 2 times, etc.. so

n∑
i=2

i−1∑
j=1

ρi−j =
n−1∑
i=1

(n− i)ρi =
ρ

1− ρ

(
n− 1− ρn

1− ρ

)
,

where the series can be summed using (1.5.4), the partial sum of the geometric series, or
using Mathematica.

c. The mean and variance of Xi are

EXi = E[E(Xi|Xi−1)] = EρXi−1 = · · · = ρi−1EX1

and
VarXi = VarE(Xi|Xi−1) + EVar(Xi|Xi−1) = ρ2σ2 + 1 = σ2

for σ2 = 1/(1− ρ2). Also, by iterating the expectation

EX1Xi = E[E(X1Xi|Xi−1)] = E[E(X1|Xi−1)E(Xi|Xi−1)] = ρE[X1Xi−1],

where we used the facts that X1 and Xi are independent conditional on Xi−1. Continuing
with the argument we get that EX1Xi = ρi−1EX2

1 . Thus,

Corr(X1, Xi) =
ρi−1EX2

1 − ρi−1(EX1)2√
VarX1VarXi

=
ρi−1σ2

√
σ2σ2

= ρi−1.

10.21 a. If any xi → ∞, s2 → ∞, so it has breakdown value 0. To see this, suppose that x1 → ∞.
Write

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

(
[(1− 1

n
)x1 − x̄−1]2 +

n∑
i=2

(xi − x̄)2
)
,

where x̄−1 = (x2 + . . . + xn)/n. It is easy to see that as x1 → ∞, each term in the sum
→∞.

b. If less than 50% of the sample → ∞, the median remains the same, and the median of
|xi −M | remains the same. If more than 50% of the sample → ∞, M → ∞ and so does
the MAD.
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10.23 a. The ARE is [2σf(µ)]2. We have

Distribution Parameters variance f(µ) ARE
normal µ = 0, σ = 1 1 .3989 .64
logistic µ = 0, β = 1 π2/3 .25 .82
double exp. µ = 0, σ = 1 2 .5 2

b. If X1, X2, . . . , Xn are iid fX with EX1 = µ and VarX1 = σ2, the ARE is σ2[2 ∗ fX(µ)]2.
If we transform to Yi = (Xi − µ)/σ, the pdf of Yi is fY (y) = σfX(σy + µ) with ARE
[2 ∗ fY (0)]2 = σ2[2 ∗ fX(µ)]2

c. The median is more efficient for smaller ν, the distributions with heavier tails.

ν VarX f(0) ARE
3 3 .367 1.62
5 5/3 .379 .960
10 5/4 .389 .757
25 25/23 .395 .678
50 25/24 .397 .657
∞ 1 .399 .637

d. Again the heavier tails favor the median.

δ σ ARE
.01 2 .649
.1 2 .747
.5 2 .895
.01 5 .777
.1 5 1.83
.5 5 2.98

10.25 By transforming y = x− θ,∫ ∞

−∞
ψ(x− θ)f(x− θ)dx =

∫ ∞

−∞
ψ(y)f(y)dy.

Since ψ is an odd function, ψ(y) = −ψ(−y), and∫ ∞

−∞
ψ(y)f(y)dy =

∫ 0

−∞
ψ(y)f(y)dy +

∫ ∞

0

ψ(y)f(y)dy

=
∫ 0

−∞
−ψ(−y)f(y)dy +

∫ ∞

0

ψ(y)f(y)dy

= −
∫ ∞

0

ψ(y)f(y)dy +
∫ ∞

0

ψ(y)f(y)dy = 0,

where in the last line we made the transformation y → −y and used the fact the f is symmetric,
so f(y) = f(−y). From the discussion preceding Example 10.2.6, θ̂M is asymptotically normal
with mean equal to the true θ.

10.27 a.

lim
δ→0

1
δ
[(1− δ)µ+ δx− µ] = lim

δ→0

δ(x− µ)
δ

= x− µ.

b.

P (X ≤ a) = P (X ≤ a|X ∼ F )(1− δ) + P (x ≤ a|X = x)δ = (1− δ)F (a) + δI(x ≤ a)
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and

(1− δ)F (a) =
1
2

⇒ a = F−1

(
1

2(1− δ)

)
(1− δ)F (a) + δ =

1
2

⇒ a = F−1

( 1
2 − δ

2(1− δ)

)

c. The limit is
lim
δ→0

aδ − a0

δ
= a′δ|δ=0

by the definition of derivative. Since F (aδ) = 1
2(1−δ) ,

d

dδ
F (aδ) =

d

dδ

1
2(1− δ)

or
f(aδ)a′δ =

1
2(1− δ)2

⇒ a′δ =
1

2(1− δ)2f(aδ)
.

Since a0 = m, the result follows. The other limit can be calculated in a similar manner.

10.29 a. Substituting cl′ for ψ makes the ARE equal to 1.
b. For each distribution is the case that the given ψ function is equal to cl′, hence the resulting

M-estimator is asymptotically efficient by (10.2.9).

10.31 a. By the CLT,

√
n1

p̂1 − p1√
p1(1− p1)

→ n(0, 1) and
√
n2

p̂2 − p2√
p2(1− p2)

→ n(0, 1),

so if p̂1 and p̂2 are independent, under H0 : p1 = p2 = p,

p̂1 − p̂2√(
1

n1
+ 1

n2

)
p̂(1− p̂)

→ n(0, 1)

where we use Slutsky’s Theorem and the fact that p̂ = (S1 + S2)/(n1 + n2) is the MLE of
p under H0 and converges to p in probability. Therefore, T → χ2

1.
b. Substitute p̂is for Si and Fis to get

T ∗ =
n2

1(p̂1− p̂)
2

n1p̂
+
n2

2(p̂2− p̂)
2

n2p̂

+
n2

1 [(1− p̂1)− (1− p̂)]2

n1(1− p̂)
+
n2

2 [(1− p̂2)− (1− p̂)]2

n2p̂

=
n1(p̂1 − p̂)2

p̂(1− p̂)
+
n2(p̂2 − p̂)2

p̂(1− p̂)

Write p̂ = (n1p̂1 + n2p̂2)/(n1 + n2). Substitute this into the numerator, and some algebra
will get

n1(p̂1 − p̂)2 + n2(p̂2 − p̂)2 =
(p̂1 − p̂2)2

1
n1

+ 1
n2

,

so T ∗ = T .
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c. Under H0,
p̂1 − p̂2√(

1
n1

+ 1
n2

)
p(1− p)

→ n(0, 1)

and both p̂1 and p̂2 are consistent, so p̂1(1− p̂1) → p(1− p) and p̂2(1− p̂2) → p(1− p) in
probability. Therefore, by Slutsky’s Theorem,

p̂1−p̂2√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

→ n(0, 1),

and (T ∗∗)2 → χ2
1. It is easy to see that T ∗∗ 6= T in general.

d. The estimator (1/n1 + 1/n2)p̂(1 − p̂) is the MLE of Var(p̂1 − p̂2) under H0, while the
estimator p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n1 is the MLE of Var(p̂1 − p̂2) under H1. One might
argue that in hypothesis testing, the first one should be used, since under H0, it provides
a better estimator of variance. If interest is in finding the confidence interval, however, we
are making inference under both H0 and H1, and the second one is preferred.

e. We have p̂1 = 34/40, p̂2 = 19/35, p̂ = (34 + 19)/(40 + 35) = 53/75, and T = 8.495. Since
χ2

1,.05 = 3.84, we can reject H0 at α = .05.
10.32 a. First calculate the MLEs under p1 = p2 = p. We have

L(p|x) = px1px2px3 · · · pxn−1
n−1

(
1−2p−

n−1∑
i=3

pi

)m−x1−x2−···−xn−1

.

Taking logs and differentiating yield the following equations for the MLEs:

∂logL
∂p

=
x1+x2

p
−

2
(
m−

∑n−1
i=1 xi

)
1−2p−

∑n−1
i=3 pi

= 0

∂logL
∂pi

=
xi

pi
− xn

1−2p−
∑n−1

i=3 pi

= 0, i = 3, . . . , n− 1,

with solutions p̂ = x1+x2
2m , p̂i = xi

m , i = 3, . . . , n − 1, and p̂n =
(
m−

∑n−1
i=1 xi

)
/m. Except

for the first and second cells, we have expected = observed, since both are equal to xi. For
the first two terms, expected = mp̂ = (x1 + x2)/2 and we get

∑ (observed− expected)2

expected
=

(
x1−x1+x2

2

)2
x1+x2

2

+

(
x2−x1+x2

2

)2
x1+x2

2

=
(x1 − x2)

2

x1 + x2
.

b. Now the hypothesis is about conditional probabilities is given by H0: P(change—initial
agree)=P(change—initial disagree) or, in terms of the parameters H0 : p1

p1+p3
= p2

p2+p4
.

This is the same as p1p4 = p2p3, which is not the same as p1 = p2.
10.33 Theorem 10.1.12 and Slutsky’s Theorem imply that

θ̂ − θ√
1
nIn(θ̂)

→ n(0, 1)

and the result follows.
10.35 a. Since σ/

√
n is the estimated standard deviation of X̄ in this case, the statistic is a Wald

statistic
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b. The MLE of σ2 is σ̂2
µ =

∑
i(xi − µ)2/n. The information number is

− d2

d(σ2)2

(
−n

2
log σ2 − 1

2
σ̂2

µ

σ2

)∣∣∣∣∣
σ2=σ̂2

µ

=
n

2σ̂2
µ

.

Using the Delta method, the variance of σ̂µ =
√
σ̂2

µ is σ̂2
µ/8n, and a Wald statistic is

σ̂µ − σ0√
σ2

µ/8n
.

10.37 a. The log likelihood is

logL = −n
2

log σ2 − 1
2

∑
i

(xi − µ)2/σ2

with

d

dµ
=

1
σ2

∑
i

(xi − µ) =
n

σ2
(x̄− µ)

d2

dµ2
= − n

σ2
,

so the test statistic for the score test is

n
σ2 (x̄− µ)√

σ2/n
=
√
n
x̄− µ

σ

b. We test the equivalent hypothesis H0 : σ2 = σ2
0 . The likelihood is the same as Exercise

10.35(b), with first derivative

− d

dσ2
=
n(σ̂2

µ − σ2)
2σ4

and expected information number

E

(
n(2σ̂2

µ − σ2)
2σ6

)
=
n(2σ2 − σ2)

2σ6
=

n

2σ4
.

The score test statistic is √
n

2
σ̂2

µ − σ2
0

σ2
0

10.39 We summarize the results for (a)− (c) in the following table. We assume that the underlying
distribution is normal, and use that for all score calculations. The actual data is generated
from normal, logistic, and double exponential. The sample size is 15, we use 1000 simulations
and draw 20 bootstrap samples. Here θ0 = 0, and the power is tabulated for a nominal α = .1
test.
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Underlying
pdf Test θ0 θ0 + .25σ θ0 + .5σ θ0 + .75σ θ0 + 1σ θ0 + 2σ

Laplace Naive 0.101 0.366 0.774 0.957 0.993 1.
Boot 0.097 0.364 0.749 0.932 0.986 1.

Median 0.065 0.245 0.706 0.962 0.995 1.

Logistic Naive 0.137 0.341 0.683 0.896 0.97 1.
Boot 0.133 0.312 0.641 0.871 0.967 1.

Median 0.297 0.448 0.772 0.944 0.993 1.

Normal Naive 0.168 0.316 0.628 0.878 0.967 1.
Boot 0.148 0.306 0.58 0.836 0.957 1.

Median 0.096 0.191 0.479 0.761 0.935 1.

Here is Mathematica code:
This program calculates size and power for Exercise 10.39, Second Edition
We do our calculations assuming normality, but simulate power and size under other distri-
butions. We test H0 : θ = 0.

theta_0=0;
Needs["Statistics‘Master‘"]
Clear[x]
f1[x_]=PDF[NormalDistribution[0,1],x];
F1[x_]=CDF[NormalDistribution[0,1],x];
f2[x_]=PDF[LogisticDistribution[0,1],x];
f3[x_]=PDF[LaplaceDistribution[0,1],x];
v1=Variance[NormalDistribution[0,1]];
v2=Variance[LogisticDistribution[0,1]];
v3=Variance[LaplaceDistribution[0,1]];

Calculate m-estimate

Clear[k,k1,k2,t,x,y,d,n,nsim,a,w1]
ind[x_,k_]:=If[Abs[x]<k,1,0]
rho[y_,k_]:=ind[y,k]*y^2 + (1-ind[y,k])*(k*Abs[y]-k^2)
alow[d_]:=Min[Mean[d],Median[d]]
aup[d_]:=Max[Mean[d],Median[d]]
sol[k_,d_]:=FindMinimum[Sum[rho[d[[i]]-a,k],{i,1,n}],{a,{alow[d],aup[d]}}]
mest[k_,d_]:=sol[k,d][[2]]

generate data - to change underlying distributions change the sd and the distribution in the
Random statement.

n = 15; nsim = 1000; sd = Sqrt[v1];
theta = {theta_0, theta_0 +.25*sd, theta_0 +.5*sd,

theta_0 +.75*sd, theta_0 + 1*sd, theta_0 +2*sd}
ntheta = Length[theta]
data = Table[Table[Random[NormalDistribution[0, 1]],

{i, 1, n}],{j, 1,nsim}];
m1 = Table[Table[a /. mest[k1, data[[j]] - theta[[i]]],

{j, 1, nsim}], {i, 1, n\theta}];

Calculation of naive variance and test statistic

Psi[x_, k_] = x*If[Abs[x]<= k, 1, 0]- k*If[x < -k, 1, 0] +
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k*If[x > k, 1, 0];
Psi1[x_, k_] = If[Abs[x] <= k, 1, 0];
num =Table[Psi[w1[[j]][[i]], k1], {j, 1, nsim}, {i, 1,n}];
den =Table[Psi1[w1[[j]][[i]], k1], {j, 1, nsim}, {i, 1,n}];
varnaive = Map[Mean, num^2]/Map[Mean, den]^2;
naivestat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varnaive[[j]]/n],

{j, 1, nsim}],{i, 1, ntheta}];
absnaive = Map[Abs, naivestat];
N[Table[Mean[Table[If[absnaive[[i]][[j]] > 1.645, 1, 0],

{j, 1, nsim}]], {i, 1, n\theta}]]

Calculation of bootstrap variance and test statistic

nboot=20;
u:=Random[DiscreteUniformDistribution[n]]
databoot=Table[data[[jj]][[u]],{jj,1,nsim},{j,1,nboot},{i,1,n}];
m1boot=Table[Table[a/.mest[k1,databoot[[j]][[jj]]],

{jj,1,nboot}],{j,1,nsim}];
varboot = Map[Variance, m1boot];
bootstat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varboot[[j]]],

{j, 1, nsim}], {i, 1, ntheta}];
absboot = Map[Abs, bootstat];
N[Table[Mean[Table[If[absboot[[i]][[j]] > 1.645, 1,0],

{j, 1, nsim}]], {i, 1, ntheta}]]\)

Calculation of median test - use the score variance at the root density (normal)

med = Map[Median, data];
medsd = 1/(n*2*f1[theta_0]);
medstat = Table[Table[med[[j]] + \theta[[i]] - theta_0/medsd,

{j, 1, nsim}], {i, 1, ntheta}];
absmed = Map[Abs, medstat];
N[Table[Mean[Table[If[\(absmed[[i]][[j]] > 1.645, 1, 0],

{j, 1, nsim}]], {i, 1, ntheta}]]

10.41 a. The log likelihood is
logL = nr log p+ nx̄ log(1− p)

with
d

dp
logL =

nr

p
− nx̄

1− p
and

d2

dp2
logL = −nr

p2
− nx̄

(1− p)2
,

expected information nr
p2(1−p) and (Wilks) score test statistic

√
n

(
r
p −

nx̄
1−p

)
√

r
p2(1−p)

=
√
n

r

(
(1− p)r + px̄√

1− p

)
.

Since this is approximately n(0, 1), a 1− α confidence set is{
p :
∣∣∣∣√n

r

(
(1− p)r − px̄√

1− p

)∣∣∣∣ ≤ zα/2

}
.
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b. The mean is µ = r(1− p)/p, and a little algebra will verify that the variance, r(1− p)/p2

can be written r(1− p)/p2 = µ+ µ2/r. Thus√
n

r

(
(1− p)r − px̄√

1− p

)
=
√
n

µ− x̄√
µ+ µ2/r

.

The confidence interval is found by setting this equal to zα/2, squaring both sides, and
solving the quadratic for µ. The endpoints of the interval are

r(8x̄+ z2
α/2)±

√
rz2

α/2

√
16rx̄+ 16x̄2 + rz2

α/2

8r − 2z2
α/2

.

For the continuity correction, replace x̄ with x̄+1/(2n) when solving for the upper endpoint,
and with x̄− 1/(2n) when solving for the lower endpoint.

c. We table the endpoints for α = .1 and a range of values of r. Note that r = ∞ is the
Poisson, and smaller values of r give a wider tail to the negative binomial distribution.

r lower bound upper bound
1 22.1796 364.42
5 36.2315 107.99
10 38.4565 95.28
50 40.6807 85.71
100 41.0015 84.53
1000 41.3008 83.46
∞ 41.3348 83.34

10.43 a. Since

P

(∑
i

Xi = 0

)
= (1− p)n = α/2 ⇒ p = 1− α1/n

and

P

(∑
i

Xi = n

)
= pn = α/2 ⇒ p = α1/n,

these endpoints are exact, and are the shortest possible.
b. Since p ∈ [0, 1], any value outside has zero probability, so truncating the interval shortens

it at no cost.
10.45 The continuity corrected roots are

2p̂+ z2
α/2/n±

1
n ±

√
z2

α/2

n3 [±2n(1− 2p̂)− 1] + (2p̂+ z2
α/2/n)2 − 4p̂2(1 + z2

α/2/n)

2(1 + z2
α/2/n)

where we use the upper sign for the upper root and the lower sign for the lower root. Note that
the only differences between the continuity-corrected intervals and the ordinary score intervals
are the terms with ± in front. But it is still difficult to analytically compare lengths with the
non-corrected interval - we will do a numerical comparison. For n = 10 and α = .1 we have
the following table of length ratios, with the continuity-corrected length in the denominator

n 0 1 2 3 4 5 6 7 8 9 10
Ratio 0.79 0.82 0.84 0.85 0.86 0.86 0.86 0.85 0.84 0.82 0.79

The coverage probabilities are
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p 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
score .99 .93 .97 .92 .90 .89 .90 .92 .97 .93 .99
cc .99 .99 .97 .92 .98 .98 .98 .92 .97 .99 .99

Mathematica code to do the calculations is:

Needs["Statistics‘Master‘"]
Clear[p, x]
pbino[p_, x_] = PDF[BinomialDistribution[n, p], x];
cut = 1.645^2;
n = 10;

The quadratic score interval with and without continuity correction

slowcc[x_] := p /. FindRoot[(x/n - 1/(2*n) - p)^2 ==
cut*(p*((1 - p))/n, {p, .001}]

supcc[x_] := p /. FindRoot[(x/n + 1/(2*n) - p)^2 ==
cut*(p*((1 - p)/n, {p, .999}]

slow[x_] := p /. FindRoot[(x/n - p))^2 ==
cut*(p*(1 - p))/n, {p, .001}]

sup[x_] := p /. FindRoot[(x/n - p)^2 ==
cut*(p*(1 - p)/n, {p, .999}]

scoreintcc=Partition[Flatten[{{0,sup[0]},Table[{slowcc[i],supcc[i]},
{i,1,n-1}],{slowcc[n],1}},2],2];

scoreint=Partition[Flatten[{{0,sup[0]},Table[{slow[i],sup[i]},
{i,1,n-1}],{slowcc[n],1}},2],2];

Length Comparison

Table[(sup[i] - slow[i])/(supcc[i] - slowcc[i]), {i, 0, n}]

Now we’ll calculate coverage probabilities

scoreindcc[p_,x_]:=If[scoreintcc[[x+1]][[1]]<=p<=scoreintcc[[x+1]][[2]],1,0]
scorecovcc[p_]:=scorecovcc[p]=Sum[pbino[p,x]*scoreindcc[p,x],{x,0,n}]
scoreind[p_,x_]:=If[scoreint[[x+1]][[1]]<=p<=scoreint[[x+1]][[2]],1,0]
scorecov[p_]:=scorecov[p]=Sum[pbino[p,x]*scoreind[p,x],{x,0,n}]
{scorecovcc[.0001],Table[scorecovcc[i/10],{i,1,9}],scorecovcc[.9999]}//N
{scorecov[.0001],Table[scorecov[i/10],{i,1,9}],scorecov[.9999]}//N

10.47 a. Since 2pY ∼ χ2
nr (approximately)

P (χ2
nr,1−α/2 ≤ 2pY ≤ χ2

nr,α/2) = 1− α,

and rearrangment gives the interval.
b. The interval is of the form P (a/2Y ≤ p ≤ b/2Y ), so the length is proportional to b − a.

This must be minimized subject to the constraint
∫ b

a
f(y)dy = 1−α, where f(y) is the pdf

of a χ2
nr. Treating b as a function of a, differentiating gives

b′ − 1 = 0 and f(b)b′ − f(a) = 0

which implies that we need f(b) = f(a).


