Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

2
EX =0/3, EX?*=1/3, VarX = —%.

Wl =

So 3X,, is an unbiased estimator of # with variance
Var(3X,,) = 9(VarX)/n = (3 — 6*)/n — 0 as n — oo.

So by Theorem 10.1.3, 3X,, is a consistent estimator of 6.
10.3 a. The log likelihood is

—g log (276) — % Z(mz —0)/0.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of 62 + 6 — W = 0. The roots of this equation are (—1 ++/1 + 4W)/2, and the MLE is the
root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (=2~ 22 + nf)/(26°), yielding an expected
Fisher information of
-2 X2 +n0  2n0+n
203 o202

1(6) = —Eq

and by Theorem 10.1.12 the variance of the MLE is 1/1(0).

10.4 a. Write
XY Y Xi(Xite) 14 > Xi€

RS E D 3 ¢

From normality and independence

EX;e; =0, VarX;e; = o?(p? +7%), EX?=p?+ 7% VarX? = 27%(2u° 4+ 72),

and Cov(X;, X;¢;) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

X.Y: X.Y; 2(,,2 2 2
E(Z ll)ﬁland\/ar(z zl)wna(,u +t) g

> X2 X7 ) S G TR  aGe )
b. Sy, >
%, PTEx,

with approximate mean 3 and variance o2/(nu?).
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1 Y; 1 €;
n Z Xi B ﬂ + n Xi
with approximate mean 3 and variance o2/(nu?).

a. The integral of ET? is unbounded near zero. We have

1 1
1 1

ET? > o —em @207 g " K —dx = oo,
" 2ro? Jy a2 2ro? Jy a?

where K = maxo<z<1 6_(w_”)2/202

b. If we delete the interval (-4, ), then the integrand is bounded, that is, over the range of
integration 1/22 < 1/42.

c. Assume g > 0. A similar argument works for g < 0. Then

P(=0 <X <6)=PVn(=0 —p) < Vn(X —p) < vn(d — p)] < P[Z < vn(d — ),

where Z ~ n(0,1). For § < p, the probability goes to 0 as n — oc.
We need to assume that 7(0) is differentiable at § = 6, the true value of the parameter. Then
we apply Theorem 5.5.24 to Theorem 10.1.12.

We will do a more general problem that includes a) and b) as special cases. Suppose we want
to estimate Me™/t! = P(X =t). Let

B 1 X =t
T=T(X1,...,X,) = {0 g
Then ET = P(T =1) = P(X; =t), so T is an unbiased estimator. Since }_ X; is a complete
sufficient statistic for A, E(T|Y_ X;) is UMVUE. The UMVUE is 0 for y = > X; < ¢, and for
y=>t,

E(Tly) = P(X1=t|ZXi=y)
 PXi=t)Yy Xi=y)
N Py Xi=y)
_ P =P Xi=y 1)
a PR_Xi=y)

{(Ne M tH{[(n = DA fem (=Y (y — 1)1}
(nA)ve—nA /y!

(e

a. The best unbiased estimator of e=* is ((n — 1)/n)¥.
b. The best unbiased estimator of \e™* is (y/n)[(n — 1)/n]¥~1
c. Use the fact that for constants a and b,

d
aA“bA =" \*"Y(a + Alogh),

to calculate the asymptotic variances of the UMVUEs. We have for ¢t = 0,

e ((5)") - o]

n
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and fort =1

no<fn—1\" fer )| = (A—1)e? ’
e (253 () ) - [ e

n—1 n

Since [(n —1)/n]™ — e~ as n — oo, both of these AREs are equal to 1 in the limit.

. For these data, n = 15, > X; = y = 104 and the MLE of X is A = X = 6.9333. The

estimates are
MLE UMVUE
P(X =0) .000975 .000765
P(X =1) .006758 .005684

It is easiest to use the Mathematica code in Example A.0.7. The second derivative of the
log likelihood is

o 1 /B -a/B) _ L

where ¢(z) =T(z)/T'(2) is the digamma function.

. Estimation of 3 does not affect the calculation.

c. For 4 = af known, the MOM estimate of 3 is Z/a. The MLE comes from differentiating

the log likelihood
d s
a3 <omlogﬂ ;m/ﬂ) Z0= =7/
The MOM estimate of 8 comes from solving
1 1
hal ;= d= 2 — 2
IRV o BN
which yields g =62 /Z. The approximate variance is quite a pain to calculate. Start from
_ _ 1 2
EX =p, VarX = —uf, E&?~pupB, Vare?~ =us?,
n n

where we used Exercise 5.8(b) for the variance of 52. Now using Example 5.5.27 and (and
~ 3
assuming the covariance is zero), we have Varf ~ % The ARE is then

ARE(3,5) = [35°/] [B (it )|

Here is a small table of AREs. There are some entries that are less than one - this is due
to using an approximation for the MOM variance.

1

1 3 6 10
1.878 0.547 0.262 0.154
4.238 1.179 0.547 0.317
6.816 1.878 0.853 0.488
9.509 2.629 1.179 0.667
12.27  3.419 1.521 0.853
15.075 4.238 1.878 1.046
17913 5.08 2.248 1.246
20.774 5.941 2.629 1.451
23.653 6.816 3.02 1.662
26.546 7.704 3.419 1.878

S ©ooNo o W =@
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10.13 Here are the 35 distinct samples from {2,4,9,12} and their weights.

{12,12,12,12},1/256 {9,12,12,12},1/64

{9,9,9,12},1/64 {9,9,9,9},1/256
{4,9,12,12},3/64 {4,9,9,12},3/64
{4,4,12,12},3/128  {4,4,9,12},3/64
{4,4,4,12},1/64 {4,4,4,9},1/64
{2,12,12,12},1/64  {2,9,12,12},3/64
{2,9,9,9},1/64 {2,4,12,12},3/64
{2,4,9,9},3/64 {2,4,4,12},3/64
{2,4,4,4},1/64 {2,2,12,12},3/128
{2,2,9,9},3/128 {2,2,4,12},3/64
{2,2,4,4},3/128 {2,2,2,12},1/64
{2,2,2,4},1/64 {2,2,2,2},1/256

19,9,12, 12}, 3/128
{4,12,12,12},1/64
{4,9,9,9},1/64
{4,4,9,9},3/128
{4,4,4,4},1/256
{2,9,9,12},3/64
{2,4,9,12},3/32
{2,4,4,9},3/64
{2,2,9,12},3/64
{2,2,4,9},3/64
{2,2,2,9},1/64

The verifications of parts (a) — (d) can be done with this table, or the table of means
in Example A.0.1 can be used. For part (e),verifying the bootstrap identities can involve
much painful algebra, but it can be made easier if we understand what the bootstrap sample
space (the space of all n™ bootstrap samples) looks like. Given a sample x1, z3, . .
bootstrap sample space can be thought of as a data array with n™ rows (one for each
bootstrap sample) and n columns, so each row of the data array is one bootstrap sample.

For example, if the sample size is n = 3, the bootstrap sample space is

Z1
Z1
1
gl
Z1
Z1
Z1
x1
1
T2
T2
T2
Z2
T2
T2
T2
T2
T2
r3
T3
T3
T3
z3
€3
T3
T3
T3

Note the pattern. The first column is 9 z;s followed by 9 zss followed by 9 x3s, the second
column is 3 x1s followed by 3 xas followed by 3 z3s, then repeated, etc. In general, for the

entire bootstrap sample,

I
T
T
T2
T2
T2
z3
T3
T3
I
z1
T
T2
T2
T2
z3
T3
T3
T
T
T
T2
T2
Z2
z3
T3
T3

Z1
T2
T3
T
T2
T3
z1
T2
T3
z1
T2
T3
1
T2
T3
z1
T2
T3
z1
z2
T3
T
T2
zs3
z1
T2
T3
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o The first column is n” ! x;s followed by n"~! xys followed by, ..., followed by n®~! z,s

o The second column is n"~2 z;s followed by n”~2 z3s followed by, ..., followed by n™~2
.S, repeated n times

o The third column is n”3 z;s followed by n" 2 zss followed by, ..., followed by n™3
ZS, repeated n? times

o The nt* column is 1 z; followed by 1 x4 followed by, . .., followed by 1 z,,, repeated n”

times

So now it is easy to see that each column in the data array has mean &, hence the entire
bootstrap data set has mean Z. Appealing to the 3% x 3 data array, we can write the
numerator of the variance of the bootstrap means as

33 ) Rt
i_lj_lkz_:l{g(xz—l-m]—l—xk)—x]
NN
= 2> (i @) + (@) + (o — @)
i=1 j=1k=1
ENERE
- ;?ZZ [(; — 2)% + (z; — 2)° + (2 — 2)°],

(2

Il
=
<

Il
-
=~

Il
_

because all of the cross terms are zero (since they are the sum of deviations from the mean).
Summing up and collecting terms shows that

3 3 3
1 T P = —
32 Z Z Z (@ = 2)? + (2 — 2)* + (21, — 2)%] = 32(% -z
and thus the average of the variance of the bootstrap means is

3 _
3% i (@i —2)°
33

w

which is the usual estimate of the variance of X if we divide by n instead of n — 1. The
general result should now be clear. The variance of the bootstrap means is

n n n 2
S5 [
11:17,2:11 TZHZIH .

= pz ST (@i =2+ (i, — )+ (0, — )]

i1=1142=1 in=1

since all of the cross terms are zero. Summing and collecting terms shows that the sum is
n";Q Z?=1(fi2* f2)2, and the variance of the bootstrap means is n" =2 Y7 (z; — )% /n" =
i (@i —2)%/n”.

As B — oo Varg () = Var*(0).

. Each Varp, (é) is a sample variance, and they are independent so the LLN applies and

1 “ A\ M—00 A A
—E Varp (0) "— EVarg(f) = Var™(0),
m

i=1

where the last equality follows from Theorem 5.2.6(c).



10-6

Solutions Manual for Statistical Inference

10.17 a. The correlation is .7781

b. Here is R code (R is available free at http://cran.r-project.org/) to bootstrap the data,

calculate the standard deviation, and produce the histogram:

cor (law)

n <- 15

theta <- function(x,law){ cor(law([x,1],law[x,2]) }
results <- bootstrap(l:n,1000,theta,1aw,func=sd)
results[2]

hist(results[[1]])

The data “law” is in two columns of length 15, “results[2]” contains the standard deviation.
The vector “results[[1]]” is the bootstrap sample. The output is

Vi V2
V1l 1.0000000 0.7781716
V2 0.7781716 1.0000000
$func.thetastar
[1] 0.1322881

showing a correlation of .7781 and a bootstrap standard deviation of .1323.

. The R code for the parametric bootstrap is

mx<-600.6;my<-3.09

sdx<-sqrt(1791.83) ;sdy<-sqrt(.059)
rho<-.7782;b<-rho*sdx/sdy;sdxy<-sqrt(1-rho~2)*sdx
rhodata<-rho

for (j in 1:1000) {
y<-rnorm(15,mean=my, sd=sdy)
x<-rnorm(15,mean=mx+b* (y-my) , sd=sdxy)
rhodata<-c(rhodata,cor(x,y))

}

sd(rhodata)

hist(rhodata)

where we generate the bivariate normal by first generating the marginal then the condid-
ional, as R does not have a bivariate normal generator. The bootstrap standard deviation
is 0.1159, smaller than the nonparametric estimate. The histogram looks similar to the
nonparametric bootstrap histogram, displaying a skewness left.

. The Delta Method approximation is

r~n(p, (1= p*)?/n),

and the “plug-in” estimate of standard error is /(1 — .77822)2/15 = .1018, the smallest so
far. Also, the approximate pdf of r will be normal, hence symmetric.

1 147 1
t=-1 dt = ——
ZOg(l—r)’ 1— 2
the density of r is

2
1 n [l (147\ 1. (14p
——exp -2 |51 —log (L —1<r<l.
\/27r(1r2)eXp< 2[2 0g<1—r> ZOg(l—p>:| ) =r=
14p

More formally, we could start with the random variable T', normal with mean % log (—)

. By the change of variables

1-p

. . 2T
and variance 1/n, and make the transformation to R = ;{j and get the same answer.
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The variance of X is

2
_ _ 1
VarX =E(X —pu)? = E (n ZXi —,u)
i

1
= 5B DX =) +2> (X — ) (X5 —p)
i i>j
1 _
= o) (n02 + zn(n2 )pO'Q)
o2 n—1
— _ —|— po
n
In this case we have
n i—1 o
ED (Xi—w)(X—p)| =0 Y o
i>j i=2 j=1

In the double sum p appears n — 1 times, p? appears n — 2 times, etc.. so

i:iipi’j :ni(n—i)pi— . (n— 1_pn),

i=2 j=1 i=1 L=p L=p

where the series can be summed using (1.5.4), the partial sum of the geometric series, or
using Mathematica.

. The mean and variance of X; are

EXZ = E[E(Xz‘Xzfl)] = EpXi71 — ... = pi—lEXl

and
VarX; = VarE(X;|X;_1) + EVar(X;|X; 1) = p*0® + 1 = o*

for 02 = 1/(1 — p?). Also, by iterating the expectation
EX 1 X; = E[E(X1 X;|X;-1)] = E[E(X1|X,;_1)E(X;| X;—1)] = pE[ X1 X;_1],

where we used the facts that X; and X; are independent conditional on X; ;. Continuing
with the argument we get that EX; X; = p"'EX?. Thus,

pEXE — p' I (EX)? - p'lo? i—1

VarX; Var X; N Vo2a2? -7

— 00, so0 it has breakdown value 0. To see this, suppose that ;1 — oo.

COI‘I‘(Xl, X,L) =

2
If any x; — oo, s

Write

n

s* = : Z(xl —z)? = n i 1 <[(1 - %)xl —z_4)*+ Z(l‘l — x)2> ,

n—1~4
=1

where Z_1 = (x2 + ...+ x,)/n. It is easy to see that as x; — o0, each term in the sum
— 00.

. If less than 50% of the sample — oo, the median remains the same, and the median of

|z; — M| remains the same. If more than 50% of the sample — oo, M — oo and so does
the MAD.
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10.23 a. The ARE is [20 f(u)]?. We have
Distribution Parameters  variance f(u) ARE

normal u=0,0=1 1 .3989 .64
logistic u=0,=1 =m2/3 .25 .82
double exp. pu=0,0=1 2 .5 2

b. If X1, Xo,..., X, are iid fx with EX; = g and VarX; = 02, the ARE is 022 * fx(u)]%
If we transform to Y; = (X; — u)/o, the pdf of Y; is fy(y) = ofx(oy + p) with ARE
2% fy (0)]* = 0?2 % fx (1))?

¢. The median is more efficient for smaller v, the distributions with heavier tails.

v VarX f(0) ARE
3 3 367 1.62
5 5/3  .379  .960
10 5/4 389 757
25 25/23 .395 .678
50 25/24 .397 .657
00 1 399 .637

d. Again the heavier tails favor the median.

6 o ARE
01 2  .649
A2 747
52 .89
.01 5 777
1 5 1.83
bS5 298

10.25 By transforming y =« — 0,
| ve-os@-od= [ vwswa.

Since % is an odd function, ¥ (y) = —¢(—y), and

/fo b fdy = [ v f)dy + /O°°¢(y>f<y>dy

O o0
_ / —p(—y) f(y)dy + / W() f (y)dy
_ 0

- - W) )y + / T ) )y =0,
0 0

where in the last line we made the transformation y — —y and used the fact the f is symmetric,
so f(y) = f(—y). From the discussion preceding Example 10.2.6, 8, is asymptotically normal
with mean equal to the true 6.

10.27 a. ) 5( )
im =[(1— = lim R

PX<a)=PX<a|lX~F)1-080)+Px<aX=2)d=(1-9§)F(a)+l(z <a)
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and

(1-9)F(a) =

c. The limit is

by the definition of derivative. Since F(as) = S0}

d d_1
o5 F(as) = 45 2(1—9)
or ;o 1 r_ 1
Has)as = 505 = % = 30 = 5)27(ap)

Since ag = m, the result follows. The other limit can be calculated in a similar manner.
10.29 a. Substituting cl’ for 1) makes the ARE equal to 1.

b. For each distribution is the case that the given v function is equal to cl’, hence the resulting
M-estimator is asymptotically efficient by (10.2.9).

10.31 a. By the CLT,

m]ﬁ;pl —n(0,1) and J@M —n(0,1),
p1(1—p1) p2(1=p2)
so if p; and py are independent, under Hy : p1 = p2 = p,
P1— D2
\/(;1 + )51~ )

where we use Slutsky’s Theorem and the fact that p = (S1 + S2)/(n1 + n2) is the MLE of
p under Hy and converges to p in probability. Therefore, T — x3.

b. Substitute p;s for S; and F;s to get

—n(0,1)

L a2 N2
o~ MO =P (b, —p)
nip nop
2 ~ ~\12 2 ~ ~\12
m [(A=p) = A =P | n5 [(1=py)— (1P
n1(1 —p) na2p
ni(p1 —p)® | na(p2 — p)?
Hi-p) P17
Write p = (n1p1 + nape)/(n1 + ng). Substitute this into the numerator, and some algebra
will get
- A \2
« « ~ . b1 —Dp
ni (P — p)? +n2(p2 — p)* = %
ny no

soT*="1T.
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c. Under Hy,
P1 — D2

J(E+2)pa-n

and both p; and po are consistent, so p1(1 —p1) — p(1 — p) and pa(1 — p2) — p(1 — p) in
probability. Therefore, by Slutsky’s Theorem,

—n(0,1)

D1—Do
\/ﬁl(l—ﬁ1)+i)z(1—ﬁ2)

ni n2

—n(0,1),

and (T**)? — x3. It is easy to see that T** # T in general.

d. The estimator (1/n; + 1/n2)p(1 — p) is the MLE of Var(p, — p2) under Hy, while the
estimator p1(1 — p1)/n1 + p2(1 — p2)/nq is the MLE of Var(p; — p2) under Hy. One might
argue that in hypothesis testing, the first one should be used, since under Hy, it provides
a better estimator of variance. If interest is in finding the confidence interval, however, we
are making inference under both Hy and Hy, and the second one is preferred.

e. We have p; = 34/40, po = 19/35, p = (34 + 19)/(40 + 35) = 53/75, and T = 8.495. Since
x%,_og) = 3.84, we can reject Hy at a = .05.

10.32 a. First calculate the MLEs under p; = p2 = p. We have

—Tn—1

n—1 m—Try—Ta—: -
L(pla) = p™p™2p”™ - pp7! <12p ZPZ)
=3

Taking logs and differentiating yield the following equations for the MLEs:

n—1
Ologl  w1+w 2 (m— D imt xz) o
dp P 1-2p— Y175 ps

OlogL x

n
Opi pi  1-2p— Z?:_; i

=0, 1=3,...,n—1,

with solutions p = %, pi=3ti=3,...,n—1,and p, = (m— Z?:_ll a:i) /m. Except

for the first and second cells, we have expected = observed, since both are equal to x;. For
the first two terms, expected = mp = (x1 + x2)/2 and we get

_ajm)’

Z (observed — expected)® B (Jcl—%f (2 (g — z5)°

T1t+zo -
5 I +.’E2

= +
expected fidos

b. Now the hypothesis is about conditional probabilities is given by Hy: P(change—initial

agree)=P(change—initial disagree) or, in terms of the parameters Hy : p1p+1p3 = p2p+2p4.

This is the same as p1ps = paps3, which is not the same as p; = ps.
10.33 Theorem 10.1.12 and Slutsky’s Theorem imply that

and the result follows.

10.35 a. Since o/y/n is the estimated standard deviation of X in this case, the statistic is a Wald
statistic
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b. The MLE of 62 is 62 = Y, (z; — )?/n. The information number is

L ﬁlo 2 lcj
d(c?)? 2 987 T 952

Using the Delta method, the variance of 6, = /62 is 7. /8n, and a Wald statistic is

2
“w

262"
252 H
ag _O-M

Oy — 00
\/oa/8n

10.37 a. The log likelihood is

__n 2 1 2, 2
logL = ——logo —§Z(xl—u) /o
with
d 1 n.,
@ = ;Z(xi—ﬂ)zﬁ(ﬂf—/ﬁ
i
d2
i

so the test statistic for the score test is

25 (7 — p) _ i
ag

b. We test the equivalent hypothesis Hy : 02 = 0. The likelihood is the same as Exercise

10.35(b), with first derivative
d n(67 —o?)

S do? T 204

and expected information number

The score test statistic is
~2 2
n O-H — 0y

5 2
2 og

10.39 We summarize the results for (a) — (¢) in the following table. We assume that the underlying
distribution is normal, and use that for all score calculations. The actual data is generated
from normal, logistic, and double exponential. The sample size is 15, we use 1000 simulations

and draw 20 bootstrap samples. Here 6y = 0, and the power is tabulated for a nominal o = .1
test.
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Underlying
pdf Test 6o 0o+ .250 69+ .50 69+ .750 Oo+ 1o 0Oy + 20

Laplace Naive 0.101 0.366 0.774 0.957 0.993 1.
Boot 0.097 0.364 0.749 0.932 0.986 1.

Median  0.065 0.245 0.706 0.962 0.995 1.

Logistic Naive  0.137 0.341 0.683 0.896 0.97 1.
Boot 0.133 0.312 0.641 0.871 0.967 1.

Median  0.297 0.448 0.772 0.944 0.993 1.

Normal Naive  0.168 0.316 0.628 0.878 0.967 1.
Boot 0.148 0.306 0.58 0.836 0.957 1.

Median  0.096 0.191 0.479 0.761 0.935 1.

Here is Mathematica code:
This program calculates size and power for Exercise 10.39, Second Edition

We do our calculations assuming normality, but simulate power and size under other distri-
butions. We test Hy : 0 = 0.

theta_0=0;

Needs["Statistics‘Master‘"]

Clear[x]
f1[x_]=PDF[NormalDistribution[0,1],x];
F1[x_]=CDF [NormalDistribution[0,1],x];
f2[x_]=PDF [LogisticDistribution[0,1],x];
£3[x_]=PDF [LaplaceDistribution[0,1],x];
vi=Variance[NormalDistribution[0,1]];
v2=Variance[LogisticDistribution[0,1]];
v3=Variance[LaplaceDistribution[0,1]];

Cualculate m-estimate

Clear[k,k1,k2,t,x,y,d,n,nsim,a,wl]

ind[x_,k_]:=If [Abs[x]<k,1,0]

rholy_,k_]:=ind[y,k]*y~2 + (1-ind[y,k])* (k*Abs[y]l-k"2)

alow([d_] :=Min[Mean[d] ,Median[d]]

aup[d_] :=Max [Mean[d] ,Median[d]]
sollk_,d_]:=FindMinimum[Sum[rho[d[[i]l]-a,k],{i,1,n}],{a,{alowl[d],aupl[d]}}]
mest[k_,d_]:=sol[k,d] [[2]]

generate data - to change underlying distributions change the sd and the distribution in the
Random statement.

n = 15; nsim = 1000; sd = Sqrt[vi];

theta = {theta_0, theta_0O +.25%sd, theta_0 +.5%sd,
theta_0 +.75*sd, theta_0 + 1xsd, theta_0 +2*sd}

ntheta = Length[thetal

data = Table[Table[Random[NormalDistribution[O, 111,
{i, 1, n}]1,{j, 1,nsim}];

ml = Table[Tablel[a /. mest[kl, datal[j]] - thetal[i]1],
{j, 1, nsim}], {i, 1, n\thetal}];

Calculation of naive variance and test statistic

Psilx_, k_] = x*If[Abs[x]l<= k, 1, 0]- kxIf[x < -k, 1, 0] +
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kxIf[x > k, 1, 0]
Psill[x_, k_] = If[Abs[x] <= k, 1, 0];
num =Table[Psilwi[[j11[[i]1], k1], {j, 1, msim}, {i, 1,n}];
den =Table[Psii[wil[[j]1]1[[i]1]1, k11, {j, 1, nsim}, {i, 1,n}];
varnaive = Map([Mean, num~2]/Map[Mean, den]"2;
naivestat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varnaive[[j]]/n],
{j, 1, nsim}],{i, 1, nthetal}];
absnaive = Map[Abs, naivestat];
N[Table[Mean[Table[If [absnaivel[[i]][[j]] > 1.645, 1, 0],
{j, 1, nsim}]], {i, 1, n\thetal}]]

Calculation of bootstrap variance and test statistic

nboot=20;
u:=Random[DiscreteUniformDistribution[n]]
databoot=Table[datal[[jj]1] [[ul],{jj,1,nsim},{j,1,nboot},{i,1,n}];
mlboot=Table[Table[a/.mest [kl,databoot [[j1][[jj11],
{jj,1,nboot}],{j,1,nsim}];
varboot = Map[Variance, mlboot];
bootstat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varboot[[jl1]1],
{j, 1, nsim}], {i, 1, nthetal}];
absboot = Map[Abs, bootstat];
N[Table[Mean[Table [If [absboot[[i]][[j]1] > 1.645, 1,0],
{j, 1, nsim}]], {i, 1, ntheta}]]\)

Calculation of median test - use the score variance at the root density (normal)

med = Map[Median, datal;

medsd = 1/(n*2*f1[theta_0]);

medstat = Table[Table[med[[j]] + \thetal[[i]l] - theta_0/medsd,
{j, 1, nsim}], {i, 1, nthetal}];

absmed = Map[Abs, medstat];

N[Table [Mean[Table [If [\ (absmed[[i]][[j]] > 1.645, 1, 0],
{j, 1, nsim}]1], {i, 1, nthetal}]]

10.41 a. The log likelihood is
log L = nrlogp + nzlog(l — p)

with
d nr nT d? _nr nT
—logL = — — d log L = —_—
o og » = an o —— log

expected information (’}ip) and (Wilks) score test statistic

(%fﬁ) _In ((L=p)r+pz
p*(1-p)
Since this is approximately n(0,1), a 1 — « confidence set is

{r: 7 (S ) = e
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b. The mean is u = r(1 — p)/p, and a little algebra will verify that the variance, r(1 — p)/p?

can be written r(1 — p)/p? = u + p?/r. Thus

(AT e

The confidence interval is found by setting this equal to z,/2, squaring both sides, and
solving the quadratic for u. The endpoints of the interval are

r(8z + 25 )5) £ \/rzi/Q \/161@ +162% + 7122

8r — 222 /o
For the continuity correction, replace Z with Z41/(2n) when solving for the upper endpoint,
and with  — 1/(2n) when solving for the lower endpoint.

c. We table the endpoints for a« = .1 and a range of values of r. Note that r = oo is the
Poisson, and smaller values of r give a wider tail to the negative binomial distribution.

r lower bound upper bound
1 22.1796 364.42
5 36.2315 107.99
10 38.4565 95.28
50  40.6807 85.71
100  41.0015 84.53
1000  41.3008 83.46
oo 41.3348 83.34

10.43 a. Since
P (in =o> —(l-p=a2=p=1-a'/"

and
P <ZXi :n> =p" =a/2=p=al/"
i
these endpoints are exact, and are the shortest possible.

b. Since p € [0, 1], any value outside has zero probability, so truncating the interval shortens
it at no cost.

10.45 The continuity corrected roots are

z

2
2ﬁ+zi/2/n:t}tj:\/ o

[£2n(1 — 2p) — 1] + (25 + 22 5 /n)? — 4p>(1 + 22, /n)
2(1 + Zi/z/”)

where we use the upper sign for the upper root and the lower sign for the lower root. Note that
the only differences between the continuity-corrected intervals and the ordinary score intervals
are the terms with & in front. But it is still difficult to analytically compare lengths with the
non-corrected interval - we will do a numerical comparison. For n = 10 and o = .1 we have
the following table of length ratios, with the continuity-corrected length in the denominator

n 0 1 2 3 4 ) 6 7 8 9 10
Ratio 0.79 082 0.84 085 086 0.8 086 0.85 084 0.82 0.79

The coverage probabilities are
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p
score

CcC

1l 2 3 4 5 6 7 8 9 1
93 97 92 90 .89 90 92 97 93 .99
99 97 92 98 98 98 92 97 .99 .99

Mathematica code to do the calculations is:

Needs["Statistics‘Master ‘"]

Clear[p, x]

pbino[p_, x_] = PDF[BinomialDistribution[n, pl, x];

cut = 1.64572;
n = 10;

The quadratic score interval with and without continuity correction

slowcc[x_] := p /. FindRoot[(x/n - 1/(2*n) - p)~2 ==
cut*(px((1 - p))/n, {p, .001}]

supcc[x_] := p /. FindRoot[(x/n + 1/(2%n) - p)~2 ==
cut*(p*((1 - p)/n, {p, .999}]

slow[x_] := p /. FindRoot[(x/n - p))~2 ==
cut*(px(1 - p))/n, {p, .001}]

suplx_] := p /. FindRoot[(x/n - p)~2 ==

cut*(px(1 - p)/n, {p, .999}]
scoreintcc=Partition[Flatten[{{0,sup[0]},Table[{slowcc[i],supcc[il},

{i,1,n-1}]1,{slowcc[n],1}},2],2];
scoreint=Partition[Flatten[{{0,sup[0]},Table[{slow[i],sup[il},

{i,1,n-1}],{slowcc[n],1}},21,2];

Length Comparison

Table[(sup[i] - slowl[il)/(supccl[i]l - slowcc[il), {i, 0, n}]

Now we’ll calculate coverage probabilities
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scoreindcc[p_,x_]:=If [scoreintcc[[x+1]] [[1]]<=p<=scoreintcc[[x+1]][[2]],1,0]
scorecovcc [p_] :=scorecovcc [p]=Sum[pbino[p,x]*scoreindcc[p,x],{x,0,n}]
scoreind[p_,x_]:=If [scoreint[[x+1]] [[1]]<=p<=scoreint[[x+1]1][[2]],1,0]
scorecov [p_] :=scorecov[p]=Sum[pbino[p,x]*scoreind[p,x],{x,0,n}]
{scorecovcc[.0001] ,Table[scorecovcc[i/10],{i,1,9}],scorecovcc[.9999]1}//N
{scorecov[.0001] ,Table[scorecov[i/10],{i,1,9}],scorecov[.9999]}//N

10.47 a. Since 2pY ~ x2,. (approximately)

P(an‘,lfa/2 < 2pY < Xir,a/2) =1—-aq,

and rearrangment gives the interval.

. The interval is of the form P(a/2Y < p < b/2Y), so the length is proportional to b — a.

This must be minimized subject to the constraint f; f(y)dy = 1— «, where f(y) is the pdf
of a x2,. Treating b as a function of a, differentiating gives

¥ —1=0 and fO) — f(a)=0

which implies that we need f(b) = f(a).



