Chapter 2

Transformations and Expectations

2.1 a. fo(r) =4225(1 —2), 0 < z < 1; y = 2® = g(z), monotone, and Y = (0,1). Use Theorem
2

1.5.
_ d _ d 1
@) = LW W] = L@@ = 20580 -y ) Ly )
dy dy 3
= My(1—y'?) = 14y—149*3, 0<y<1.

To check the integral,

1 7/3 1
14y — 143 dy = T2 —14% —72—67/3‘ —1-0=1.
/0 (14y Yy )dy = Ty 73, y =6y""|
b. fu(z) =T7e"™, 0 <z < 00, y = 4z + 3, monotone, and Y = (3,00). Use Theorem 2.1.5.

Fr(y) = £ (2= d<y‘3>\ — 7T/ 3y <

4 dy: 4

T w9
1|~ 1

To check the integral,

/°° T e W0W=-3) gy = _ o= (T/0)-3) ""’ - (1) =1.
3 4 3

c. Fy(y)=P0<X < /y) =Fx(\/y). Then fy(y) = ﬁfx(\/ﬂ) Therefore

fr(y) = F:’)O(\f) (1=vB)* =152 (1= Vi)*, 0<y<l.

To check the integral,

1 1
2 1 2
/ 15y%(17\/§)2dy:/ (15y%—30y+15y%)dy:15(§)—30(§)+15(3):

0 0
2.2 In all three cases, Theorem 2.1.5 is applicable and yields the following answers.

a. fy(y) =3y Y2 0<y<1
b. fy(y) = (w1 e V(1 — e ¥)™, 0 < y < 0.

nim!

e fr(y) =% logye—(1/2)((logy)/0) , 0 <y < oo

23 P(Y =y) = P(7 =y) = P(X = £) = §(3)¥/07Y), where y = 0,3, 3, %,..., 257

2.4 a. f(x) is a pdf since it is positive and
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b. Let X be a random variable with density f(x).

PUX <) = It $aerda if t <0
LSO It [y Ixe M dr if >0
where, fioo A Mdr = e ioo = zeM and fot e Mdy = —%e‘”‘g =—ze M4 1
Therefore,

1 _ Xt i
[ le ift <0
P(X<t)—{1_%e—ktdx ift>0

c. P(|X|<t)=0fort<0,and for t >0,

Y1 £
P-t<X<t) = / 5/\6)\95(133—"-/ ix\ekadm
0

—t

P(|X] <t)

- 43 [e41] = 1-e

DN | =

2.5 To apply Theorem 2.1.8. Let Ay = {0}, 4; = (0, %), 43 = (, ‘%’T) and Ay = (37”,277). Then
gi(z) = sin?(z) on A; for i = 1,2,3,4. Therefore g; ' (y) = sin™ " (/7), g5 ' (y) = m —sin" ' (\/7),
g5 (y) = sin_l(\/gj) + 7 and g; ' (y) = 27 — Sin_l(\/g). Thus

() 1 1 1‘+1 1 1‘4_1 1 1‘_1_1 1 1’
Y y = —_— | — et B —_— | — et R e——————
2 |V1—-y2/y 2 | V1-y2/y 2m |V1—-y2\/y 2r | V1-y2y
1
= ———, 0<y<l1
™/y(l—y)

To use the cdf given in (2.1.6) we have that 21 = sin™'(,/7) and x5 = 7 —sin™ ' (/7). Then by
differentiating (2.1.6) we obtain that

rly) = 2fx(sin’1(\/z?)d%(sin’1(\/§) = 2fx(m = sin’l(\/??)d%(ﬂ —sin™' (v/9)
— Q(L#L) _ﬂiii)
e yI—y2yy 2r VI —y 2y
1
oyl -y)

2.6 Theorem 2.1.8 can be used for all three parts.

a. Let Ag = {0}, A; = (—00,0) and Ay = (0,00). Then gy (x) = |z|°> = —23 on A; and
g2(x) = |z|> = 23 on A,. Use Theorem 2.1.8 to obtain

1 a3
fy(y):§e vy 2/3, 0<y <o

b. Let Ag = {0}, A; = (—1,0) and Ay = (0,1). Then g;(x) = 1 — 22 on A; and go(z) = 1 — 22
on As. Use Theorem 2.1.8 to obtain

3
Fr) ==y 2+ 20-y'"2 0<y<1
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c. Let Ag = {0}, A; = (=1,0) and Ay = (0,1). Then g;(z) =1 — 22 on A; and ga(z) =1 — =
on As. Use Theorem 2.1.8 to obtain

w

3 1
Ig1—v1—w2 +-2-y)? O0<y<l

fr(y) = T-y 8

2.7 Theorem 2.1.8 does not directly apply.

a. Theorem 2.1.8 does not directly apply. Instead write

PY<y = PX

2<y
(— f§X<\/§) if |2 <1
(1<X <) ifz>1

P

{2

{f x)dr if 2] <1
[ .

‘ffX e ifx>1

Differentiation gives

2.1 i <
Ao ={00, U
9 + 9 \/g ITy-=
b. If the sets By, Bo,..., Bk are a partition of the range of Y, we can write

y) = ZfY(y)I(y € By)
%

and do the transformation on each of the By. So this says that we can apply Theorem 2.1.8
on each of the By and add up the pieces. For A; = (—1,1) and Ay = (1, 2) the calculations
are identical to those in part (a). (Note that on A; we are essentially using Example 2.1.7).

2.8 For each function we check the conditions of Theorem 1.5.3.

i hmw_,oF( Y=1-e2=0,lim, o F(z)=1—e"*=1.

a. (1
ii) 1 —e™" is increasing in .

(iii) 1 —e~* is continuous.

)
i)
)
(iv) Fr'(y) = —log(1 - y).
)
)
)

b. (i) lim, o F(x) =e™°/2 =0, lim, o F(z) =1— (e!7>°/2) = 1.
(i) e~*/2 is increasing, 1/2 is nondecreasing, 1 — (e!~*/2) is increasing.
(iii) For continuity we only need check =0 and = = 1, and lim,_,o F(z) = 1/2,

lim,_; F(x) =1/2, so F is continuous.
(iv
<i<y<l,
1

_ log(2y 0<y
Fxl(y)z{ (20) %Sy<

1 —log(2(1 - y))

) limy oo F(z) =e7°/4 =0, lim;_ oo F(x) =1—e">/4=1.
i) e ®/4 and 1 — e~ /4 are both increasing in x.

) limg o F(z) =1—e%/4=2 = F(0), so F is right-continuous.
gy J log(4y) 0<y<j

ECURE (/I s
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2.9 From the probability integral transformation, Theorem 2.1.10, we know that if u(z) = F,(x),
then F,(X) ~ uniform(0, 1). Therefore, for the given pdf, calculate

0 fx<l1
U(w)ZFm(w)={(x1)2/4 ifl<az<3
1 if3<z

2.10 a. We prove part b), which is equivalent to part a).

b. Let A, = {z : Fy(x) < y}. Since F, is nondecreasing, A, is a half infinite interval, either
open, say (—oo, ), or closed, say (—oo, z,]. If A, is closed, then

Fy(y) = P(Y <y) = P(Fx(X) <y) = P(X € Ay) = Fi(zy) <.

The last inequality is true because z, € A,, and F;(z) < y for every « € A,. If A, is open,
then
Fy(y) =P(Y <y) = P(F(X) <y) = P(X € 4y),

as before. But now we have

P(Xc€A)=P(X e(—ooxy)) = lxi%}P(X € (—o0,z]),

Use the Axiom of Continuity, Exercise 1.12, and this equals lim,y, Fix(x) < y. The last
inequality is true since Fy(z) < y for every z € A,, that is, for every < z,. Thus,
Fy (y) <y for every y. To get strict inequality for some y, let y be a value that is “jumped
over” by F,. That is, let y be such that, for some z,

li?lFX(:z:) <y < Fx(zy).
aly

For such a y, A, = (—00,zy), and Fy (y) = limyy, Fx(z) < y.

.2
2.11 a. Using integration by parts with u = x and dv = xe™ dx then

o 1 a2 1 .2 | R 1
EX2:/ ?—e T dr=— |—ze —l—/ ez dx 22—(27r):1.
oo ™

T 2

—00

Using example 2.1.7 let Y = X?2. Then

1 1 -y 1 - 1 -y
= | - Lo

= e + e
2y [V2r V2r V2my
Therefore,
EY = /oo Y e dy = L [_nge‘;’ - +/Ooy2le_2ydy} = L(\/27r) =1.
o V2my 2w 0 0 Varm

This was obtained using integration by parts with u = Zy% and dv = %eTy and the fact the
fv (y) integrates to 1.

b. Y = |X| where —oo < z < 0o. Therefore 0 < y < co. Then

Fy(y) = P(Y<y) = P(X[<y) =
= P@<y) -P(X<-y) = Fx(y)— Fx(-y).
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Therefore,

Fy(y)=%Fy(y)=fx(y)+fx(—y)= L S :\/Z

o 2 —y 2 [ 2 00 2
EY :/ y[ezdy — \/7/ e Ydu = \/7 [*67’“ 0 ] — ,
0 ™ ™ 0 T T
where u = y—Q.
- 2 I
dy| =1/ —1/==1.
y] \/;\/ 2

Thus,

o -

This was done using integration by part with « = y and dv = ye 2 dy. Then Var(Y)=1- 2

2.12 We have tan 2 = y/d, therefore tan~!(y/d) = x and % tan~!(y/d) = W Ldy = dz. Thus,

2 1

fy(y) = wd W’

0<y<oo.

This is the Cauchy distribution restricted to (0, 00), and the mean is infinite.
213 P(X =k)=(1—p)kp+pF(1 —p), k=1,2,.... Therefore,

EX = i pfp+pt-p) = [ik )t 1+ka’“ '

k=1 k=1
1 1 1 —2p + 2p?
- “‘p)p[wumz] BT
2.14
/0 (1-Fx(z)dz = / P(X > z)dx

/ / fx(y)dydz
/0 /O dxfx (y)dy

/0 yfx(y)dy = EX,

where the last equality follows from changing the order of integration.

2.15 Assume without loss of generality that X < Y. Then X VY =Y and X AY = X. Thus
X+Y =(XAY)+ (X VY). Taking expectations

EX+Y]|=E[(XAY)+ (XVY)=EXAY)+EXVY).

Therefore E(X VY)=EX +EY —E(X AY).
2.16 From Exercise 2.14,

ET = / [ae™ M +(1 —a)e "] dt = _ =
0
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2.17 a. fom 322dr = m3 % % = m= (%)1/3 = .794.

b. The function is symmetric about zero, therefore m = 0 as long as the integral is finite.

1 /> 1 1 o 1
f/ —dr =—tan"*(z) =— (I+I) =1.
T o 1422 T e N2 2

This is the Cauchy pdf.
218 E|X —a| = [7_|z —a|f(x)dx = [*  —(z —a)f(x)dz+ [~ (x — a)f(x)dz. Then,

—E|X—a\ / fla dx—/ flz)dz =0

The solution to this equation is @ = median. This is a minimum since d?/da*E|X —a| = 2f(a) >

2.19

|
je2
=

|
Q
e
I

Lil/o;(a:—a)Qfx(x)dx _ /oo d%(x_affx(x)dx

_ /w “2(z - a)fx(x)dw = —2[0/00 2 fx(2)do — a/m fX(x)dac]
_ aEX -] - -

Therefore if -LE(X —a)? = 0 then —2[EX —a] = 0 which implies that EX = a. If EX = a then
LF(X —a)? = —2[EX —a] = —2[a — a] = 0. EX = a is a minimum since d?/da’E(X — a)? =
2 > 0. The assumptions that are needed are the ones listed in Theorem 2.4.3.

2.20 From Example 1.5.4, if X = number of children until the first daughter, then

P(X =k)=(1-p)*'p,

where p = probability of a daughter. Thus X is a geometric random variable, and

EX = ) k(1-p*'p Zdil— = —pd% [2(1—;9)’“—1]
k=1 k=1 k=0
d [1 1
- P {_1} T

Therefore, if p = % ,the expected number of children is two.

2.21 Since g(x) is monotone
Eg(X)=[ g(x)fx(x)dx=[ yfx(g‘l(y))%g‘l(y)dy=[ yfy (y)dy = EY,

where the second equality follows from the change of variable y = g(z), * = ¢~ '(y) and
dz = g~ (y)dy.

2.22 a. Using integration by parts with v = x and dv = ze=*"/B* we obtain that

o 2 oo
/ 22e % /By — 6—/ e~ /B dy.
0 2 Jo

The integral can be evaluated using the argument on pages 104-105 (see 3.3.14) or by trans-
forming to a gamma kernel (use y = —A?/3%). Therefore, [;° e~ /B dy = V7 3/2 and hence
the function integrates to 1.
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b. EX =23//7 EX?2 =332/2 VarX = 2 [3-4].
2.23 a. Use Theorem 2.1.8 with Ay = {0}, A; = (—1,0) and Ay = (0,1). Then g;(x) = 2% on A4;
and go(z) = 22 on Ay. Then

1 _
fY(y):§y V20 0<y<1.

1 1 2
b EY = fpufrdy =5  EY?=[’frdy=3  Va¥=3-(35) =5
a1l
2.24 a. EX = fol rax® tdr = fol ax®dr = a;”:ll .= e
o |l
EX? = fol r2ax® ldx = fol ax®tldx = “3:22 =323
2
VarX = 245 - <ﬁ+1) = @D
x n(n+1 n
b BX =30 n P 195*% (2?)1):(2%1)' (n+1)(2n+1)
EX2: n L_l :1nn+ n-+ :n+ n-+ )
VarX 72(:71+i)(gn+1 z:Zn-ﬁ{l 77;71 +3n—?—1  n%42n41 f n?41
arad = /g *( ) 1 =1
c. EX fo x712dxf%f02 — 222 + 2)dx = 1.
fo 2; r—1 2dx—%f (z* — 22° + 2?)dax = &.
VarX 8 _12= %
225 a. Y = —X and g7'(y) = —y. Thus fy(y) = fx(97 W)l 59 " W) = fx(~y)| - 1| = fx(y)
for every y.
b. To show that Mx(t) is symmetric about 0 we must show that Mx (04 €) = Mx (0 — €) for
all e > 0.

[e%s) 0 [e%s)
Mx+e) = [ O pc@de = [ e px@dos [ e px@ds
o 0

— 00

oo 0 0o
= e(—=) —2)d e(—x) —Vdr — Cex d
/0 e fx () 99+/ e’ fx (—a)da / e fx(x)da

—00 —00

— /OO e(ofe)mfx(x)dx = Mx(o — 6)-

2.26 a. There are many examples; here are three. The standard normal pdf (Example 2.1.9) is
symmetric about a = 0 because (0 — €)? = (0 + €)2. The Cauchy pdf (Example 2.2.4) is
symmetric about a = 0 because (0 — €)? = (0 + €)2. The uniform(0, 1) pdf (Example 2.1.4)
is symmetric about a = 1/2 because

B _J1 ifo<e<s
s+ =ram-o={, §1055

b.
/a T s = /O " fla+ )de (change variable, ¢ =  — a)
- AwaQ% (flate) = fla—e) for all e > 0)
_ / " fa)da. (change variable, z = a — ¢)
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2.27 a.

Solutions Manual for Statistical Inference
Since
a (oo} (oo}
| @ [ s@is= [ fade=1,
—co a —o0
it must be that

/_; flz)dz = /aoo f(z)dz =1/2.

Therefore, a is a median.

EX—-a = EX-a) = Ai(x—a)f(x)dm
_ /;(x—a)f(x)dx+/:o(x—a)f(a:)dx

= [Casa-ader [ estar o

With a change of variable, € = a —x in the first integral, and € = x —a in the second integral
we obtain that

EX-a = E(X—a)
= —/Ooef(a—e)de+/ooef(a—e)de (fla+¢€) = f(a—e¢) for all € > 0)
0 0
= 0 (two integrals are same)

Therefore, EX = a.

.Ifa>e>0,

fla—e)=e979) > (079 — f(a4¢).
Therefore, f(z) is not symmetric about a > 0. If —e < a <0,
fla—e)=0<e 9 = fla+e).

Therefore, f(x) is not symmetric about a < 0, either.
The median of X =log2 <1 =EX.
The standard normal pdf.

. The uniform on the interval (0, 1).

For the case when the mode is unique. Let a be the point of symmetry and b be the mode. Let
assume that a is not the mode and without loss of generality that a = b+¢ > b for € > 0. Since
b is the mode then f(b) > f(b+€) > f(b+ 2¢) which implies that f(a—e€) > f(a) > f(a+€)
which contradict the fact the f(z) is symmetric. Thus a is the mode.

For the case when the mode is not unique, there must exist an interval (z1,x3) such that
f(z) has the same value in the whole interval, i.e, f(z) is flat in this interval and for all
b € (x1,22), bis a mode. Let assume that a ¢ (x1, z2), thus a is not a mode. Let also assume
without loss of generality that a = (b+ €) > b. Since b is a mode and a = (b+€) & (z1, z2)
then f(b) > f(b+¢€) > f(b+ 2¢) which contradict the fact the f(z) is symmetric. Thus
a € (x1,x2) and is a mode.

f(z) is decreasing for x > 0, with f(0) > f(z) > f(y) for all 0 < z < y. Thus f(z) is
unimodal and 0 is the mode.
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2.28 a.

o= [ @-atteis = [ -t [T @

— 00 — 00

0 e
/ v f(y + a)dy + / v f(y + a)dy (change variable y = x — a)
0

—00

/ —ygf(—y+a)dy+/ Yy’ fy +a)dy
0 0
= 0. (f(=y+a)=fly+a))
b. For f(x) =e™®, u1 = pe = 1, therefore az = p3.
Uz = / (x—1)%edx = / (3 — 32% + 3z — 1)e “dx
0 0
= T@A)-30(3)+30(2)-T(1) = 3-3x20+3x1-1 = 3.

c. Each distribution has p; = 0, therefore we must calculate o = EX? and uy = EX?.
(1) f(.’L') = — e_w2/27 M2 = 17 Ha = 33 Qg = 3.

Var
(11> f(x):%7_1<$<17 /’[/2:%7 /’64:%, 044:%'
(il) f(z) = 1e "I, —00 <z < o0, fo =2, fa = 24, oy = 6.

As a graph will show, (iii) is most peaked, (i) is next, and (ii) is least peaked.
2.29 a. For the binomial

EX(X —1)

Il
8
—
8
|
=
N
8 3
N
S

5
—
—
|
=
S—
3
|
8

where we use the identity z(z — 1)() = n(n — 1)(";2), substitute y = z — 2 and recognize

that the new sum is equal to 1. Similarly, for the Poisson

> —/\)\w 0 —/\)\y
EX(X -1 =Y a@-1" =Y S =2,
z! y!
r=2 y=0

where we substitute y = x — 2.
b. Var(X) = E[X(X —1)] + EX — (EX)2. For the binomial

Var(X) = n(n—1)p* + np — (np)* = np(1 — p).

For the Poisson
Var(X) = A2+ A= A2 =\

= S () e () )
A G B = R RN R AV VA G
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n

a n—1 (a+(l;71)
— Zn<y — 1) + (CL + 1) (y — 1) ((n—l)+(a+1)+b_1)

y=1 (y=1)+(a+1)

i%%(a+2‘?)j§: ( a+1 (rz—»l) ( ("o )

+1+b—1 _ — n—1)+(a+1)+b—1
(’1 a+1 ) y=1 Y 1) + (CL + 1) Yy 1 ( (y)*lg%*(azrl) )
_ na g+l (n - 1) (a+if{_1) _ na
- : y n—1 a+1)+b—1\ ’
atbigitla+ D\ g (AT etd

since the last summation is 1, being the sum over all possible values of a beta-binomial(n —
l,a+1,b). E[Y(Y —1)] = % is calculated similar to EY, but using the identity
yly—1) (Z) =n(n—1) (Z:g) and adding 2 instead of 1 to the parameter a. The sum over all

possible values of a beta-binomial(n — 2, a 4 2,b) will appear in the calculation. Therefore

nab(n + a + b)

Var(Y) =E[Y(Y - 1)] + EY — (EY)? = @ b2atbil)

2.30 a. E(e") = Jo " ida = ée“ﬂg =Llelc— L1 =1L(elc—1)
b. E(") = Jy Beltde = 2z (cte® — €' 4+ 1). (integration-by-parts)
c.
Ee'™) = /‘1 i(5(g570‘)/ﬁe”"(iz + /°° i(if(gcfo“)/ﬁemdx
—0 28 o 20
I S G (5-)
28 (5+1) 28 (5 —1)
4eat
= — -2 t<2/p.
S éA<t<

d E(eX) = 32 et (1 - p)T = pr s, (TR ((1 fp)et)w. Now use the fact
that 00, (") ((1 —p)et> (1 —(1 —p)et> =1 for (1 —p)e < 1, since this is just the

sum of this pmf, to get E(e!X) = (ﬁ) , t < —log(1l—p).

2.31 Since the mgf is defined as Mx (t) = Ee'X, we necessarily have Mx (0) = Ee® = 1. But ¢/(1—t)
is 0 at t = 0, therefore it cannot be an mgf.

2.32
d d LN (t EX ,
%S(t) - = q (log (M, (t)) . = d?\/.fm(t()) » =0 = EX (since Mx(0) = Ee’ =1)
& _ A (M) L Mu)ME() — M)
w0, = a(Ee)l, - DLOP |
_ 1-EX’—(EX)®
= — = VarX.

233 a. Mx(t) =Y .2 e 757;)‘1 =e MY, 7(62!)90 = e M = e,
EX = $M,(t)],_, = eX“ " D)e! LN
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EX2 = iMw(t)(

< = AN DA AN D] A2
t=0

VarX = EX2 — (EX)2 = A2 + A — A2 = \.

b.
Mr(t) = Ze p( I pz 1*
x=0
1 P
= = , log(1 —
iCa—pd T oima-pe st =)
d -p t
EX = —M,(t) = —(1—pe
dt =0 (1—(1—p)e")? ( ) -
_ pdl-p) _ 1-p
p? P
d2
EX? = —M, ()
dt t=0
2
(1*(1 — p)et) (p(l *p)et) +p(1 - p)e'2 (1*(1 — p)et) (1-p)e'
- (1-(1-p)e)
t=0
PP -p)+2°(1-p)®  p(l-p)+2(1-p)°
- p4 - p2 :
1— 201 —p)?  (1—p)? 1—
varx = X p)+2( p)” zp) -
p P p
c. My(t) = [T, 27rUe —(2=p)*/20° g — e e~ (@®—2u2—20"t2+1)/20” 12 Now com-

plete the square in the numerator by writing
22 = 2ux — 20%tx+p® = 2% —2(u+ o*t)x £ (u+ o%t) + p?

= (z—(u+0%)” = (u+ o) + p?
(2 — (u+ 0*0)? — [2u0° + (0°1)?).

Then we have Mm(t) _ 6[2M02t+(g2t)2]/20’2 #foo e-ﬁ(w—(;ﬁ-gzt))z

2mo J —00
_ d 2 o?t? /2 —
EX = §M(1)],_ = (uto’t)er+o T
EX? = %Mx(t)’t:o — (/H—aZt) eht+a®t? /2 ;2 put+ot/2 T w2+ o2,
VarX = p? + 0?2 — p? = o2
2.35 a.
T > 2" 1 7(10 x)?/2 : :
EX] = 8 dz (f1 is lognormal with =0, o9 = 1)
271'3:
= (r=1)g=v* 12e¥dy (substitute y = logz, dy = (1/x)dx)
ST

_ - 1 O (2 —apytr? 2
= E/_ e~V /2Ty gy — 27T/_ o~ (v —2rytr?) /2, 2y

2
e’ /2.
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/ x" f1(x) sin(2rlogx)dx = - ~(og2)*/2 sin(27 log x)dx
0

(bubbtltute y=logx, dy = (1/x)dx)
1

oo \/27r

1 2
_ (y+r r 7(y+r) /2 sin(27ry + 27Tr)dy
Vir©

—v*)/2 sin(27y)dy

(sin(a + 27r) = sin(a) if r =0,1,2,...)
= O7
because e ~¥)/2sin(2ry) = —e” ~(=9*)/2gin(27(—y)); the integrand is an odd function
so the negative integral cancels the positive one.
2.36 First, it can be shown that
lim et*—(og®)” — 5

by using 'Hopital’s rule to show
i 2 (log )2

Tr— 00 t{L’

=1

and, hence,
lim tz — (logz)? = lim tz = oo.
r—00 r— 00

Then for any k > 0, there is a constant ¢ such that

% 1 ) <1
/ 2 ptw(log ) /QdﬂCZC/ —dx = clogx\ioZOO-
kT L

Hence M, (t) does not exist.
2.37 a. The graph looks very similar to Figure 2.3.2 except that f; is symmetric around 0 (since it
is standard normal).
b. The functions look like #2/2 — it is impossible to see any difference.
c¢. The mgf of f; is e®1(Y), The mgf of fy is ef2(®).
d. Make the transformation y = e® to get the densities in Example 2.3.10.
a

fdd fO e )‘tdt =e /\I. Verify
! d 1 -z 1 — Az

AT A1,
de dt] dm[ 2

b ik Joo et = [ ke dt = [T —teMdt = —TF = — 5. Verify
d [* . d L
@ dt = — -
aJ, © X \2

c. & ftl Ldz = —%. Verify

d/l Ll d Ay a1y 1
dat |J, 2| T a\ x|, ) Tt t)

o] 00 -2 .
d. 4 7(;1:7115)2 doe = [~ 4 (7(91:7115)2) =[72@—t)3de = —(z — 1) ’1 = 7(1;)2' Verify
o _ d —1|*® d 1 1
) e =— | —(z—t ‘ =———= .
(w—t)7de = { (z—1) } d1—t  (1—1)°

dt 1



