Chapter 3

Common Families of Distributions

3.1 The pmf of X is f(x) = m, = Nyg,Ng+1,...,Ny. Then
Ny 1 1 Ny No—1
EX - = —
> e = e (47 )
T=INo r= T=
B 1 Ni(N+1)  (Ng—=D(Ny—1+1)
~ N;—Ng+1 2 2
Ni + Ny
—
Similarly, using the formula for Zf[ 22, we obtain
Er? — 1 Ni(N,+1)(2N;+1) — No(N,—1)(2N,—1)
- N1—Njp+1 6
N,—=Ny)(N,—No+2
VarX = Bx2-px — MZNOW,—Not2)

12

3.2 Let X = number of defective parts in the sample. Then X ~ hypergeometric(N = 100, M, K)
where M = number of defectives in the lot and K = sample size.

a. If there are 6 or more defectives in the lot, then the probability that the lot is accepted
(X =0) is at most

. B - S OGH (100 - K)- - - (100 - K — 5)
P(X=0|M=100,N=6,K) = ?1}()(({; = 100 - --- - 95 ’

By trial and error we find P(X = 0) = .10056 for K = 31 and P(X = 0) = .09182 for
K = 32. So the sample size must be at least 32.

b. Now P(accept lot) = P(X = 0 or 1), and, for 6 or more defectives, the probability is at

most 6 104 o o4
P(X=0or1|M=100,N =6,K) = ((E)l(%) + (1)(55))1).
K K
By trial and error we find P(X =0 or 1) =.10220 for K = 50 and P(X =0 or 1) = .09331
for K = 51. So the sample size must be at least 51.

3.3 In the seven seconds for the event, no car must pass in the last three seconds, an event with
probability (1 — p)3. The only occurrence in the first four seconds, for which the pedestrian
does not wait the entire four seconds, is to have a car pass in the first second and no other
car pass. This has probability p(1 — p)®. Thus the probability of waiting exactly four seconds
before starting to cross is [1 — p(1 — p)3](1 — p)3.
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3.5 Let X = number of effective cases. If the new and old drugs are equally effective, then the
probability that the new drug is effective on a case is .8. If the cases are independent then X ~
binomial(100,.8), and

100 100
P(X >85) = E ( ).8%2100% = .1285.
x
=85

So, even if the new drug is no better than the old, the chance of 85 or more effective cases is
not too small. Hence, we cannot conclude the new drug is better. Note that using a normal
approximation to calculate this binomial probability yields P(X > 85) ~ P(Z > 1.125) =
.1303.

3.7 Let X ~ Poisson(\). We want P(X > 2) > .99, that is,
P(X <1)=e*+ X <01

Solving e=* + Ae™* = .01 by trial and error (numerical bisection method) yields A\ = 6.6384.

3.8 a. We want P(X > N) < .01 where X ~ binomial(1000,1/2). Since the 1000 customers choose
randomly, we take p = 1/2. We thus require

1000 T 1000—x
1000\ (1 1
P(X>N)= E (x)<2) (1—2> < .01

r=N-+1

1) 1000 1000 /00
= .01.
@) 3, (%)

r=N+1

which implies that

This last inequality can be used to solve for N, that is, IV is the smallest integer that satisfies
1) 1000 1000 000
= .01.
() 2 (7)<
rz=N+1
The solution is N = 537.

b. To use the normal approximation we take X ~ n(500, 250), where we used p = 1000(%) =500
and ¢% = 1000(%)(3) = 250.Then

X —500 = N —500
P(X>N):P< )<.0

>
V250 V250

thus,

N — 500
PlZ>— ) <.01
< V250 >

where Z ~ n(0,1). From the normal table we get

N — 500
P(Z>233)~.009< .01 = — =2.33
( ) V250
= N =~ 537.

Therefore, each theater should have at least 537 seats, and the answer based on the approx-
imation equals the exact answer.
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We can think of each one of the 60 children entering kindergarten as 60 independent Bernoulli
trials with probability of success (a twin birth) of approximately %. The probability of having
5 or more successes approximates the probability of having 5 or more sets of twins entering

kindergarten. Then X ~ binomial(60, 55) and

P(X>5)=1- 24: (i?) <910)I (1 - 910)6096 = .0006,

z=0

which is small and may be rare enough to be newsworthy.

Let X be the number of elementary schools in New York state that have 5 or more sets
of twins entering kindergarten. Then the probability of interest is P(X > 1) where X ~
binomial(310,.0006). Therefore P(X > 1) =1 — P(X = 0) = .1698.

Let X be the number of States that have 5 or more sets of twins entering kindergarten
during any of the last ten years. Then the probability of interest is P(X > 1) where X ~
binomial(500, .1698). Therefore P(X >1)=1—-P(X =0)=1-3.90 x 1074 ~ 1.

GO iy
M/N—p,M—00,N—00 (%)
K M\(N—M)(N—K)!

2K —2)! M/N—p, Moo, N—oo NI(M—2)(N—M—(K —z))!

In the limit, each of the factorial terms can be replaced by the approximation from Stirling’s
formula because, for example,

M! = (M) (V2r MM+ 2e=M) )\ o ppM+1/2g=M

and M!/(v2rMM+1/2¢=M) — 1. When this replacement is made, all the v/27 and expo-
nential terms cancel. Thus,

() ()

I
M/Nﬁp,]\}goo,N—n)o (%)
_ (K) lim MM+1/2(N*M)N_M-‘rl/Q(N*K)N_K—Fl/Q
x ) M/N—p,M—o0,N—oo NN+1/2(M_x)M—w+1/2(N_M_K+x)N—M—(K—x)+1/2

We can evaluate the limit by breaking the ratio into seven terms, each of which has a finite
limit we can evaluate. In some limits we use the fact that M — oo, N — oo and M/N — p
imply N — M — oco. The first term (of the seven terms) is

M i L, 1,
_M@mi(m)M_M@mi(l_‘r_ﬁz)M_ej_e.

M

lim

Lemma 2.3.14 is used to get the penultimate equality. Similarly we get two more terms,

. N-M N=M K—=x
lim =e
N—-—M—oo N—M—(K—l’)

_ (N-K\" .
Jvlinoo(N) e

and



3-4 Solutions Manual for Statistical Inference

Note, the product of these three limits is one. Three other terms are

M 1/2
lim M
im HOO(M_:E)

I
—

N—-M 1/2
NI}VIHLOO<N—M—(K—3:)> =1

N—K 1/2
RS (N) =1L

(M —2)"(N =M — (K —2))""

and

The only term left is

lim T
M /N —p,M—00,N—o00 (N_K)
i M—2z\"(N-M-(K—-z)\""
= 1m
M /N —p,M—o00,N—o00 N - K N-K
= pA-p~

b. If in (a) we in addition have K — oo, p — 0, MK/N — pK — ), by the Poisson approxi-
mation to the binomial, we heuristically get

() e

c. Using Stirling’s formula as in (a), we get

() ()

lim
N,M,K—»oo,%—)O,%—A (%)
_ K-z |_
i e % K% M%e®(N—M)" " “el-v
im
N,M,K—o00, 0, KM 5 ! NEKeK

1 - KM\® (N —M\"*""
ozl N, M, K—o0, 40, KM _x \ N N

1 M\ K
—\" lim 1- -
! NMK o0, M0, KM ) K

e\

x!

3.12 Consider a sequence of Bernoulli trials with success probability p. Define X = number of
successes in first n trials and Y = number of failures before the rth success. Then X and Y
have the specified binomial and hypergeometric distributions, respectively. And we have

F,(r—1) = PX<r-1)

= P(rth success on (n + 1)st or later trial)

(

P(at least n 4+ 1 — r failures before the rth success)

PY>n—r+1)
1-PY<n-r)
= l—Fy(n—’/’).
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, we have the mean and variance of the 0—truncated Xt are

given by
= > P(X =uz)
T ;x Xr =) ;‘”P(X>0)
1 = 1 = EX
= —— Y ePX=2) = — S aP(X=2) = —— .
P(X>0);x (X ==2) P(X>O);)x (X =2) P(X > 0)
In a similar way we get EX2 = P(%jo)' Thus,
EX? EX \’
VarXr = — .
WAL T PX > 0) (P(X>O))
a. For Poisson(\), P(X >0)=1-P(X =0)=1-— 670# =1— e, therefore
e AN
P(Xr = = — =1,2,...
(Xr =) x!(1—e=?) TS
EXr = M(1—e?)
VarXry = A2+ N)/(1—e )= (\/(1—e )%

b. For negative binomial(r, p), P(

X>0)=1-P(X=0)=1-("3")p"(1-p)°=1-p". Then

r+zfl) r _ x
( p'(1-p)
P(Xr = L 1,2,.
( T a:) 1_p7« [
r(l—p)
EXr = ——=
! p(l—p")
1-— 2(1-p)? 1-
vy = TUDRUop? [ o)),
p*(1—p") p(1—p")
314 a. > 7, _ﬁo_gpf = loép >, % =1, since the sum is the Taylor series for log p.
b.
-1 | - -1 | & . -1 [1 -1 [1-p
o= 2 (S ] = 2 [ = 2L [ < 2L ()
logp L_l( ) 1 logp LE_:O( ) 1 logp [p logp \ p
Since the geometric series converges uniformly,
B (1-p) <= d
EX® = z(l—p)* = —(1—p)*
logp ; ( ) log p ;dp( )
_ (-pd i(l_p)x _ (-pd [1—p} _ —(-p)
logp dp “— logp dp | p p?logp
Thus . )
Varx = —0=P) |y U=p) ]
p?logp log p
Alternatively, the mgf can be calculated,
-1 & 17 log(14pet—et)
M, (t) = [ 1— } _ loglltpe —¢)
0= 1ogp 2[00 e

and can be differentiated to o

btain the moments.
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3.15 The moment generating function for the negative binomial is
T t r
17(1—p)e—1
M(t) = (pt) _ 1"'*%(3 ,
1—(1—p)e r 1-(1—pe
the term

1—p)(e'—1 t1
T(l p)(e )—>>\(6 ):)\(et—l) asr — o0, p— land r(p—1) = A

(1 —p)e’ 1

Thus by Lemma 2.3.14, the negative binomial moment generating function converges to
t
eMe =1 the Poisson moment generating function.

3.16 a. Using integration by parts with, u = t® and dv = e~!dt, we obtain

oo

T(a+1) :/ teFD=te=tgt — 4 (—e ™)
0

— /00 at® Y (—e)dt = 0+ al'(a) = al'(a).
0 0

b. Making the change of variable z = v/2t, i.e., t = 22 /2, we obtain

oo oo 2 oo
r(1/2) :/o t71 27t dt = /0 %e‘f/zzdz = \/5/0 e 24z = \/5\\/[7; =V

where the penultimate equality uses (3.3.14).

3.17
EXY = /Oox” 1 2 e By = 1 /Oox(’”ra)*le*m/ﬁdx
0 [(a)p> [(a)B* Jo
_ T@ra)Bt BT(vta)
B L) - T(a)

Note, this formula is valid for all ¥ > —a. The expectation does not exist for v < —a.

3.18 If Y ~ negative binomial(r, p), its moment generating function is My (t) = ( ) , and,

ya
1—(1—p)e’

from Theorem 2.3.15, M,y (t) = ( . Now use L’Hopital’s rule to calculate

o)
1—(1—p)eP?

i ( p ) I 1
im | ———— | = lim = ,
p=0\1—(1—p)e™ /) »=0 (p—Dte" ert 11—t

so the moment generating function converges to (1 — )", the moment generating function of
a gamma(r, 1).
3.19 Repeatedly apply the integration-by-parts formula

1 (e’ o xnflefw 1 e e} o
n Zd — n Zd
r(n)L S o Y +F(n—1)/w 20 TE Tz,

until the exponent on the second integral is zero. This will establish the formula. If X ~
gamma(a, 1) and Y ~ Poisson(z). The probabilistic relationship is P(X > z) = P(Y < a—1).

[e%e] et®

3.21 The moment generating function would be defined by % f_oo T2

o0 tx o0
/ %dm > / dex = 00,

thus the moment generating function does not exist.

dz. On (0,00), €' > x, hence
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> e\
E(X(X-1) = ;)x(x—l) o
a2 e )\172
= e )\;(m_Z)! (let y = x — 2)
_ 67,\)\2§:>‘7? — M2 — 22
y=0 ¥’
EX? = MN+EX = M+
VarX = EX?2—(EX)? = XN +X-)2 = X\

E(X(X-1))

I
NgE
=
8
|
=
RN
=
+
8
—
N————
bt
2
—_
|
=
8

where in the second equality we substituted y = z — 2, and in the third equality we use the
fact that we are summing over a negative binomial(r + 2, p) pmf. Thus,

VarX = EX(X -1)+EX — (EX)?
— 1-p° rl-p r2(1-p?
= rrd) 2 T p p?
_ r(l-p)
=
2 _ oon 1 xa—le—x/ﬂ T = 1 Ooxa+1e—m/ﬁ ZE
Bx? = [ & = g ), !
_ 1 a at2 ala 2
= Tt (a+1)8%
VarX = EX?—(EX)? = a(a+1)f%-a?6*> = ap’
(Use 3.3.18)
EX — Ia+1)T(a+0) al'(a)(a+0) _ .«
I'(a+4+1) (o) (a+B)(a+8)(a) a+p’
Ex? — I(a+2)T(a+p) _ (a+D)al () (a+5) _ ala+1)
Ia+0+2)T () (a+8+1)(a+8)T (a+8)T (a) (a+08)(a+5+1)"
VarX — EX?_(Bx)? - —¢loth o of o

(a+B)(a+B+1)  (a+B)? (a+8)*(a+p+1)
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e. The double exponential(y, o) pdf is symmetric about p. Thus, by Exercise 2.26, EX = p.

VarX = / (x—p)?—elz=1llogy = / 022 Ze 1Flgds
oo 20 . 2
= 02/ Ze*dz = o°T(3) = 2%
0
3.23 a.
_5—1d — _ B —
/OK x x 3 x ) Faf’
thus f(z) integrates to 1 .
b. EX™ = %, therefore
of
EX =
(1-0)
2
EX2 _ O[,B
(2-5)
2 2
VarX = of — (aﬁ)Q
2= (1-p)

c. If B < 2 the integral of the second moment is infinite.
3.24 a. fi(x) = %e“”/ﬁ, z>0.For Y = XY, fy(y) = %e‘yv/ﬁy"’_l, y > 0. Using the transforma-
tion z = y7 /[, we calculate

,y o0 - o0 n
EY" = 7/ y 1t ley /de = ﬁ””/ Ve dy = ﬂ"/vl" (—l—l) .
B Jo 0 Y

Thus EY = §'/7T(L + 1) and VarY = 52/ {F (%H) 12 <%+1)}.
b. fu(x) = %e‘”/ﬁ, x> 0.For Y = (2X/8)Y2, fy(y) = ye ¥"/2, y > 0 . We now notice that

> V2
EY = / er_y2/2dy = Tﬂ-
0

since \/% ffooo er_yz/ 2 = 1, the variance of a standard normal, and the integrand is sym-
metric. Use integration-by-parts to calculate the second moment

EY? = / y36792/2dy = 2/ yefy2/2dy =2,
0 0

where we take u = y2, dv = ye~¥"/2. Thus VarY = 2(1 — w/4).

c. The gamma(a, b) density is
_ 1 a—1_—x/b
fx(@) = I’(a)bax e .

Make the transformation y = 1/2 with dx = —dy/y? to get

a+1
P = I = g ()
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The first two moments are

_ N oy _ Tla—bpet 1
Br= (y) T T (a1
2 — ) _
EYT = ()b = (a—l)(a—2)b2’
and so VarY = 1

(a—1)2(a—2)b2
A fale) = rperee e /P w > 0. For Y = (X/B)'V2, fr(v) = rimy’e ™', y > 0. To

calculate the moments we use integration-by-parts with v = y2, dv = ye‘y2 to obtain

2 o0 —y? _ 2 o0 —y2 _ 1
_r<3/2>/0 vy = r<3/2>/0 R VF V)

and with u = y3,dv = ye™¥" to obtain

2 2 o0 4 —y? _ 3 o0 9 42 _ 3
B =y |, VT = r ) v = e

Using the fact that ﬁ fi’ooo y2e*y2 = 1, since it is the variance of a n(0, 2), symmetry yields
I° y2e~¥'dy = /7. Thus, VarY = 6 — 4/, using I'(3/2) = 1V

e. fo(@)=e®,2>0.ForY =a—ylogX, fy(y) = e ¢ e %, —o0 < y < oo. Calculation

of EY and EY? cannot be done in closed form. If we define

[e9) oo
L = / log xze™*dx, 12:/ (log x)%e *dx,
0 0

then EY = E(a — ylogz) = a — vI1, and EY? = E(a — vlogx)? = o? — 2ayI; + 7*I5. The
constant [y = .5772157 is called Euler’s constant.

3.25 Note that if T is continuous then,

Pt <T <t+5,t<T)

Pt <T <t+d|t <T)

Pt<T)
Pt <T <t+6)
N Pt<T)
Fr(t+6) — F (1)
1—Fp(t) '
Therefore from the definition of derivative,
() — L o FIUEO P F@ _falt
R IR S HYFS R ey 5 T 1—Fp(t)  1-Fr(t)
Also,
d 1
—a(log[l—F @) = —m(—fT(t)) = hr(t).

3.26 a. fr(t) = ge ~t/8 and Fr(t) = f(f;la —/Bdy = — e_gﬂ/5|tJ =1—e /P Thus,

_ @Bt 1
hT(t) - 1—FT(t) - 1_(1 o e_t/ﬂ) - B
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~ ~ /B /8

b. fr(t) = %t'yfle*t /B t>0and Fr(t) = fot %:ﬂ’leﬂ” /Bdx = fot e tdy=—e" gw =
1—e t"/P where u = 27/8. Thus,
(/B e 0y
1 e~ (t—w)/B
C. FT(t) = Tre—G=m/B and fT(t) = m Thus,
1T e e—(t=1)/B)2 1 1
hr(t) = 7 (= /(1% ) i BFT(f)-
1+e—(t—w)/B

3.27 a. The uniform pdf satisfies the inequalities of Exercise 2.27, hence is unimodal.

b. For the gamma(a, 3) pdf f(z), ignoring constants, - f(z) = w [B(a—1) — z], which
only has one sign change. Hence the pdf is unimodal with mode 3(« — 1).

c. For the n(u,o?) pdf f(z), ignoring constants, %f(m) = %e*(*z/ﬁy/%{z, which only has
one sign change. Hence the pdf is unimodal with mode pu.

d. For the beta(a, 8) pdf f(z), ignoring constants,

(@) = 21— 22 [(0-1) ~ a{at5-2)]

a—1

a+p—2"°

which only has one sign change. Hence the pdf is unimodal with mode

3.28 a. (i) w known,

h(z) =1, ¢(0®) = =10,00)(0%), wi(0?)=—553, ti(zx)=(x—p)

(ii) o2 known,
1 2 2
Flal) = —o=—exp (= oy Jexp (= 2oy ) exp (1 ).
oo 202 202 o2

ha)=exp (35). cln) = A ew (55), wil) =p t) =2

b.(i) a known,

h@) =47, 2 >0, of) =7, wi(B) =3 t@)=-=z
(ii) B known,

h(z) =e */P 2 >0, cla)= W wi(a) =a—1, ti(z) =logz.
(iii) «a, B unknown,

fzla, B) = F(al)ﬂa exp((a—1)logx — %),
h(z) = Itpsoy(x), cla,f) = W, wy(a) =a—1, t1(z) =logx,
wa(a, B) = =1/8, ta(z) = x.
c.(i) a known, h(x) = z* ;o 4j(z), c(B) = B(éﬁ), w1 (B)=pF—-1, ti(x) =log(l —x).
(ii) B known, h(z) = (1 — )P~ yy(z), c(a) = B(l , wi(z)=a—1, ti(z) =loguz.




(iii)

d.
e.

3.29 a.

3.31 a.
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«, # unknown,

h&x) = Ijo,y (), c(a,B) = B(Olhﬁ), wi(a) =a—1, t1(z) =logz,
wa(B) = B —1, tafx) = log(l - fv)
W) = §iloa2,..3 (), o) =e? wi(f) =logh, ti(x) ==
h(z) = (r - 1) Itr g1,y ( = ) =log(l —p), ti(z)==.

For the n(u,o?)
f(z)

202
et Y/ > —12/20 +ap/o? )

A/\

so the natural parameter is (nl, 72)
{(nm2):m <0, =00 < 1p < 00}

For the gam na(oz, B),
1 —x/B
f( ) ( ( ) ) ( (ozfl)log:n z/ ) ,

so the natural parameter is (11,72) = (o« — 1,—1/() with natural parameter space
{(mm2)m > —1m2 <0}

For the beta(a, 3),
110 = (e ) (e e 07 se=),

so the natural parameter is (n;,m2) = (o — 1,3 — 1) and the natural parameter space is
{(nm2)m > —1me > —1}.
For the Poisson

—1/202, u/0?) with natural parameter space

x!

fx)= <1> (e7) evlos?

so the natural parameter is 7 = log # and the natural parameter space is {n:—oo < 1 < 0o}.

. For the negative binomial(r, p), 7 known,

P =) = (F7) ) (09,

so the natural parameter is n = log(1 — p) with natural parameter space {n:n < 0}.

k
0 = % / h(z)c(0) exp <;wi(9)ti($)> dx
k
= /h(x)c’(@) exp (Z wi(ﬂ)ti(x)> dx
k k
+ / h(z)c(0) exp (Z wi(ﬁ)ti($)> ( ag;io)ti(x)> da
k

=1

_ / h(z) [ ;; 1ogc(9)] c(6) exp <zi: wi(ﬂ)ti(x)> dz +E

"L 9w, (0)
09, ti(z)}

=1

i=1

0
= 9 ——loge(f) + E

Therefore E [Zle aqg;(je)ti(x)} = —%jlogc(@).
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82

k
0 = W/h(x)cw) exp (;wz(ﬁ)tl(m)> dx

2 k

0
= ——loge(f) 4+ Var (
203 ;

Therefore Var (Zle 818’];(9)1514(95)) = —g—;logc(ﬁ) —E {Zle 82%2(9%1-(33)]
i 3 3

3.33 a.(i) h(z) = €"I{_oocucoot (@), c(f) = = exp(52)0 >0, wi(0) = &

(ii) The nonnegative real line.

b. (i) h(x) = [{—soca<coo}(T), c(0) = mexp(g—;) —0 << o0,a>0,
w1 (0) = 3, wa(0) = &, (@) = —a?, ta(2) = .
(ii) A parabola.
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c.(i) h(z) = pcpcoot (@), cla) = %a >0, wi(a)=a, wa)=a,
t1(z) =log(x), to(x) = —u.
(ii) A line.
d. (i) h(z) = Cexp(x?)[[—coczcoo} (), ¢(0) =exp(h*) — o0 < < o0, wi(h) =0,
we(0) = 602, ws(0) =03, ti(z) = —4a3, ta(x) =622, t3(z) = —4dz.
(ii) The curve is a spiral in 3-space.
(iii) A good picture can be generated with the Mathematica statement

ParametricPlot3D[{t, t~2, t~3}, {t, 0, 1}, ViewPoint -> {1, -2, 2.5}].

3.35 a. In Exercise 3.34(a) w1 (\) = 55 and for a n(e’,e”), wy(0) =
b. EX =y = af3, then 3 = £. Therefore h(z) = 1I{ocpcooy (@

)
cla) = %,a >0, wi(a)=a, waa)=1%, ti(z) =log(x), t2(z)=—=.

c. From (b) then (ai1,...,an,B1,...,0n) = (al,...7an,%,...,o‘7")

1
2ef *

3.37 The pdf ( )f((x;—”)) is symmetric about u because, for any € > 0,

1
1 +€e)— 1 € 1 € 1 —€)—
f<<uw) (=L (-9 =Ly (w ) M),
ag g g g ag g g g
Thus, by Exercise 2.26b, u is the median.

3.38 P(X >x4)=P(0Z+p>024+ 1) =P(Z > z,) by Theorem 3.5.6.
3.39 First take p =0 and o = 1.

a. The pdf is symmetric about 0, so 0 must be the median. Verifying this, write

< 1 1
0 T \2 2

P(Zzo)z/wl !

1
= dz = —tan™?
; 2% an~ (z)

b. P(Z>1)= %tanfl(z)ﬁo =1(z-z By symmetry this is also equal to P(Z < —1).

1
-1 =1
Writing z = (z — p)/o establishes P(X > p) = % and P(X > p+o0) = 1.

3.40 Let X ~ f(z) have mean u and variance o2. Let Z = % Then

EZz(Clr)E(X—,u):O

and

X — 1 1 2
VarZ = Var BY= (= Var(X —p) = | — | VarX = -1
o o2 02 02

Then compute the pdf of Z, fz(2) = fo(cz4+p) -0 = ofs(02+p) and use fz(z) as the standard
pdf.

3.41 a. This is a special case of Exercise 3.42a.
b. This is a special case of Exercise 3.42b.

3.42 a. Let 61 > 605. Let X1 ~ f(x —01) and X5 ~ f(x — 63). Let F(z) be the cdf corresponding to
f(2) and let Z ~ f(z).Then

F(x—eg) = P(ng—ez) = P(Z+92Sl‘) = P(XQSJ,‘)

IN



3-14 Solutions Manual for Statistical Inference

The inequality is because x — 03 > x — 61, and F is nondecreasing. To get strict inequality
for some x, let (a,b] be an interval of length 6; — 0y with P(a < Z < b) = F(b) — F(a) > 0.
Let = a+ 0;. Then

F(z|61) = F(z—06) = Flat61—-61) = F(a)
< F(b) = F(a+91—92) = F(.’E—(QQ) = F(.’E|92>

b. Let 01 > 03. Let X3 ~ f(x/01) and X2 ~ f(x/02). Let F(z) be the cdf corresponding to
f(z) and let Z ~ f(z). Then, for z > 0,

Flx|oy) = PXy<z) = PlowZ<z) = P(Z<z/o1) = F(x/o1)
< F(zfoy) = P(Z<z/oy) = P(oaZ<z) = P(Xs<1)
= F(z]|o02).

The inequality is because x/oy > x/o1 (because © > 0 and o1 > o3 > 0), and F is
nondecreasing. For z < 0, F(z | 01) = P(X1 < 2) =0 = P(Xy < z) = F(z | 02). To
get strict inequality for some z, let (a,b] be an interval such that a > 0, b/a = 01/02 and
Pla< Z <b)=F(b)— F(a) > 0. Let = aoy. Then

F(zx|lo1) = F(z/o1) = F(ao1/o1) = F(a)
< F(@() = F(aoy/o9) F(x/o9)
= F(.T | 0'2).

3.43 a. Fy(ylf) =1— FX(§|9) y > 0, by Theorem 2.1.3. For 6, > 6o,

Fy(y|01) =1— Fx (1 91> <1-Fx <1
Y )
for all y, since Fx(x|0) is stochastically increasing and if 6, > 0, Fx(z|02) < Fx(z|6,) for
all z. Similarly, Fy (y|61) =1 — FX(%|91) <1l- FX(%|02) = Fy(y|02) for some y, since if
01 > 02, Fx(x]03) < Fx(x|0;) for some x. Thus Fy (y|0) is stochastically decreasing in 6.
b. Fx(z|0) is stochastically increasing in 6. If 6; > 65 and 61,65 > 0 then é > %. Therefore
Fx($|%) < FX(:c\é) for all  and FX(a:|9—11) < FX(:c\é) for some z. Thus Fx(z|}) is
stochastically decreasing in 6.

02) — Fy(yl62)

3.44 The function g(x) = |x| is a nonnegative function. So by Chebychev’s Inequality,
P(]X| = b) < E|X|/b.
Also, P(|X| > b) = P(X? > b?). Since g(x) = 22 is also nonnegative, again by Chebychev’s

Inequality we have
P(|X| >b) = P(X* > b") <EX?/b".

For X ~ exponential(1), E|X| =EX =1 and EX? = VarX + (EX)? =2 . For b = 3,
E|X|/b=1/3>2/9=EX?/b*

Thus EX?/b? is a better bound. But for b = /2,
E|X|/b=1/V2<1=EX?/bp"

Thus E|X|/b is a better bound.
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3.45 a.

Y

Mx) = [ e

el /00 fx(z)dzx

where we use the fact that e!® is increasing in = for ¢t > 0.

/aoo e fx (x)dx

e P(X > a),

Y

Mx(t) = /_O;etxfx(x)dm > /a e fx (z)dx

—00

el /a fx(x)dr = e"“P(X <a),

where we use the fact that e* is decreasing in x for ¢t < 0.
c. h(t,z) must be nonnegative.

3.46 For X ~ uniform(0,1), 4 = % and 0® = &, thus

1 k 1 k — 2k
P(|Xu>ka)1P<§X§+>{ V12 k<3,
2 V12 2 12 0 k> /3,

For X ~ exponential(\), p = A and 02 = A2, thus

_ —1_ _ B I R R
P(|X — p| > ko) =1~ P(A kASXS/\JF’fA)—{e(kH) k> 1.

From Example 3.6.2, Chebychev’s Inequality gives the bound P(|X — u| > ko) < 1/k%.

Comparison of probabilities

k u(0,1) exp(N) Chebychev
exact exact
1 .942 .926 100
.5 711 617 4
1 423 135 1
1.5 134 .0821 44
V3 0 0.0651 33
2 0 0.0498 .25
4 0 0.00674 .0625
10 0 0.0000167 .01

So we see that Chebychev’s Inequality is quite conservative.
3.47

P(|Z] > t) e

2P(Z >t) = m/

\[/OO Lhe a2,
1422
0 2
\[/ ! e*w2/2dx+/ m767952/%1:5.
7 |)y 1+a? P
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2

To evaluate the second term, let u = %5, dv = xe*ﬁ/zdm, v = 76712/2, du = (11;77”2)2, to
obtain
o] 2 S o] 2
/ x e_xz/zdx _ x (_e_x2/2) _ / 1—=z (_e_w2/2)dx
. 1+ a2 1+ a2 . . (L+22)?
t 2 /00 1-a2® 2
= —_— dx.
1+e2° * ¢ (1+x2)26 v
Therefore,

2t 2 2 [ 1 1— 22 2
P(Z>t) = S e t/2 \/7/ —2?/24
(Z=1) \/;14—2526 + T Jy 1—|—x2+(1—|—x2)2 ¢ *
2 L g \/E/f’o 2 22
= — _ = x d
\/;1+t2€ + T Ji (14 22)2 ¢ *
\/51 Jf ge
s

3.48 For the negative binomial

Pix=at )= ("I T - = (S5 ) - pppx =)

rx+1 r+1

For the hypergeometric

Wa)(kzotet Detl) g < ko < M,z > M — (N — k)

P(X=x)
P(X =z+1)=1{ (X)) ifx=M—(N—k)—1
0 ’ otherwise.
3.49 a.
E(g(X)(X —aB)) = - )z — « 1 g lem/ By,
(9(X)( B)) ; g(z)( ﬂ)r(a)ﬂ

Let u = g(z), du = ¢'(z), dv = (z — af)z® e */8 v = —Bz*e~*/P. Then

Eg(X)(X —af) = (x)ﬂx%*r/ﬁ\zo + ﬂ/ooo g'(x)z”‘ex/ﬁdx} .

e

Assuming g(z) to be differentiable, E| X ¢'(X)| < 0o and lim, .., g(z)z%e~*/8 = 0, the first
term is zero, and the second term is SE(X¢'(X)).

_ o 1 .
Let u = g(z) and dv = (8 — (o — 1)1=2)2*71(1 — z)”. The expectation is

I'a+0)
I'(a)L'(3)

assuming the first term is zero and the integral exists.

a—1/1 _ B} ! . / a—1/1 _ .A\B—1 _ _ /
{g(fﬂ)w (1-2) }0+/0(1 x)g (x)a* (1 — )" dx| = E((1 - X)g'(X)),
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3.50 The proof is similar to that of part a) of Theorem 3.6.8. For X ~ negative binomial(r, p),

Eg(X)

= 29($)<T+il)p’°(l—p)x

= ig(yl)(rzgzg)pr(lp)yl (set y =2 +1)

_ yilg(y— )(rﬂzj—l) (TJF?:I_l) "(1-p)vt

_ i[r—kz—lg(ly—_plq {(T—i_z_l)pr(l—p)y} (the summand is zero at y = 0)

() (727,

where in the third equality we use the fact that (T;K‘Q)

1



