Chapter 4

Multiple Random Variables

4.1 Since the distribution is uniform, the easiest way to calculate these probabilities is as the ratio
of areas, the total area being 4.

a. The circle 2% + y* < 1 has area m, so P(X?+Y?2 <1) =12
b. The area below the line y = 2z is half of the area of the square, so P2X —Y >0) = 2
c. Clearly P(|X +Y]| <2)=1.

4.2 These are all fundamental properties of integrals. The proof is the same as for Theorem 2.2.5
with bivariate integrals replacing univariate integrals.

4.3 For the experiment of tossing two fair dice, each of the points in the 36-point sample space are

equally likely. So the probability of an event is (number of points in the event)/36. The given
probabilities are obtained by noting the following equivalences of events.

PUX =0y =0} = PH(1LD,21),0,3),23),05,25) = 5 = ¢
PUX=0Y =1}) = PU{(1,2),(22),(L4),2.4,(,6),26)) = o = ¢

({X =1,Y=0})
= P{B,1),(4,1),(5,1),(6,1),(3,3),(4,3),(5,3),(6,3), (3,5), (4,5), (5,5), (6,5)})

P{X =1,Y =1})
= P({(3,2),(4,2),(5,2),(6,2),(3,4), (4,4),(5,4),(6,4), (3,6), (4,6), (5,6), (6,6)})

4.4 a. fofo (z + 2y)dxdy = 4C =1, thus C =

b. fx(x {f04 x4 2y)dy = 2(z+1) 0<x<2
otherwise

c. Fxy(z,y)=P(X <z,Y <y) f_ fy f(v,u)dvdu. The way this integral is calculated
depends on the values of x and y. For example, for 0 <z <2 and 0 < y < 1,

Fxy(z,y) = / / fu,v)dodu = / / —(u+ 2v)dvdu = Ty, VT
—o00 J —00 0 0 4 8 4

But for 0 <z <2and 1 <y,

ny(x,y)/; /: f(u,v)dvdu/OZ/Oli(qu%)dvdu

+

»| &,



4-2 Solutions Manual for Statistical Inference

The complete definition of Fxy is

0 r<0ory<0

2?y/8+y?z/4 O<z<2and0<y<l1
Fxy(z,y) = y/2+4?%/2 2<zand 0<y<1

2?/8 + /4 0<z<2and 1<y

1 2<zand 1<y

d. The function z = g(z) = 9/(z + 1)? is monotone on 0 < z < 2, so use Theorem 2.1.5 to
obtain fz(z) =9/(82%),1 <2< 9.

45 a. P(X >VY) = fol f\lf z +y)dedy = 5.
b P(X2<Y < X) = [y [V¥ 20dudy = L.

4.6 Let A = time that A arrives and B = time that B arrives. The random variables A and B are
independent uniform(1,2) variables. So their joint pdf is uniform on the square (1,2) x (1,2).
Let X = amount of time A waits for B. Then, Fx(z) = P(X < z) = 0 for z < 0, and
Fx(z)=P(X <z)=1for 1 <z For x =0, we have

FX(O)P(X<0)P(X0)P(BgA)/Q/aldbda;

Andfor0 <z < 1,

72

2—x
Fx(z)=P(X<2)=1-P(X>2)=1-P(B—A> 1) :1—/ / 1dbda = %ﬂf?
1

4.7 We will measure time in minutes past 8 A.M. So X ~ uniform(0, 30), Y ~ uniform(40, 50) and
the joint pdf is 1/300 on the rectangle (0,30) x (40, 50).

60— Yy 1
P(arrive before 9 A M.) = P(X +Y < 60) = / / —dxdy ==
40

300 2
4.9
Pla<X <be<Y <d)
P(X<bc<Y <d) —P(X<a,c<Y <d
— P(X<bY<d)-PX<bY<c)—P(X<aY<d+PX<aY<c
= F(b,d)— F(b,c) — F(a,d) — F(a,c)
= Fx(b)Fy(d) — Fx(b)Fy(c) — Fx(a)Fy(d) — Fx(a) Y()
_p d)— P(Y < ¢)] - P(X < a) [P(Y < d) — P(Y < )]

)= P(X <a)P(c<Y <d)

I
A/‘:'i/—\
8 X<
IAIA A

4.10 a. The marginal distribution of X is P(X = 1) = P(X =3) = 1 and P(X = 2) = 1. The
— 1
B 3

marginal distribution of Y is P(Y =2) = P(Y =3) = P(Y =4) = z. But
1.1
PX=2Y =3)=0# (1)) = P(X =2)P(v =3)

Therefore the random variables are not independent.
b. The distribution that satisfies P(U = 2,V = y) = P(U = 2)P(V = y) where U ~ X and
V~Yis
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The support of the distribution of (U, V) is {(u,v) : v = 1,2,...;v = u+ 1,u + 2,...}. This
is not a cross-product set. Therefore, U and V are not independent. More simply, if we know
U = u, then we know V > u.

One interpretation of “a stick is broken at random into three pieces” is this. Suppose the length
of the stick is 1. Let X and Y denote the two points where the stick is broken. Let X and Y
both have uniform(0, 1) distributions, and assume X and Y are independent. Then the joint
distribution of X and Y is uniform on the unit square. In order for the three pieces to form
a triangle, the sum of the lengths of any two pieces must be greater than the length of the
third. This will be true if and only if the length of each piece is less than 1/2. To calculate the
probability of this, we need to identify the sample points (z,y) such that the length of each
piece is less than 1/2. If y > x, this will be true if z < 1/2, y —2x < 1/2 and 1 —y < 1/2.
These three inequalities define the triangle with vertices (0,1/2), (1/2,1/2) and (1/2,1). (Draw
a graph of this set.) Because of the uniform distribution, the probability that (X,Y") falls in
the triangle is the area of the triangle, which is 1/8. Similarly, if z > y, each piece will have
length less than 1/2 if y < 1/2, x —y < 1/2 and 1 —x < 1/2. These three inequalities define
the triangle with vertices (1/2,0), (1/2,1/2) and (1, 1/2). The probability that (X,Y") is in this
triangle is also 1/8. So the probability that the pieces form a triangle is 1/8 +1/8 = 1/4.

a.

E(Y - g(X))
E((Y —E(Y | X)) + (E(Y | X) - g(X)))*
= E(Y -E(Y | X)? +BEY | X) - g(X))* +2B[(Y - E(Y | X))(E(Y | X) - g(X))].

The cross term can be shown to be zero by iterating the expectation. Thus
E(Y — g(X))* =E(Y —E(Y | X))’ +EE(Y | X)—g(X))* > E(Y —E(Y | X))?, for all g(").

The choice g(X) = E(Y | X) will give equality.
b. Equation (2.2.3) is the special case of a) where we take the random variable X to be a
constant. Then, g(X) is a constant, say b, and E(Y | X) = EY.

We will find the conditional distribution of Y'|X 4 Y. The derivation of the conditional distri-
bution of X|X + Y is similar. Let U = X +Y and V =Y. In Example 4.3.1, we found the
joint pmf of (U, V). Note that for fixed u, f(u,v) is positive for v = 0,...,u. Therefore the
conditional pmf is

04 Ve % \ve~? ) U—
_ f(U,U) _ (u—v)! v! _(u A 0 .
f('U"LL) - f(u) - (9-"—)\)1‘6"(9*’)‘) - v m m 5 'U*O,...,'LL.
That is V|U ~ binomial(U, A/ (6 + \)).

a. The support of the distribution of (U, V) is {(u,v): u=1,2,...;0=0,£1,£2,...}.
If V>0, then X > Y. So for v =1,2,..., the joint pmf is

fovu,v) = PU=u,V=v) = PY=u,X=u+v)
= p(l-p"Tp-p Tt = P
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If V<0, then X <Y. So for v=—-1,-2,..., the joint pmf is

fov(uv) = PU=uV=v) = P(X=uY =u—0)
= p(1- p)uilp(l — p)“ﬂ’*l — p2(1 _p)2u7v72.

If V=0, then X =Y. So for v =0, the joint pmf is
fov(w,0)=PU=uV=0)=P(X=Y=u)=p(1-p)"“ 'p(l—p)**=p*(1-p> 2

In all three cases, we can write the joint pmf as
fow(u0) = (1= p)? 1172 = (=)™ ) (1= p)"1 2 =12 o= 0,1 £,

Since the joint pmf factors into a function of u and a function of v, U and V are independent.

b. The possible values of Z are all the fractions of the form r/s, where r and s are positive
integers and r < s. Consider one such value, /s, where the fraction is in reduced form. That
is, 7 and s have no common factors. We need to identify all the pairs (z,y) such that x and
y are positive integers and x/(z + y) = r/s. All such pairs are (ir,i(s —r)), i = 1,2,....
Therefore,

p (Z :f) = ;P(X =ir,Y =i(s—r)) = ;p(l —p)"lp(l — p) e

— PN sy p? (1-p)°  pP(1—p) 2
B (1_9)2;«1 w= (1-p?1-(1-p)°  1-(1—-p)° "~

PX=2,X+Y=t)=P(X=2Y=t—2)=PX=2)P(Y =t—z)=p*(1-p) 2
417 a. PY =i+1) = f;“ e %dx = e *(1 — e~1), which is geometric with p =1 — e~ 1.
b. Since Y > 5 if and only if X > 4,
P(X -4<azY >5) =P(X —-4<z2[X>4)=P(X <z)=e",

since the exponential distribution is memoryless.

4.18 We need to show f(z,y) is nonnegative and integrates to 1. f(x,y) > 0, because the numerator
is nonnegative since g(z) > 0, and the denominator is positive for all z > 0, y > 0. Changing
to polar coordinates, x = rcosf and y = rsin, we obtain

00 o /2 poo w/2 oo /2
/ / flz,y)dxdy = / / 2gi(r)rdmlﬁ = 2/ / g(r)drdfd = E/ 1d0 = 1.
0 0 0 0 T T Jo 0 ™ Jo

4.19 a. Since (X; — Xg)/\/i ~n(0,1), (X1 — X2)2/2 ~ X% (see Example 2.1.9).

b. Make the transformation y; = xfkilm’ Y2 = 1 + x9 then x1 = y1y2, 2 = y2(1 — y1) and
|J]| = y2. Then

I'og+a o 1 artan_1
L oy R D | e

thus Y7 ~ beta(ay, as), Y2 ~ gamma(a; + a1,1) and are independent.
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4.20 a. This transformation is not one-to-one because you cannot determine the sign of X5 from
Y1 and Y;. So partition the support of (X7, X5) into Ay = {—00 < 77 < 00,75 = 0},
A ={—00 <z < 00,29 >0} and Ay = {—00 < x1 < 00,22 < 0}. The support of (Y1,Y>)
is B={0 <y1 < o00,—1 <yz <1}. The inverse transformation from B to A; is x1 = y2./y1

and o = \/y1—y,y2 with Jacobian
1
; VO 1
1= 1193 Yy2/U1 | T :
2" Vo e 2¢/1—y3

The inverse transformation from B to As is 1 = y24/y1 and 2o = —+\/1 —ylyg with Jy =
—J1. From (4.3.6), fv,v,(y1,%2) is the sum of two terms, both of which are the same in this

case. Then
1 2 1
— = oYy /(20%)
fviv, (W, y2) o2’ 2143
Ly L
_ L, 0 <y <oo, 1<y <l

2mo? V1-13

b. We see in the above expression that the joint pdf factors into a function of y; and a function
of y2. So Y7 and Ys are independent. Y7 is the square of the distance from (X, Xs) to
the origin. Y5 is the cosine of the angle between the positive xi-axis and the line from
(X1, X2) to the origin. So independence says the distance from the origin is independent of
the orientation (as measured by the angle).

4.21 Since R and 6 are independent, the joint pdf of T = R? and 4 is

1
fro(t,0) = Ee‘”% 0<t<oo, 0<0<2m.

Make the transformation z = v/t cos®, y = v/tsinf. Then t = 22 + %, § = tan~!(y/z), and

2 2
J=| 5 2 ’:2.
Therefore
2 @) 2, 2 o
Py (@ y) = e 2,0 <a® +y% < oo, 0<tan”'y/z <2
/i
Thus,

1 10,22
e~ 3@ HYT)

fX,Y(xay>:ﬂ —oo < x,y < 00.

So X and Y are independent standard normals.

4.23 a. Let y = v, ¢ = u/y = u/v then

oz Oz 1 _u 1

J = u gv — | v IR —
9 9y 0 1 v
ou  Ov

I(a+8) T(a+B+7y) (u>a*1 (1 u

fov(u,v) = T(a)T(B) T(a+B)(7) \v

(%
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Then,

_ I'(at+B+y) 4ol lv,aq R
R = ey a0

M)B 1w
v

1
_ Wu“‘l(l - u)ﬂ”‘l/ y? T 1 -y dy (y =Ty ZdU)
0 u

L(a)T(B)I(
F(a+ﬁ+’y) ua—l(l _ u)ﬁ+’y—1 F(ﬁ)r(’}/)
L(a)T(B)L(v) T(8+7)
_ T(atp+9) w11 — o)1 w
= Ty W Osusl
Thus, U ~ gamma(a, 8 + 7).

b. Let x = yuv, y = \/% then

8% % %Ul/Qufl/Z L 1/24=1/2 1
J = & % = %v_l/Qu_l/Q —%ul/Qv_?’/Q = %"
a+pB-1 ~y—1
D(a+5+7) a1 51 \/ﬂ * u 1
=272V 1 2 1—/=) =
fov () = FarErm Ve 1 ve) v v) 2
The set {0 < 2 < 1,0 < y < 1} is mapped onto the set {0 < u < v < %,O < u < 1}. Then,
Ju(u)
1/u
= fuv(u,v)dv
_ -1
_ T(a+p+7) uo‘_l(l u)5+’y 1/1/u 1—uv =1 /9 _ Vu/v K ( /u/v)ﬁ "
T(a)T(B)T(7) u 1—u 1—u 201 —u)
Call it A
To simplify, let z = ~ ?/v Y Thenv=u=z=1,v=1/u=2=0and dz = Q(Vlugvdv
Thus,
fulw) = A/zﬁfl(l —2)7 7 Ydz ( kernel of beta(g,7))
_ F(Oé‘f'ﬁ"',y) ua—l(l o u)ﬁ-&-’y—lr(ﬁ)l—‘(’}/)
L(a)L(B)L(7) L(6+7)
L(at+B+y) a1 Bty—1
= ATV sl g)BHy 1.
Tar@ " W 0SS

That is, U ~ beta(a B+7), as in a).

4.24 Let 2y =2+ vy, 20 = then o = 2129, y = z1(1 — 22) and

m+y’
oz ox P 5
— | 0z 0z _ 2 1 _
|J| = yl ayz’ = ‘ 1—2 s = Z1.
azl azz 2 1

The set {x > 0,y > 0} is mapped onto the set {z; > 0,0 < 23 < 1}.

]. r— —2z1z ]- Ss— —Zz Z1%
le,Zz(Zl’ZQ) = F(’I") (2122) 16 %2 F(S) (Zl - 2122) 16 1+ 2Zl
1 _ D(r+s) ,_ _
r+s—1 z1 r—1 s—1
_ R S 1— , 0<2,0< 29 <1.
T(rts) TG 2 (L #2) s
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faz, 22(21,22) can be factored into two densities. Therefore Z; and Z, are independent and
Zy ~ gamma(r + s,1), Zo ~ beta(r, s).
4.25 For X and Z independent, and Y = X + Z, fxv(z,y) = fx(z)fz(y — z). In Example 4.5.8,

1
Ixy(z,y) = Lo (z )10 ©0,1/10)(y — ).
In Example 4.5.9, Y = X2 + Z and

Frv () = fx (@) f2y = %) = ST @5 0100 — 7).

4.26 a.
P(Z<z,W=0) = PminX,Y)<zY<X) = PY<zY<X)
- //oolfw/k e Y/ P dxdy
(e (a) )
= —ex —+= )z ).
/H—)\ P nwooA
Similarly,
P(Z <zW=1) = mlnXY)<zX<Y) = P(X<zX<Y)
OO1 1 1
= // e~ T/AZ ey/”dydx = i/\(l—e p{ (M—i—/\)z}).
b.
P(VV:O):P(Y<X):/OO/OO 1efg”/)‘lefy/“dxdyzi.
- o Jy A 7 Pt
I
PW=1)=1-P(W=0)=——.
W =1)=1- PV =0 = L
1 1
P(Zgz):P(ZSz,W:O)—i—P(Zgz,W:1):1—exp{—(—|—)\>z}.
W
Therefore, P(Z < z,W =1i) = P(Z < z)P(W =), fori = 0,1, z > 0. So Z and W are
independent.

4.27 From Theorem 4.2.14 we know U ~ n(u + ,202) and V ~ n(u — v, 20?). It remains to show
that they are independent. Proceed as in Exercise 4.24.

126 L [(e—)*+(y—)?]
2ro

Letu=x+y,v=a—y, thenx:%(u—i—v),y:

fxv(z,y) = (by independence, sofxy = fx fy)
1

5(u—wv) and

g=| 2 12 |1
12 —12 |7
The set {—00 < 2 < 00, —00 < y < o0} is mapped onto the set {—o00 < u < 00, —00 < v < 00}
Therefore
1 s [(e)-w)"+ (=) | L
= 202 2 2 R
fov(u,v) 202’ 2
1l e [2(g)2—u(u+~y)+%+2(g)z—v(u—v)Jr%}
T ine2©

= g g T (u (4 ) ()T (0~ (i =),

By the factorization theorem, U and V are independent.
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4.29 a.

4.30 a.

b.
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£ = ﬁg?ﬁg = cotf. Let Z = cotf. Let Ay = (0,7), g1(8) = cotf, g;'(z) = cot™' 2

Ay = (m,27), g2(0) = cot 6, g5 *(2) = m + cot ™! z. By Theorem 2.1.8

L B s NP S
21+ 22" 2r' 14 22" w1422

—00 < 2z < o0.

fz(2) =

XY = R?cosfsinf then 2XY = R22cosfsinf = R2?sin26. Therefore % = Rsin26.

Since R = v/ X2 +Y?2 then % = Rsin 20. Thus % is distributed as sin 26 which
is distributed as sin#. To see this let sinf ~ fg,g9. For the function sin 26 the values of
the function sin@ are repeated over each of the 2 intervals (0,7) and (m,27) . Therefore
the distribution in each of these intervals is the distribution of siné. The probability of
choosing between each one of these intervals is % Thus fosing = % fsino + 5 fsmg = fsino-
\/% has the same distribution as Y = sinf. In addition, \/% has the
same distribution as X = cos# since sin 6 has the same distribution as cos . To see this let
consider the distribution of W = cos€ and V = sin where 6 ~ uniform(0, 27). To derive
the distribution of W = cos @ let A; = (0,7), g1(0) = cosf, g7 *(w) = cos™ ' w, Ay = (7, 27),
g2(0) = cos, g5 *(w) = 27 — cos~' w. By Theorem 2.1.8

Therefore

1 -1 1 1 1 1

— b - 1<w<l
27T|\/1—w2| 27T|\/1—w2| /1 — w?

To derive the distribution of V = sin, first consider the interval (%, 2X). Let g;(0) = sin®,
497 (v) = m — sin™! v, then

fw(w) =

fr(v) = ——, —-1<v<1.

Second, consider the set {(0, ) U (2%, 27)}, for which the function sin § has the same values
as it does in the interval (7” 7). Therefore the distribution of Vin {(0,%) U (3F,2m)} is

the same as the distribution of V' in (5%, §) which is ; \/ﬁ, —1<wv <1. On (0,27) each
of the sets (Z,2X), {(0,%) U (2F,2m)} has probability 1 of being chosen. Therefore
11 1 11 1 1 1
frv)=cc—m—mt - ——=————=, -1<uv<L

271 —02 271 —02 71—02

Thus W and V has the same distribution.

Let X and Y be iid n(0,1). Then X? + Y? ~ x3 is a positive random variable. Therefore
with X = Rcosf and Y = Rsinf, R = v X2 +Y? is a positive random variable and
6 = tan~!'(¥) ~ uniform(0,1). Thus —222— ~ X ~ n(0,1).

X
1
EY = E{E(Y|X)} = EX = .
VarY = Var(E(Y|X))+E(Var(Y]|X)) = VarX +EX? = %—i—% = %
1
EXY = E[E(XY|X) = EXE(Y|X)] = BX® = ¢
1 (1\? 1
X)Y) = EXY-EXEY = - —|- = —.
Cov(X, Y) 3 (2) 12

The quick proof is to note that the distribution of Y|X = z is n(1, 1), hence is independent
of X. The bivariate transformation ¢ = y/x, u = z will also show that the joint density
factors.
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431 a.
EY:EUMHXH:EmX:%.

VarY = Var (E(Y|X)) + E (Var(Y|X)) = Var(nX) + EnX (1

n

PY =y X<z)= (y

)xy(l —z)"Y, y=0,1,...,n,

n) Ny+1)T'(n—y+1)

Ply=y) = (y I'(n+2)

4.32 a. The pmfof Y, for y =0,1,..., is

/OOO Fy (WA FA(N)dA = /0

o0 \Ye— 1

y! T(a)s>

= i ], A e { (_i’A) } v

1+8

1 B\
= YT v (Hﬁ> '

If « is a positive integer,

_(vre-T\ () ()
= (") (5) ()
the negative binomial(a, 1/(1 + 3)) pmf. Then

EEY[A) = EA = of
Var(E(Y|A)) + E(Var(Y|A)) =

fy(y)

EY =
Vary =

b. For y =0,1,..., we have

P(Y=y[A) = Y PY=y[N=nAP[N =n|)

B

= e Mpa)vell—PA
(pA)’e” ™
y!

b

VarA+EA = af’+aB8 =

n2 n

—xX)=2 4+

“127 %6

O<z<l1.

Ao~ temMBa)

(les m=n—y)

4-9

afB(B+1).
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the Poisson(pA) pmf. Thus Y|A ~ Poisson(pA). Now calculations like those in a) yield the
pmfof Y, fory =0,1,..., is

B >y+a

Hy+a) <1+pﬁ

1
a)y!(pB)*
Again, if « is a positive integer, Y ~ negative binomial(c, 1/(1 + pg3)).

4.33 We can show that H has a negative binomial distribution by computing the mgf of H.
Befl! = BE ("] N) = BE (0t 300 N} — B {[B (¥ )]},

because, by Theorem 4.6.7, the mgf of a sum of independent random variables is equal to the
product of the individual mgfs. Now,

> -1 (1-p* -1 & (ef1-p)™ -1
BeXit — Z et (1-p) _ Z (e'(1—p) _ (—log{l—et(l —p)}) )
= logp T logp e T logp
Then
] 1_t1_ N o] 1 1_t1_ n 7)\)\n
B og {1—e’( p)} _ Z og {1—¢'( p)} € (since N ~ Poisson)
logp o logp n!
ZAlog(1—e' (=) ( y]q (1—et(1—p) \"
_ - %ﬁt“’p)) ¢ o (W)
= ¢ € & z_% n!

The sum equals 1. It is the sum of a Poisson([)\log(l —ef(1— p))]/[logp]) pmf. Therefore,

. —\/logp
E(@Ht) — A {elog(lfet(lfp))} A logp _ (elogp)*)‘/ logp 1
1—et )

/ (1-p
)/ logp

This is the mgf of a negative binomial(r, p), with r = —A/logp, if r is an integer.
4.34 a.

=
~
I

&
I

/0 P(Y = ylp)f,(p)dp
1

L)oo a0

_ n F(Ck-l—,@) ! y+a—1 o n+pB—y—1

= (s [, e

_ <n) I(a+pP) T(y+a)T'(n+8—y)
y) (@) T(atntps)

y=0,1,...,n.

(X =z[p)fp(p)dp

=
>
I
&
I
O\H
i
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ree—1\Ta+p) (1 (a0 1 )@+8) =1
(2 et 7 "
AT

B r+z—1\T'(a+ (r+a)l'(z+pP) .
B ( . ) (@)@ T(r+ o +a+f) b
Therefore,
EX = E[E(X|P)] = E [T(l _P)] _ P
P a—1’
i _ 1 1—-P F(Ck-i-ﬁ) a—1 _ 8—1
E{ P ] /< P >F(a)F(ﬂ)p (L-p)"dp
_ Tla+p) [! (a=1)=177 _ \(B+1)—1 _ I(a+8) Ma—DI'(B+1)
M), P = e R
8
T oa—-1
Var(X) = E(Var(X|P))+ Var(E(X|P)) = E|:T(1P_2P>:|+Var(r(1_P)>
_ BrY@+h) o flatps-1)
ala—1) (a—1)2(a—2)’
1-P| _ (@+8) (a—2)-1/4 _ \(B+1)-1 _ [(a+ ) I'(a—2)I'(B + 1)
E[ P2 } /of(a)F(ﬁ)p U= = T TatA-1)
_ (B+D)(a+p)
ala—1)
and
1-P\ 1-P\? 1-P1\° BB+ 3
Var( P ) - P < P ) ‘(E[ P D S ogen G0
_ Bla+p-1)
(a—=1)2(a~-2)
where
1-P\? _ D(a+8) (a—2)-1 2)—1
e[ (50) | = [ Harr
_ De+p)Ta=-2)TB+2) _  BB+1)
F(@)T(B) T(e—2+6+2) (a—2)(a—1)

4.35 a. Var(X) = E(Var(X|P)) + Var(E(X|P)). Therefore,

Var(X) = E[nP(1— P)]+ Var(nP)
= n o n?Var
= "t Barprn YA
afla+pB+1-1)

(a+B3)(a+B+1)

+ n?VarP
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nafla+0+1) naf

- — 2
 (a+ ) (a+8+1) (a+52)(a+ﬁ+1)+n VarP
- naiﬁaf_ﬁ_nvarp+n2VarP

= nEP(1—-EP)+n(n—1)VarP.

b. Var(Y) = (Var(Y|A)) + Var(E(Y|A)) = EA + Var(A) = p+ 142 since EA = = of8 and

2
Var(A) = af? = (0‘5 . The “extra-Poisson” variation is 172,

437 a. Let Y = > X;.

1 1
P(Y =k) = P(Y =k <c=5(l+p) <1)

(v = He = 5(1+9))P(P = p)dp

(Z) %(1 +p)*[1 - %(1 +p)]”_k£((z)}r(2p“‘1(1 —p)*~dp

[
Y\ (A 4+p*(A=p"FT(a+b) , b1
9k on—k F(a)I‘(b)p (1—=p)° dp

/
/0
[
- Qg s
(Z)an jﬁ;(f)”kai)i%;i”’

- ) ()

Jj=0

A mixture of beta-binomial.

EY = E(E(Y]|c)) = E[nd] = E {n (;(1 —&-p))} = % (1 + aib> .

Using the results in Exercise 4.35(a),
Var(Y) = nEC(1 — EC) + n(n — 1)VarC.
Therefore,
1 1 1
Var(Y) = nE {2(1 + P)] <1 —-E {2(1 + P)]) +n(n —1)Var (2(1 + P))
n n(n —1)
Z(l +EP)1-EP)+ TVarP
oy a \° Jrn(nfl) ab
4 a+b 4 (a+b2(a+b+1)

—2dv, = = 5%. Then
- U

4.38 a. Make the transformation v = % —

/A 1. 1 vt
—e =dv
0 V L(rT(1—7r) (A—v)
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1 1 N
=L T EN ey
F(r)F(lfr)/O x (Au) © b
LT (Y gy e
NT(C(1—7) Jy \u - T(r)A
since the integral is equal to I'(1 — r) if r < 1.

b. Use the transformation t = v/\ to get

1 1

A A —1 —r o 1 r—1 _ —r _
/Op,\(y)duzm/o VT (A =v) dy_if(r)f’(l—r)/ot (I-t)~"dt =1,

since this is a beta(r, 1 — r).

r—1

d d 1 1
—1 = — |log ——— - 1)1 - = - =
T og f(x) T {og F(r))\r+(r )log x ;1:/)\] - 3 >0

for some z, if r > 1. But,

d o gmx/v — [ e g (v)dy
— |1 dv| = 0 v <0 Vuz.
- [og/o » ax(v) u} 1 Lol gn (v)dv x

4.39 a. Without loss of generality lets assume that ¢ < j. From the discussion in the text we have

that
f(9517-~-793j—1,50j+17~-~,17n|£13j)
_ (m — z;)!
Topqlees Tiqlexjiqle e T,
><< Py ) ..... (Pa—l )m’”(wﬂ ) SR < Pn )
1—p; 1—p; 1—-p; 1—p;
Then,
f(@ilz;)
= Z f@1, @1, g, T |Tg)
(L1 y i1, 1y T 1, T4 1seeesTy)
(Ik#ll,(l/]) xl! ..... x]_ll-l‘]+1! ..... .’En!
x ( D1 Y. (pji_l)%‘—l(pji'ﬂ)mﬁl ..... (pin)ﬁn

1 —Pj ].—p]
. m—x;—T;
(m—x; —x;)! (1 - —ﬁ;j)
. m—x;—x;
(m—x; —x;)! (1 - 15’@)

o (m — J?])' ( Di )Iz 1 pi Mm—=T;—T;
 xlm - — ) —p, 1—p;

(m—x; —x;)!
x )] 1 L. ol

leoons . .
(@n i) Xry. Lj—1+y Li41- LTj—1-

— (
1 —pj —pi L—pj—pi 1—pj—pi

x ( P1 ) Pi—1 Tio1 Pit+1 yEi
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pj71 Tj—1 ijrl Tjt1 Pn Ty

< (
1—pj—pi 1 —pj —pi 1—pj—pi

B (m — ;)! (—Pi_y (1_ i )m—wi—xj.

z!(m—z; — ;)1 —p;

Thus X;|X; = x; ~ binomial(m — x;, 1_1’7;%)_
b.

m!

m—=T;—x;

f(@i,x;) = fil;) fa;) = iy’ (1 —pj —pi)

xilz;l(m — x5 — x;)!
Using this result it can be shown that X; + X; ~ binomial(m, p; + p;). Therefore,
Var(X; + X;) = m(pi + p;)(1 — pi — p;)-
By Theorem 4.5.6 Var(X; + X;) = Var(X;) + Var(X;) + 2Cov(X;, X;). Therefore,
1 1
Cov(X;, X;) = 5[m(pi+pj)(1—pi—pj)—mpi(l—pi)—mpi(l—pi)] = 5(—2mpipj) = —mp;p;-
4.41 Let a be a constant. Cov(a, X) = E(aX) — EaEX = ¢EX — aEX = 0.

4.42

pxyy = Cov(XY,Y) E(XY?)—pxypy _ EXEY?—px py pry
’ OXyoy OXYyOoy OXyOy ’

where the last step follows from the independence of X and Y. Now compute

oky = BXY)?-[E(XY)? = EX’EY? - (EX)*(EY)?
= (0% +1X) (0% +13) — pXpy = oxoy +oxuy +ovuk.
Therefore,
vy = px Oy +13)—pxmy (X Oy _
D (GRod okt todud) Py (ko i ok +oko})!
4.43
Cov(X1 + X2, Xo + X3) = E(Xi+ X2)(Xo + X3) — E(X; + Xo)E(Xs + X3)
— (4/12 +0_2) _4M2 — 0_2

Cov(X,+X2)(X,~X2) = EX1+X0)(X;—-X2) = EX{-X7 = 0.

4.44 Let p; = E(X;). Then

Var (X1 + Xo + -+ X,,)

= B[(X;+Xo4 -+ X)) — (u+pa+ -+
= BIX;—m)+ (Xg=p) + -+ (X, —pn)]

_ ZE(Xi—/u)Q—i-? > E(X - ) (X5 — )

1<i<j<n

= Zn:VarXi+2 Z Cov(X;, Xj).

i=1 1<i<j<n
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4.45 a. We will compute the marginal of X. The calculation for Y is similar. Start with

fxv(@,y) !
Xy \Z,yY =
2rox oy \/1—p?

o [ {(525) - (52) (522) » (522}

X

and compute

Eim (o.z272pwz+z2)0'ydz7

I B e

—00 2TOx 0y \/1—p

where we make the substitution z = ¥22%, dy = oydz, w = *£%. Now the part of the
exponent involving w? can be removed from the integral, and we complete the square in z

to get
WZ
T 2(1-52) [ee]
. e 20-p%) R Te R li 5 [(2272pwz+p2w2)7p2w2]
fX(x) = —_— (& (1—p*=) dZ
2o x\/1—p? J_oo
e—w?/2(1=p%) gp®W?/2(1=p%) oo (5= p?
= e 2(1-p2) dz.

2wox/1—p? —o

The integrand is the kernel of normal pdf with o = (1 — p?), and pu = pw, so it integrates
to v2m\/1—p2. Also note that e~ /2(1=p") er*w?/2(1=p") — ¢=w*/2 Thys,

@) = — T iTE e L)
— — = 7X
N rox i VT T amoy :

the pdf of n(px,c%).

b.
frix (ylz)
) 6_2(1ip2)[(m;;X)Q_QP(m;;X)(y;gy)-‘r(y;iy)z}
- 2roxoyy/1—p2
- L ok ax)?
Vamax ¢
- L st ) e () e () () ()|
V2roy \/1—p?
L [ () e () () ()]
V2ray \/1-p?
1 *m [(y*#Y)*(P%(I*#X))F

= Rl ] Y

V2roy \/1-p? 7

which is the pdf of n((uy —ploy/ox)(x —px),ov/1— p2).

¢. The mean is easy to check,

E(aX +bY) =aEX 4+ bEY = aux + buy,
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4.46 a.

b.

C.
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as is the variance,
Var(aX + bY) = a*VarX + b*VarY + 2abCov(X,Y) = a’c% + b*0% + 2abpoxoy.

To show that aX + bY is normal we have to do a bivariate transform. One possibility is
U=aX+bY,V =Y, then get fuv(u,v) and show that fy(u) is normal. We will do this in

the standard case. Make the indicated transformation and write x = %(u —bv), y = v and
obtain / y )
1/a —=b/a
1= ‘ 0 I
Then

1

fUV(U»U) = m

Now factor the exponent to get a square in u. The result is
1 b2 + 2pab + a? u? b+ap 9
— -2 uv +v°| .
2(1—p?) a? b2 + 2pab + a? b2 + 2pab + a?

Note that this is joint bivariate normal form since puy = py =0, 02 = 1, 02 = a? +b% + 2abp
and

e—ﬁ [[%(u—bi))]z—Zg(u—b'L;)—&-vQ]

_ Cov(U,V)  E(aXY +bY?) ap+b

oyoy ouoy Va2 + b2+ abp’

*

thus ) )
(1- 52 =1 a’p? +abp+ 0> (1-p*)a” _ (1-p’)a
a? + b2 +2abp a2+ b2 + 2abp o2

where a\/1—p? = oy+/1—p*2. We can then write

u uv (%

1 1 2 2>
vv(u,v) = exp | ——F——= | 20—+
fov(w.v) 2royoyy/1—p*? [ 24/1—p*2 <0121 pUUUV oy

which is in the exact form of a bivariate normal distribution. Thus, by part a), U is normal.

)

EX = axEZ, +bxEZy+Ecx = ax0+4+bx0+4+cx = cx
VarX = a4 VarZ, + b4 VarZ, + Varcx = a% +b%
EY = ay0+by0O+cy = cy
VarY = a3 VarZ, +b3VarZ, + Varey = a3 +0b3
Cov(X,Y) = EXY-EX: EY

= E[(axany + bbeZ22 +cxey +axby Z1Z5 + axcey Z1 + bxay Za 74
+bxcy Zs + cxay Zy + cxby Za) — cxcy]
= axay +bxby,
since EZ? = EZ2 = 1, and expectations of other terms are all zero.

Simply plug the expressions for ay, bx, etc. into the equalities in a) and simplify.
Let D = axby —aybx = —\/1—p2?0xoy and solve for Z; and Z,,

g = r(Xoex) —by(Y—ey) _ oy(X—px)tox(Y—py)
' D \/2(1+p)axay

oy (X—px)+ox (Y —py)
2(1—[))0’ny

Zy =
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Then the Jacobian is

>
<

S

® )\ T DD D iy

and we have that

S]

1 7%(”Y(«’”—l"X)‘*'”zx(’!;—}’-Y))z 1 7% (Uy(m—ux)+0§((?§—ury))2 1
_ 2(1+p)o2 o 2(1-p)o2 o
X,y (& = e X%y e X%y
fxy(z,y) or o [
2
1 _
= (2moxoyv/1—p?) texp | — TOAX
2(1 - p2) gx
2
xr — _ _
- 2p ,ux<y uy)+(;gm/) , —oo<zr<oo, —oo <Yy <00,
ox oy oy

a bivariate normal pdf.

Another solution is

ax = poxbx = +/(1—p?ox

ay = O‘yby = 0
cx = px
cy = py.

There are an infinite number of solutions. Write bx = ++/0%—a%.by = £\/0%—a3-, and
substitute bx,by into axay = poxoy. We get

axay + (:l:\/O'g(—a%(> (:t\/af,—a%) = poxoy.

Square both sides and simplify to get

2y 2 2 2 9 2 2
(1= pYoxoy =oxay —2poxoyaxay + oyax.

This is an ellipse for p # %1, a line for p = £1. In either case there are an infinite number
of points satisfying the equations.

By definition of Z, for z < 0,

P(Z<z) = P(X<zand XY >0)+P(—X <zand XY <0)
= PX<zandY <0)+P(X >-zandY <0) (since z < 0)
= P(X<2)P(Y <0)+P(X >-2)P(Y <0) (independence)
= PX<z)P(Y <0)+PX <z)P(Y >0) (symmetry of Xand Y)
= P(X <2)(P(Y <0)+P(Y >0))
= P(X <2).

By a similar argument, for z > 0, we get P(Z > z) = P(X > z), and hence, P(Z < z) =
P(X <z). Thus, Z ~ X ~ n(0,1).

By definition of Z, Z > 0 < either ()X <0and Y > 0 or (ii)X > 0 and Y > 0. So Z and
Y always have the same sign, hence they cannot be bivariate normal.
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4.49 a.
fxl@) = / (af1(@)or(v) + (1 — a) fo ()92 (v))dy

= afi() / a@)dy + (1 — a) fo(2) / o (y)dy
= afi(z) +(1—a)f2(x).

frly) = / (@h(@) ) + (1 - @) fo(@)g2())da
= an(y) / fi(@)dz + (1 - a)galy) / fol)dz
= agi(y) + (1 —a)ga(y).

b. (=) If X and Y are independent then f(x,y) = fx(z)fy (y). Then,

f(x,y) — fx(x)fy(y)

= afi(@)gi(y) + (1 — a)f2(z)g2(y)
—lafi(2) + (1 = a) f2(2)][agi(y) + (1 — a)ga(y)]
= a(l-a)[fi()g1(y) — f1(2)g2(y) — f2(2)91(y) + f2(2)g2(y)]
= a(l-a)lfi(x) = fo(2)][g1(y) — 92(v)]
= 0.

Thus [£1(x) — fa(2)]lg1(y) — g2(y)] = 0 since 0 < a < 1.
() i [/1(2) ~ fo(@)][91(y) — g2(y)] = O then

f1(@)g1(y) + f2(x)g2(y) = f1(x)g2(y) + f2()g1(y)-

Therefore
fx (@) fy(y)
= a*fi(@)g1(y) + a(l — a) fr(z)g2(y) + a(l — a) f2(x) g1 (y) + (1 — @) f2(2)g2(y)
= a*fi(@)g1(y) + a(l = a)[f1(2)g2(y) + fo(2)g1(y)] + (1 = a)? fa(x)g2(y)
= a*fi(@)g(y) + a(l — a)[f1(2)g1(y) + f2(2)g2(y)] + (1 — a)® fa(2)g2(y
= afi(@)g1(y) + (1 — a) fo2(z)g2(y) = f(z,y).

Thus X and Y are independent.

Cov(X,Y) apr&y + (1= a)ube — [apn + (1 = a)po]ady + (1 — a)&o]
a(l —a)[mé&n — e — padn + p2&o]

= a(l—a)[pm — p2l[& — &l

To construct dependent uncorrelated random variables let (X,Y) ~ af;(z)g1(y) + (1 —
a)fa(x)g2(y) where f1, fa, g1, g2 are such that f; — fo # 0 and g1 — go # 0 with p1 = 2 or
& =&
d.(i) f1 ~ binomial(n,p), fo ~ binomial(n,p), g1 ~ binomial(n, p), ga ~ binomial(n, 1 — p).
(ii) f; ~ binomial(n, pl) f2 ~ binomial(n, pg) g1 ~ binomial(n, p1), g2 ~ binomial(n, p3).
(iii) f1 ~ binomial(ni, ), f2 ~ binomial(ns, ;2-), g1 ~ binomial(n1, p), g» ~ binomial(nz, p).
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4.51 a.

P(X/Y <t)

Ly t>1
i+(1—t) t<1
2 —

P(XY <t) = t—tlogt 0<t<l

1
P(XY/Z <t) = /P(XYgzt)dz
0
17, .
fol[gt—l—(l—zt)]dz ift<1
Jo [+ —z)]de+ [l 5hde <1
1—t/4 ift<1
t— 4 + o logt ift>1"

4.53

P(Real Roots) = P(B*>4AC)
= P(2log B > log4 +log A+ log C)
= P(—2logB < —log4 —log A —1log(C)
= P(—2logB < —logd+ (—log A —1log(C)).

Let X = —2log B, Y = —log A —log C. Then X ~ exponential(2), Y ~ gamma(2, 1), indepen-

dent, and
P(Real Roots) = P(X < —logd+Y)
= [ P(x < —loga+ ) Wiy
log4

—log4
- /Oo / o L a2 ggyeva
= ye Y
log4 JO 2
oo

= / (1 —e2 1°g4e_y/2> ye Ydy.
log4

Integration-by-parts will show that f;o ye ¥/t = bla + b)e‘“/b and hence

1 1
P(Real Roots) = 1(1 +log4d) — — (

2
= +log4d | =.511.
21 +og> 5

3
454 Let Y = [[i_, X;. Then P(Y < vy) = P([[l_, X; <y) = P(}_, —log X; > —logy). Now,
—log X; ~ exponential(1) = gamma(1,1). By Example 4.6.8, > | —log X; ~ gamma(n, 1).
Therefore,
e 1
P(Y <y)= / —— 2" le Tz,
—logy F(”)
and

d 1
rly) = —/ 2"l dz
Y< ) dy —logy F(Tl)
1

d
S g | n—1_—(—logy) % —1
F(n)( ogy)" e dy( ogy)

1
— — (—logy)" ! 1.
F(n)( ogy)" ", 0<y<
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4.55 Let Xy, X5, X3 be independent exponential(\) random variables, and let Y = max(X;, X», X3),
the lifetime of the system. Then
P(Y <y) = P (max(X1, X2, X3) <y)

= P(X;<yand Xy <yand X3 <y)

= P(X1 <y)P(Xz <y)P(X5 <y).
by the independence of X7, X5 and X3. Now each probability is P(X; < y) = foy %e‘“/)‘da? =
1—e ¥/ so

3
PY <y) = (1—6_y/’\) , 0<y< oo,
and the pdf is
—e=/A)? e—u/A
fY<y):{3(1 e ) e y >0

0 y <0.
4.57 a.
1< IR
1
A = [gz;le]T = ggxi, the arithmetic mean.
1< 1
Ay = [=Y 27t = , the harmonic mean.
nz i %($++i)
. . 1 & 1 ! 1 & D Dt !
limlog A, = limlog[—~ a{]" = lim —log[-> f] = lim = IS
r=1 =1 i=
LS5~ 2T logay 1 — 1 -
= lim2&i=t 270 = Z N oga; = —log(| [ ).
MU T el

Thus Ag = lim, o A, = exp(L log(TT}_; 2:)) = ([T}, ;)7 , the geometric mean. The term
rai !t = a7 log x; since ral ! ddrsc;' = d% exp(rlogx;) = exp(r log ;) log x; = z7 log x;.
b. (i) if log A, is nondecreasing then for r < r’log A, < log A,, then e'°84r < elo8 4 Therefore
A, < A,,. Thus A, is nondecreasing in r.
.. _ % 7_1 reT 1 T ac "log x;
(i) ftog 4, = Flog( Ty o) + 2K 3 [T gty ),

i
ro 1 z7 r T
n i=1%i z=1""1

where we use the identity for 7z} ~" showed in a).

(iii)
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We need to prove that log(n) > >"" | a; 1og(aii). Using Jensen inequality we have that
Elog(3) = Y01, ailog(3) < log(Ef) = log(3_, aiz-) = log(n) which establish the
result. ' '

4.59 Assume that EX = 0, EY = 0, and EZ = 0. This can be done without loss of generality
because we could work with the quantities X — EX, etc. By iterating the expectation we have

Cov(X,Y)=EXY = E[E(XY|Z)].
Adding and subtracting E(X|Z)E(Y|Z) gives
Cov(X,Y) =E[E(XY|Z) - E(X|Z2)E(Y|Z2)] + E[E(X|2)E(Y|Z)].

Since E[E(X|Z)] = EX = 0, the second term above is Cov|[E(X|Z)E(Y|Z)]. For the first term
write

E[E(XY]Z) - E(X[Z)E(Y|2)] = E[E{XY — E(X|2)E(Y|Z)| Z}]

where we have brought E(X|Z) and E(Y|Z) inside the conditional expectation. This can now
be recognized as ECov(X,Y|Z), establishing the identity.

4.61 a. To find the distribution of f(X1|Z2), let U = X)Z(—jl and V = Xj. Then 2o = hy(u,v) = uv+1,
x1 = ha(u,v) = v. Therefore

fov () = fxy (hi(u,v), ha(u,v))|J| = e~ WDy,

and
o1

_ > —(uv+1) vy =
u) = ve e 'dv=——.
Thus V|U = 0 has distribution ve™. The distribution of X;|X5 is e~ ** since X; and X5
are independent.

b. The following Mathematica code will draw the picture; the solid lines are B; and the dashed
lines are By. Note that the solid lines increase with x1, while the dashed lines are constant.
Thus B is informative, as the range of X5 changes.

e = 1/10;

Plot[{-e*x1 + 1, e*x1 + 1, 1 - e, 1 + e}, {x1, 0, 5},

PlotStyle -> {Dashing[{}], Dashing[{}],Dashing[{0.15, 0.05}],
Dashing[{0.15, 0.05}1}]

fov* J5 vem (e dudy

P(X; <z|B = PV<v|—-e<U<e = =
( 1= I 1) ( = | ) f()oo f_e ve—(u'u-‘rl)e—'ududv
_ —v*(1+e) 1 —v*(1—¢€) 1
e ! |:e 1+e€ T 14e < 1—e + 1—e:|

_ 1 1
e ! |:_ 14+e€ + 1—6j|
Thus lim, .o P(X; < z|B)) =1 —e ¥ —ve ¥ = fov* ve Vdv = P(V <v*|U = 0).

z rlde —(z1+22) oo d —(z+1+e) —(1+e€) -
f e Todxq e —e —e T+1
P(Xy <alBy) = 20— = 1 e—(+0
fo e~%2dzs

Thus lime_o P(X; < #[By) =1 —¢e® = [ e®day = P(X; < 2|Xo =1).
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4.63 Since X = eZ and g(z) = €? is convex, by Jensen’s Inequality EX = Eg(Z) > g(EZ) = €° = 1.
In fact, there is equality in Jensen’s Inequality if and only if there is an interval I with P(Z €
I) =1 and g¢(z) is linear on I. But e* is linear on an interval only if the interval is a single
point. So EX > 1, unless P(Z =EZ =0) = 1.

4.64 a. Let a and b be real numbers. Then,
la 4+ b]* = (a+b)(a +b) = a® 4 2ab + b* < |a|* + 2|ab] + |b]* = (|a| + |b])>.

Take the square root of both sides to get |a + b| < |a| + |b|.
b. | X+Y|<|X|+|Y|=E|X+Y|<E(X|+[Y|) =E[X|+E|Y]
4.65 Without loss of generality let us assume that Eg(X) = Eh(X) = 0. For part (a)

BlCOnx) = [ " g@)h(a) fx (2)da

— 00

- / g(x)h(z) fx (x)dz + / g(x)h(z) fx (x)dx
{z:h(z)<0}

{:h(x)>0}

< g(zo) /{ e M @+ g0 /{ W) fx (2)da

z:h(z)>0}

S RCLEE

— 00

= g(xo)ER(X) = 0.
where z¢ is the number such that h(zg) = 0. Note that g(z¢) is a maximum in {z : h(z) < 0}

and a minimum in {z : h(z) > 0} since g(x) is nondecreasing. For part (b) where g(z) and
h(z) are both nondecreasing

E(g(X)h(X))

| s@nie) @

— 00

_ / o(2)h(x) fx (2)dz + / 9(@)h(z) fx (a)da
{z:h(z)<0}

{w:h(2)>0}

v

o(z0) /{ IRCINCTENTED /{ W) fx (x)de

z:h(z)>0}

| he) s

— 00

= g(z0)ER(X) =0.

The case when g(x) and h(x) are both nonincreasing can be proved similarly.



