Chapter 5

Properties of a Random Sample

5.1 Let X = # color blind people in a sample of size n. Then X ~ binomial(n,p), where p
The probability that a sample contains a color blind person is P(X > 0) = 1 — P(X = 0),
where P(X =0) = (3)(.01)0(.99)” = .99". Thus,

P(X >0)=1-.99" > .95 & n > log(.05)/log(.99) ~ 299.

5.3 Note that Y; ~ Bernoulli with p; = P(X; > pu) = 1 — F(p) for each i. Since the Y;’s are iid
Bernoulli, Y7, Y; ~ binomial(n,p =1 — F(u)).
55 Let Y = X1 +---+ X,,. Then X = (1/n)Y, a scale transformation. Therefore the pdf of X is

Ix(@) = Tty ($5) = nfy(na).

5.6 a. ForZ:X—Y,setW:X.ThenY:W—Z,XzW,and|J|=‘ 0 1

-1 1
fzw(z,w) = fx(w)fy(w—2) -1, thus fz(z) = ffooo fx(w) fy (w — 2)dw.
0 1
1w —z/w?
faw(z,w) = fx(w) fy (z/w) - |=1/w|, thus fz(2) = [72 [=1/w] fx (w) fy (z/w)dw.
0 1
—w/Z® 1)z
fzw(zw) = fx(w)fy(w/z) - [w/z?|, thus fz(z) = [7 |w/2?|fx (w) fy (w/2)dw.

5.7 Tt is, perhaps, easiest to recover the constants by doing the integrations. We have

e B e D
/ ———dw = orb, / ————dw = 711D

’ = 1. Then

b. For Z = XY, set W = X. Then Y = Z/W and |J| = ‘

= —1/w. Then

c. For Z = X/Y, set W = X. Then Y=W/Z and |J| = ’ = w/2%. Then

—e 1+ (3) oo 1+ (452)
and
/°° Aw Cw
5= 5 | dw
—o [14(2)7 1+ (27)

_ / v c(wz>2]dw_0z/ B
—oo [14+(5)7 1+ (25%) oo 1+ (#5%)
2 2 o\ 2
14 (w z)
T

= A% log [1—1— (j)Q] — CTTlog

The integral is finite and equal to zero if A = M 0—227 cC=M T% for some constant M. Hence

—7mnCz.

— 00

1 2n M 1 1
fz(2) = = [UWB—Tﬂ'D— T Z} = 55
m2oT m(o+7) 14 (z/(047))
. _ T _ o _ —o7? 1
lfB_o'+T’D_?‘F)’M_

2z(o+T) 1+( 2 )2'

T




5-2

5.8 a.

Solutions Manual for Statistical Inference

2n(n1— 1) Zj; j: (X =X)°
= 2n(n1_ 3 éé(& - X+ X - X;)?
- 2n(nl_ 5 ié [(XFX)%Q(X;X)(X]—X) + (X]—X)z}
= Qn(nl_ 0 ;n(Xz - X)? - 22(& - X)jZ:;(X]_X) +n§;(xj — X)?
—
=0
- 2n(nn— 1) é(Xl - X)* 2n(nn— ) j:(Xa - X)?
- LR = 8

b. Although all of the calculations here are straightforward, there is a tedious amount of book-
keeping needed. It seems that induction is the easiest route. (Note: Without loss of generality
we can assume 6; = 0, so EX; =0.)

(i)

Prove the equation for n = 4. We have S* = ; Z?:l Z?:l(Xi — X;)?, and to calculate
Var(5?) we need to calculate E(S?)? and E(S?). The latter expectation is straightforward
and we get E(S?) = 246,. The expected value E(5?)? = E(S*) contains 256(= 4%) terms
of which 112(= 4 x 16 + 4 x 16 — 42) are zero, whenever i = j. Of the remaining terms,
e 24 are of the form E(X; — X;)* = 2(04 + 363)

e 96 are of the form E(X; — X;)*(X; — Xx)? = 04 + 363

e 24 are of the form E(X; — X;)?(X), — X,)? = 463

Thus,

1 1 1

Assume that the formula holds for n, and establish it for n+1. (Let S,, denote the variance
based on n observations.) Straightforward algebra will establish

1 n n n
2 _ 2 B 2
i=1 j=1 k=1
def'n 1
= ———[A+2B
2n(n+1) [4+25]
where
2 n—3, . . .
Var(4) = 4n(n—1)% |04 — — 192 (induction hypothesis)
Var(B) = n(n+1)8; —n(n —3)63 (X) and X1 are independent)

Cov(A,B) = 2n(n—1)[0s— 03] (some minor bookkeeping needed)
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Hence,
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Var(s2,,) = — ' [Var(A) + 4Var(B) + 4Cov(A, B)] = — [04 S 203] ,

An?(n+1) n+1
establishing the induction and verifying the result.

c. Again assume that §; = 0. Then

n n n

Cov(X,S?) = 2n2 ) ZX’“Z Z (X.—

k=1 i=1 j=1

The double sum over 7 and j has n(n — 1) nonzero terms. For each of these, the entire

expectation is nonzero for only two values of k (when &k matches either i or j). Thus

2n(n —1)

Cov(X,8%) = 520y

1
EX;(X; — X;)? = ~03,

and X and S? are uncorrelated if 63 = 0.

5.9 To establish the Lagrange Identity consider the case when n = 2,

(a1b2 — a2b1)2 = a%bz + a2b1 — 2(11()2(12()1

= alb3 4+ a3b? — 2a1bsasby + ab? + a3b3 — aib —

= (af +a3)(b] + b3) — (a1by + azbs)*.

Assume that is true for n, then

i=1

(£9) (57 (5)

i=1

)
(Za +an+1> <§n:b n+1> - (iaibi—&-anﬂbnﬂ

272
asbs

)2

( 3) by, (z b?) ) (z b> b
=1 1=1 =1

n—-1 n n

= Z Z (aibj — ajbi)z + Z(aibn_ﬂ - an+1bi)2
i=1 j=i+1 i=1
n  n+l

== Z (aibj — ajbi)g.
i=1 j=i+1

If all the points lie on a straight line then Y — p,, = ¢(X — ), for some constant ¢ # 0. Let

b; =Y — p, and a; = (X — py), then b; = ca;. Therefore >, Z;T_H( ib;
the correlation coefficient is equal to 1.

5.10 a.

0 = EX; = p

—a;jb;)? = 0. Thus
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0 = B(X;—p? = o
03 = E(X;—p)®
= E(X;—pu)*(X; —p) (Stein’s lemma: Eg(X)(X — 0) = ¢’Eg'(X))
= 20°E(X; —p) = 0
0y = BX;,—p)?t = E(Xi—u)3(Xi—u) = 30’B(X; —p)? = 30t
b. Var$? = (6, — 2=303) = L(30* — 1=354) = 207

c. Use the fact that ( 1)52/0 ~x2_; and Vary?_; =2(n — 1) to get

Var (W) =2(n—-1)

g

which implies ((";41)2 )VarS? = 2(n — 1) and hence

2(n—1) _ 204
(01t 1

Remark: Another approach to b), not using the x? distribution, is to use linear model theory.
For any matrix A Var(X’ AX) = 2,u§trA2 + 420" A, where po is 02, 0 = EX = pl. Write

VarS? =

52 =L 3" (X, —X)=-X'(I - J,)X Where
11 _1 ... _1
_ 1 _1
I—J,= n 1=
_.l 1_.l

Notice that trA? = trA =n — 1, A9 = 0. So

204

n—1

VarS? = %Var(X’AX) = ;2 (20" (n—1)+0) =
n—1) (n—1)

5.11 Let g(s) = s2. Since g(-) is a convex function, we know from Jensen’s inequality that Eg(S) >
g(ES), which implies 02 = ES? > (ES)2. Taking square roots, ¢ > ES. From the proof of
Jensen’s Inequality, it is clear that, in fact, the inequality will be strict unless there is an
interval I such that g is linear on I and P(X € I) = 1. Since s? is “linear” only on single points,
we have ET? > (ET)? for any random variable T', unless P(T = ET) = 1.

o2 S2(n—1)
2 _
o) - of; e ({0
o [~ 1 (25)~1-a/2
Vit ), Vingy e T

Since /S2(n — 1)/02 is the square root of a x? random variable. Now adjust the integrand to
be another x? pdf and get

o2 I'(n/2)2"/? /°° 1 _ 1 _
Ef(cVS2) = . (n=1)/2 _ ~,=a/24, .
(C S) Vou—1 T((n-1)/2)2@D72 |, T(n/2)2721 ¢ M

5.13

=1 since x2 pdf

gives E(cS) =o.
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X _ Z?:ll Xi _ Xn+1 + Z?:l Xi _ Xn,+1 +an
T T n+1 B n+1
) n n+1 ~ )
nSn = CE S > (Xi = Xni1)
i=1
n+1 S 2
X1 +nX,
S (Xi;; ! ) (use ()
i=1
5 (KoK
= ""n4+1 n+1
n+1 S 2
S {(Xl %) - <X"“ ~ )} (£%.)
p n+1 n+1
! 2 Xpt1—X 1 2
= X:—X,) =2 (X;— X, ntl n X,1—X
35 -2 () (R0 ) o s (5
" _ .2 _ .2 (X i1 X,)? n+1 =2
= X — X)) + (Xng1 — X)) — nt1 — Xn
n
(since Z(X’ - X, = 0)
1
= (=18 + g (X — X))’
Z?:l (Xiiii)Q ~ X3

(Xiil)/ Yis (Xiii)2/2 ~ t

. Square the random variable in part b).

Let U ~ X% and V ~ sz independent. Their joint pdf is

1 P_1 a1 7(u2+v)

T

From Definition 5.3.6, the random variable X = (U/p)/(V/q) has an F' distribution, so we
make the transformation z = (u/p)/(v/q) and y = u + v. (Of course, many choices of y will
do, but this one makes calculations easy. The choice is prompted by the exponential term
in the pdf.) Solving for u and v yields

Pry Ty
u=—"1— v= yq , and |J| = —F—.
1—|—51‘ 1—|—;)a: <1+ﬂx)

P

We then substitute into fy v (u,v) to obtain

%’—1 3—1 q
f (‘T y) q —+ ( —|—xy > ( . ) 2y ;
X, Y4, 7 2 q + 2z 71].
I (p) I‘ (,) 2([1 q)/ =T P ( + 7.];)
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Note that the pdf factors, showing that X and Y are independent, and we can read off the
pdfs of each: X has the F' distribution and Y is xf) +q- 1f we integrate out y to recover the
proper constant, we get the F' pdf

o F(erq) q p/2 pp/2—1
Ix@) = 5y (g <p) (qu)p;q.

2
b. Since F}, 4 = Xp/P let U ~ X%, Ve~ x?, and U and V are independent. Then we have

= S0
U/p u q .
EF, = E|— E(—|E(= b d d
. <V/q> <p> (V) (by independence)
p 1
£ - EU =
P <V> ( 2
Then
1y _ /1 1 a9 _ 1 -1 -2
E(V) = /0 UF(%)24/2U2 e 2dv F(g)Qq/Z/O V2 e 2dv
—92 _
_ 1 T q 2) 9(4=2)/2  _ r (qT) 20a-2)/2 _ 1
e\ NCSICSPTES:
Hence, EF}, , = %%2 = qTqQ, if ¢ > 2. To calculate the variance, first calculate
U2 g2 ¢ 1
2\ _ _ 2
E(F2,)=E (p2v2) = FEWME <V2) .
Now
E(U?) = Var(U) + (EU)? = 2p + p?
and 1 <1 1 1
El—)= Bl (a/2)=1e=v/2 3y — .
<v2> / 2TE22r’ T =29
Therefore,
2 2
q ¢  (p+2)
EF?, = Zp(2+p = — ,
ra = P G ) T p -2
and, hence
2 2 2
7*(p+2) q ( q ) <q+p—2>
Var(F, ,) = — =2 , q >4
(Fra) pla—=2)(g=4) (¢-2) q—2) \plg—4)

c. Write X = g—g then % = % ~ Fyp, since U ~ XZ, Ve~ x§ and U and V are independent.

dx

Y

_ /X _ _pX _ _qY
d. Let Y = T ip/OX = qipX’ so X = p(f_y) and

= 1(1—y)~?. Thus, Y has pdf
pT—Q
) (0’ (i) g
( (

Irty) 14+2_au )¥p(l—y)2

qp(l-y)

P g\1"t 2 4 (p Q)
24 1— ~ 23,
2,2)} y2 (1-y)2 beta (7,5
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5.18 If X ~ t,, then X = Z//V/p where Z ~n(0,1), V ~ Xf) and Z and V are independent.

a.

5.19 a.

5.20 a.

EX =EZ/\/V/p=(EZ)(E1/,/V/p) =0, since EZ = 0, as long as the other expectation is
finite. This is so if p > 1. From part b), X2 ~ F} ,. Thus VarX = EX? = p/(p—2),if p > 2
(from Exercise 5.17b).

. X2=22/(V/p). Z? ~ X3, so the ratio is distributed F} ,.
. The pdf of X is

1

Ix(z) = 1+ 22 /p)etD/2"

I'(p/2)\/pT

Denote the quantity in square brackets by C),. From an extension of Stirling’s formula
(Exercise 1.28) we have

[ r(et)

p—1 1
1\ 5 t+35 _p=1
. . V27w (Lzl 2o %e 2 1
lim €, = lim ——
p—00 p—0o0 \/%(122 Sot3 6771’;2 pmT
p—1 1
_ —1\ =z T3 _
o172 (B1) = *z o—1/2 p1/2

= lim = —_—,
VI pmee ey g VT V2

2

by an application of Lemma 2.3.14. Applying the lemma again shows that for each x

lim (1+x2/p)(:0+1)/2 _ 6I2/2
p—00

)

establishing the result.

. As the random variable F1 , is the square of a t,, we conjecture that it would converge to

the square of a n(0,1) random variable, a 3.

. The random variable ¢F} , can be thought of as the sum of ¢ random variables, each a t,

squared. Thus, by all of the above, we expect it to converge to a x§ random variable as
p — 0.

xf, ~ xﬁ + X<2i where xﬁ and X?t are independent x? random variables with ¢ and d = p — ¢
degrees of freedom. Since x? is a positive random variable, for any a > 0,

P(xp >a)= P(Xg +x3>a) > P(Xg > a).

. For ky > kg, k1Fy, , ~ (U+V)/(W/v), where U, V and W are independent and U ~ x7_,

Vo~ Xil—kz and W ~ x2. For any a > 0, because V/(W/v) is a positive random variable,
we have

P(kyFy, . > a) = P(U +V)/(W/v) > a) > P(U/(W/v) > a) = P(ksFr,, > a).

.a=P(Fy, > Foky)=PkFy, > kFyky) So, kF, 1, is the a cutoff point for the random

variable kF}, .. Because kF}, , is stochastically larger that (k—1)Fj_1 ., the o cutoff for kFy, ,,
is larger than the a cutoff for (k — 1)Fy_1,,, that is kFy 5, > (k — 1)Fy 1,0

The given integral is

—_

> ~%0/2,, / 1 (v2) /D -1=ve/2g
e U/ vxr e X
/0 V2 T(v/2)2"?
1 v/? /°° 2
- -z -t z/2 ((v+1)/2)-1 fl/:v/2d
= e X e X
V21 D(v/2)2""% Jo
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_ 1 /2 /oo /21— (42 g integrand is kernel of
V2r 1"(1//2)2”/2 0 gamma((v+1)/2,2/(v+t%)
1 VV/Q 92 (v+1)/2
= ——— = ((v+1)/2) | —=
Era 02 (7)
1 T((v+1)/2) 1

Vim T(v/2) (1442 )t/

the pdf of a t, distribution.
b. Differentiate both sides with respect to t to obtain

vfp(vt) = /O b () £ () dy,

where fr is the F' pdf. Now write out the two chi-squared pdfs and collect terms to get

1 L =1)/2— ()2
vir(vt) = /y”_ e IHDv/2qy
) I'(1/2)T(v/2)2 D72 Jo
t—1/2 I‘(”T‘H)Q(V‘H)/Q

I'(1/2)0(v/2)2" /2 (1 41t/
Now define y = vt to get

R (y/v) '
IeW) = R aDNwD (15 )7

the pdf of an Fi .

c. Again differentiate both sides with respect to ¢, write out the chi-squared pdfs, and collect
terms to obtain

t—m/?
(m/2)T(v/2)2 )2

(vfm) f (v m)t) = — / T ym=2)/2g=(+0w/2g,,

Now, as before, integrate the gamma kernel, collect terms, and define y = (v/m)t to get

r(ﬂ) my m/2 ym/2—1
Trly) = r(m/g)zr(y/g) ( ) (11 (m)o)y) 7

v
the pdf of an F,,, ..

5.21 Let m denote the median. Then, for general n we have

P (max(X,,...,X,)>m) = 1-P(X;<mfori=1,2,...,n)
1 n
= 1-[P(X;<m)]" = 1—(2) .

5.22 Calculating the cdf of Z2, we obtain

Fy2(2) = P((min(X,Y))? <2) = P(—z <min(X,Y) < /2)
Pmin(X,Y) < v/z) — P(min(X,Y) < —/2)

= [1-Pmin(X,Y) > v2)] —[1 - Pmin(X,Y) > —/2)]
P(min(X,Y) > —v/2) — P(min(X,Y) > /z)

= P(X>-V2)P(Y > —V2) = P(X > V2)P(Y > V2),
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where we use the independence of X and Y. Since X and Y are identically distributed, P(X >
a)=P(Y >a)=1- Fx(a), so

Fp2(2) = (1= Fx(—v2))* = (1 - Fx(V2))* = 1 = 2Fx (=V/>),
since 1 — Fx(v/z) = Fx(—+/z). Differentiating and substituting gives

F2(2) = - Fpa(z) = fx(—ﬁ)% = J%Tefwfl/z,

the pdf of a x? random variable. Alternatively,
P(Z<z) = P ([min(x, V)2 < z)

= P(—Vz<min(X,Y) < Vz)
= P(-Vz<X<Vz,X<Y)+P(—/z2<Y <2 Y <X)
P(—Vz2< X < VX SY)P(X <Y)
+P(—Vz <Y < V2|V < X)P(Y < X)
Y

— IP(VE<X<Vh+LP(-E<

using the facts that X and Y are independent, and P(Y < X) = P(X <Y) = 1 . Moreover,
since X and Y are identically distributed

P(Z% < 2) = P(—VZ < X < V3)

and
fz2(z) = iP(—\&< X <Vz) = L (6_2/212_1/2 —&—e_z/zlz_lm)
z dz -0 = V2r 2 2
Lo iyp 22
= 27 %eTRE
V2w
the pdf of a x3.
5.23
P(Z>z) = Y P(Z>z)P(X=x) = Y PU1>z...,Us>z2a)P(X =)
x=1 =1
= Z H PU; > 2)P(X =x) (by independence of the U;’s)
rx=14i=1
- T - x 1
= ;P(Ui >2)"P(X =1x) = ;(1*2) el
I (-2 elr 1
= == — ]..
(e—l);::1 x! e—1 0<z<
5.24 Use fx(z) = 1/0, Fx(x) = 2/0,0 <2z < 0. Let Y = X(,,), Z = X(1). Then, from Theorem
5.4.6,
B n! 11 /2\0 (y—2\""" y\°  n(n—1) ne2
T2y (29 = G —50ia0 (5) < 0 > (1-5) == w-ar* 0<z<y<e
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Nowlet W=2/Y, Q=Y. ThenY =Q, Z =WQ, and |J| = ¢q. Therefore

%(q —wq)" g = %

The joint pdf factors into functions of w and ¢, and, hence, W and @ are independent.
5.25 The joint pdf of X(yy,..., X(y) is

fwq(w,q) = (1—w)" 2", 0<w<1,0<q<0.

nla” a—1 a—1
f(ul,...,un)zeanul eunT, 0<ug <<y < 6.

n

Make the one-to-one transformation to Y1 = X(1)/X(2),...,Yn-1 = X(ne1)/X(n), Yo = Xn).
The Jacobian is J = g3 - - - y2 L. So the joint pdf of Y7,...,Y,, is

nla™ _ _ _ _
f(yl""vyn) = gan (yl"'yn)a 1(y2"'yn)a 1"'(yn)a 1(y2y?2,"'y2 1)
nla™ )
= e Vi Tt O<yi<li=1.n—1, 0<y, <0

We see that f(y1,...,yn) factors so Y7,...,Y, are mutually independent. To get the pdf of
Y7, integrate out the other variables and obtain that fy, (y1) = 199", 0 < y; < 1, for some
constant c¢;. To have this pdf integrate to 1, it must be that ¢; = a. Thus fy, (y1) = ayi™ ",
0 < y; < 1. Similarly, for i = 2,...,n — 1, we obtain fy,(y;) = iay!**,0 < y; < 1. From
Theorem 5.4.4, the pdf of Yy, is fy, (yn) = 7&yn®~ ", 0 < y,, < 0. It can be checked that the
product of these marginal pdfs is the joint pdf given above.
5.27 a. fX(,->\X<,->(U|U) = fX(i))X(j)(u, v)/fx;,(v). Consider two cases, depending on which of i or
j is greater. Using the formulas from Theorems 5.4.4 and 5.4.6, and after cancellation, we
obtain the following.

(i) If i < 4,

Pt (o) = (i—1()!.(j—i_i)!fX(u)F)i(_l(u)[FX(U)FX(U)]jilF)l(j(v)

- e (o] (RN

Note this interpretation. This is the pdf of the ith order statistic from a sample of size j—1,
from a population with pdf given by the truncated distribution, f(u) = fx(u)/Fx (v),
u <.

(ii) If j <4 and u > v,

Ixo1x, (ulv)

= f;}‘(i_j)l! —5ifx (@ I=Fx ()" [Fx(u) = P ()] 7 1=Fx ()"
_ (=) Ix(w {Fm) - Fx<v>]”'1 [1Fx<u> —Fy(0)]"
(i—j—Dn—i)!1-Fx(v) 1-Fx(v) 1-Fx(v) ’

This is the pdf of the (i —j)th order statistic from a sample of size n— j, from a population
with pdf given by the truncated distribution, f(u) = fx(u)/(1 — Fx(v)), u > v.

b. From Example 5.4.7,

~ n(n— Dr" % /a” 1 . b g
fvir(vlr) = YTy /2<v< /2.
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Let X; = weight of ith booklet in package. The X;s are iid with EX; = 1 and VarX; = .052.
We want to approximate P (321 X; > 100.4) = P (3212 Xi/100 > 1.004) = P(X > 1.004).
By the CLT, P(X > 1.004) ~ P(Z > (1.004 — 1)/(.05/10)) = P(Z > .8) = .2119.
From the CLT we have, approximately, X1 ~ n(u,02/n), X ~ n(p,0?/n). Since X; and X,
are independent, X; — X5 ~ 1n(0,202/n). Thus, we want

99 = P(’X17X2| <O'/5)
—o/5 X1—X, - o/5

= P
<o/m<a/m wm)

1 /n 1 /n
Pl cz<2 /0
( 5 \/; <4<3 \/;) ’
where Z ~ 1(0,1). Thus we need P(Z > v/n/5(v/2)) ~ .005. From Table 1, /n/5v/2 = 2.576,

which implies n = 50(2.576)2 ~ 332.
We know that 0%—( = 9/100. Use Chebyshev’s Inequality to get

Q

P (=3k/10 < X—p < 3k/10) > 1 — 1/k>.
We need 1 — 1//{2 > .9 which implies k > V10 = 3.16 and 3k/10 = .9487. Thus
P(—.9487 < X — ;1 < .9487) > .9
by Chebychev’s Inequality. Using the CLT, X is approximately n(u, O’?—() with o = .09 =.3
and (X — p)/.3 ~n(0,1). Thus
X—u ]
9=P|[-1645 < —3 < 1.645 ) = P(—.4935 < X — p < .4935).

Thus, we again see the conservativeness of Chebychev’s Inequality, yielding bounds on X — p
that are almost twice as big as the normal approximation. Moreover, with a sample of size 100,
X is probably very close to normally distributed, even if the underlying X distribution is not
close to normal.

a. For any € > 0,

P (il

P (e |V il > |V v

P<|Xn—a|>6 m+ﬁ’)
P (|X, —a| > ey/a) — 0,

IN

as n — oo, since X,, — a in probability. Thus v/X,, — \/a in probability.
b. For any € > 0,

P i,I <e = P LSXngi
X 1+€ 1—e¢
ae ae
= P - — <X, < —
<a 14+€ — Sa+ 1—6)
> P a——eanga—i-£ At <at S
1+e€ 1+€ 1+e€ 1—e

- P<|Xn—a|<‘“> 1,
1+4€

as n — oo, since X,, — a in probability. Thus a/X,, — 1 in probability.
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c. S2 — o2 in probability. By a), S, = \/S2 — Vo2 = ¢ in probability. By b), ¢/S,, — 1 in
probability.
5.33 For all € > 0 there exist N such that if n > N, then P(X,, +Y, > ¢) > 1 — €. Choose N; such
that P(X,, > —m) > 1 —€/2 and N; such that P(Y,, > ¢+ m) > 1 —€/2. Then

P(X,+Y,>¢c)>P(X,>-m,+Y,>c+m)>P(X,>-m)+PY,>c+m)—1=1—c¢.

5.34 Using EX,, = p and VarX,, = 02/n, we obtain

EM _ v©
o o o
Vi(Xn—p)

g

Var = 2 Var(X, —p) = = VarX = =2 = 1.
g (o2 n

5.35 a. X; ~ exponential(1). ux = 1, VarX = 1. From the CLT, X,, is approximately n(1,1/n). So

Xn—l Xn_l
NG — Z ~n(0,1) and P(l/\/ﬁ §x> — P(Z < x).
b.
%P@ <7)= %Fz(x) = fz(x) = \/12?6_9”2/2.

" (17 =)

= % <iXi g;c\/ﬁ+n> <W: iXiNgamma(n,1)>

i=1
1

= LRVt = fwlevi+n) Vi = Ty @V + )TV .

Therefore, (1/T'(n))(zy/n +n)*te~@Vrtn) /n ~ \/#276_'”2/2 as n — oo. Substituting z = 0

yields n! ~ n"t1/2e="\/27.

5.37 a. For the exact calculations, use the fact that V;, is itself distributed negative binomial(10r, p).
The results are summarized in the following table. Note that the recursion relation of problem
3.48 can be used to simplify calculations.

PV, =v)
(a) (b) (c)
v Exact Normal App. Normal w/cont.
0 .0008 .0071 .0056
1 .0048 .0083 .0113
2 .0151 .0147 .0201
3 .0332 .0258 .0263
4 .0572 .0392 .0549
5 .0824 .0588 .0664
6 .1030 .0788 .0882
7 .1148 .0937 .1007
8 1162 .1100 1137
9 .1085 1114 1144
10 .0944 1113 .1024
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5.41 a.
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Using the normal approximation, we have p, = r(1 — p)/p = 20(.3)/.7 = 8.57 and

oy = \/r(1 —p)/p> = 1/(20)(.3)/.49 = 3.5.

V,—8.57 S 1-8.57
35 7 35

P(Vn=0)=1—P(Vn21):1—P< ):1—P(Z2—2.16):.0154.

Another way to approximate this probability is

V —8.57 < 0-8.57
35 7 35

PV,=0=P(V,<0)=P < ) = P(Z < —2.45) = .0071.
Continuing in this way we have P(V =1) = P(V <1)—P(V <0) = .0154 — .0071 = .0083,
etc.

With the continuity correction, compute P(V = k) by P (W?iggm <Z< W?%fﬂ)’ SO
P(V =0) = P(-9.07/35< Z < —8.07/3.5) = .0104 — .0048 = .0056, etc. Notice that the
continuity correction gives some improvement over the uncorrected normal approximation.
If h is continuous given € > 0 there exits ¢ such that |h(z,)—h(z)| < € for |z, —z| < J. Since
X1,..., X, converges in probability to the random variable X, then lim, ., P(|X, — X| <
0) = 1. Thus lim,, o, P(|JA(X,) — h(X)| <€) = 1.

Define the subsequence X;(s) = s + I[, () such that in Ij, 3], a is always 0, i.e, the subse-
quence X1, X9, X4, X7,.... For this subsequence

s ifs>0
XJ(S)_’{5+1 ifs=0.

Let € = |z — pl.
(i) Forz —pu >0

P(Xp —pl>e¢) = P(Xp—pl>z—p)
= PXp—p<—(z—p)+PXn—p>z—p)
> PXn—p>z—p)
= P(X,>z) = 1-P(X,<uz).

Therefore, 0 = lim,,—, o0 P(| X —pt| > €) > lim,, oo 1 — P(X,, < ). Thus lim,,_,», P(X,, <
x) > 1.
(ii) For z — p < 0

P(I Xy —pl >€¢) = P(Xn—pl>—(z—p))
= PXp—p<z—p)+PXn—p>—(x—p)
> P(Xp—p<z—p)
= P(X, <uz).

Therefore, 0 = lim,, oo P(| X, — p| > €) > lim,, oo P(X,, < ).
By (i) and (ii) the results follows.
For every € > 0,
P( X, —pul>€¢) < PX,—p<—€)+P(X,—p>c¢
= PX,<p—€6)+1-PX,<pu+e) — 0 asn— 0.
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5.43 a. P(|Y, — 0| <e) (‘\/n ‘< ﬂn)e) Therefore,
11mP(|Y—0|<e*hmP(’\/n ’ \/n) P(|Z] < x0) =1,

where Z ~ 1n(0,0?). Thus Y,, — 6 in probability.
b. By Slutsky’s Theorem (a), ¢'(8)v/n(Y, —0) — ¢ ()X where X ~ n(0,02). Therefore
Valg(Ya) = g(0)] = ¢'(0)v/n(Ys — 0) — n(0,0°[g'(0)]%).

5.45 We do part (a), the other parts are similar. Using Mathematica, the exact calculation is

In[120]:=
f1[x_]=PDF[GammaDistribution[4,25],x]
pl=Integrate[f1[x],{x,100,\[Infinity]}]1//N
1-CDF [BinomialDistribution[300,p1],149]

Out [120]=
e~ (-x/25) x~3/2343750

Out[121]=
0.43347

Out[122]=
0.0119389.

The answer can also be simulated in Mathematica or in R. Here is the R code for simulating
the same probability

pl<-mean(rgamma(10000,4,scale=25)>100)
mean (rbinom (10000, 300, pl)>149)

In each case 10,000 random variables were simulated. We obtained pl = 0.438 and a binomial
probability of 0.0108.

5.47 a. —2log(U;) ~ exponential(2) ~ x3. Thus Y is the sum of v independent x3 random variables.
By Lemma 5.3.2(b), Y ~ x3,.
b. Blog(U;) ~ exponential(2) ~ gamma(l, ). Thus Y is the sum of independent gamma
random variables. By Example 4.6.8, Y ~ gamma(a, )

c. Let V = Za log(Uj) ~ gamma(a,1). Similarly W = 22:1 log(U;) ~ gamma(b,1). By

Exercise 4.24, m ~ beta(a, b).
5.49 a. See Example 2.1.4.
b. X =g(U) = —log :5Z. Then ¢! (2) = 7= Thus
e Y e Y
fx(@)=1x 15 ev)e = EYEE — 00 <y < 00,

which is the density of a logistic(0, 1) random variable.

c. Let Y ~ logistic(u, 8) then fy(y) = ﬂf ( ) where fz is the density of a logistic(0,1).
Then Y = 8Z + p. To generate a loglstlc(u 6) random variable generate (i) generate U ~
uniform(0, 1), (ii) Set Y = log 1% + p.

5.51 a. For U; ~ uniform(0, 1), EU; = 1/2, VarU; = 1/12. Then

X:ZUi—6=12U—6:x/ﬁ<[1]/_\/1§>
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is in the form /n ((U—EU) /o) with n = 12, so X is approximately n(0,1) by the Central
Limit Theorem.

b. The approximation does not have the same range as Z ~ n(0,1) where —0co < Z < 400,
since —6 < X < 6.

12 12 12 1
EXzE(ZUZ-—6> = EU;—6= <ZQ>—6:6—6:0.
i=1

i=1 i=1

12 12
VarX = Var (Z Ui6> = Varz U; = 12Varl; = 1

i=1 i=1

EX3 = 0 since X is symmetric about 0. (In fact, all odd moments of X are 0.) Thus, the first
three moments of X all agree with the first three moments of a n(0,1). The fourth moment
is not easy to get, one way to do it is to get the mgf of X. Since Ee!V = (ef — 1) /t,

12 _ 12
p[(Z210m0)] 2 oo (£2) 7 (L2
t t

Computing the fourth derivative and evaluating it at ¢t = 0 gives us EX*. This is a lengthy
calculation. The answer is EX* = 29/10, slightly smaller than EZ* = 3, where Z ~ n(0, 1).

5.53 The R code is the following:

a. obs <- rbinom(1000,8,2/3)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs
[1] 5.231

> variance
[1] 1.707346

b. obs<- rhyper(1000,8,2,4)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs

[1] 3.169

> variance
[1] 0.4488879

c. obs <- rnbinom(1000,5,1/3)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs
[1] 10.308

> variance
[1] 29.51665
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5.55 Let X denote the number of comparisons. Then

EX = Y P(X>k) = 1+» P(U> Fy(ye-1))
k=0 k=1
oo [ee]
= 1+ (1-F(p-1) = 14> (1-Fy(y)) = 1+EY
k=1 k=0

5.57 a. Cov(Y1,Ys) = Cov(X; + X3, X2 + X3) = Cov(X3,X3) = A3 since X1, X5 and X3 are

independent.

b.

Z:{l ifX; =X3=0
! 0 otherwise

pi = P(Zi =0) = P(Y; =0) = P(X; = 0,X3 = 0) = e +2) Therefore Z; are

Bernoulli(p;) with E[Z;] = p;, Var(Z;) = p;(1 — p;) and

E[Z1Z,) = P(Z1=1,Z3=1) = P(Y1=0,Y,=0)

= PX1+X3=0,X0+X5=0) = P(X;=0)PXy;=0P(X3=
e Me T A2eT A3,

Therefore,
COV(Zl, Z2) = E[Z1Z2} - E[ZﬂE[ZQ]
— e Mg s e*(AnL)\s)e*()\er)\s) — e*(>\1‘+>\3)e*(>\2+>\3)(e>\3 _ 1)
= pipa(e™ —1).
Th 7y, Zy) = 22D
us Corr(Zy, Zs) o=/ (1=p2)
c. E[Z17Z5] < p;, therefore
Cov(Z1,7y) = E[Z1Z5] —E[Z1]E[Z2] <p1 —pip2 = pi(l —p2), and
Cov(Z1,Z2) < p2(l—p1).
Therefore,
1-— 1-—
Corr(Zl,Zg) p1( pz) _ pl( p2)
Vil —p1)yv/p2(L—p2)  /p2(1—p1)
and

p2(1 —p1) /P2l —p1)

COI‘I‘(Z]_,ZQ) =
VoL =p1)y/p2(T—p2)  /pi(1—p2)

which implies the result.

5.59
) L PV <yU<ify(v)
PY<y) = PV <ylU<_f(V) = p<U<1fy<v>>
v ely @) ga L vy
_ Sk T udv o ; / frlv

T(atb) , a— 1(17y)b—1

TSty Y

5.61 a. M = sup, i
(DEICIRN -
Y reprqn vy

< 00, since a — [a] > 0 and b— [b] > 0 and y € (0,1).
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T(a+b) 1 b—1
T () Y y* (1-y)

b. M = sup, +qajriy
F(laDT () ¥

< 00, since a — [a] > 0 and y € (0,1).

ylal=1(1—y)b=1

T(a+b) ,a—1 b—1
1-y)
M — wroy Y’ -y
C. sup F([aiLlJrﬁ) _ =
Y T([al+1)T (b)) ”[Q]H HA—y)* !

when b’ = [b] and will be equal to zero when b = b, thus it does not affect the result.
d. Let f(y) = y*(1 — y)®. Then

< oo, since a —[a] —1 < 0and y € (0,1). b—b >0

df (y - a 1 a- -
d(y) 1=y =y B -y’ =y 1 - )"l —y) + By
which is maximize at y = . Therefore for, « =a —a’ and =0 — b
I'(a+b a—a’ —_p
M- ré)m?) ( a—d ) ( b—v )b '
T D(a'+V) o B ! _ :
oty \* +b-10 a—a +b-b

a—a b—b
T s P . a—a’ b—b’
We need to minimize M in o’ and b'. First consider (m) <m> . Let
. [ cC—x . . . . .
¢ = «a + 3, then this term becomes (%) (Cpa) . This term is maximize at % = %, this
T'(a+b)

is at & = Je. Then M = (§)(@=a'+0=¥) IO Note that the minimum that M could be
T(aHT ()

is one, which it is attain when a = o’ and b = b’. Otherwise the minimum will occur when

a—a and b — b are minimum but greater or equal than zero, this is when o’ = [a] and

b =[b] or a’ =a and b’ = [b] or o’ = [a] and ¥/ = b.

2

5.63 M = sup, ﬁ Let f(y) = _é’z + % Then f(y) is maximize at y = % when y > 0 and at
sxe A
2
y= 7T1 when y < 0. Therefore in both cases M = = . To minimize M let M’ = \e=.
7“2
Then dlodg)\M = % )\3, therefore M is minimize at A = 1 or A = —1. Thus the value of \ that
will optimize the algorithm is A = 1.
5.65
m m lzm f(Y)I(Y< )
* _ * Ny - R m i=1 g(Y3) -
P(X*<z) = ZP(X < zlgi)g = ZI(K,SI)% = Ty IO
i=1 i=1 i=1 g(Y;)
(Y) r fly ©
. EBogmy IV <) [T m g(y)dy p
m—00 B 1Y) = s f(y) d = f(y)dy
99(Y) J2o a9 9(y)dy —o0

5.67 An R code to generate the sample of size 100 from the specified distribution is shown for part
c¢). The Metropolis Algorithm is used to generate 2000 variables. Among other options one can
choose the 100 variables in positions 1001 to 1100 or the ones in positions 1010, 1020, ..., 2000.

a. We want to generate X = oZ + u where Z ~ Student’s ¢t with v degrees of freedom.
Therefore we first can generate a sample of size 100 from a Student’s ¢ distribution with

v degrees of freedom and then make the transformation to obtain the X’s. Thus fz(z) =
L) 1 1
T ()

w7z Let V ~n(0, %) since given v we can set

v
v—2"

Now, follow the algorithm on page 254 and generate the sample Z1, Z5 ..., Z190 and then
calculate X; =oZ; + p.

EV=EZ=0, and Var(V)=Var(Z)=
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1 g~ (ogz—w)?/202
b. fx(z)= Taea - . Let V' ~ gamma(a, 3) where
pt(0?/2))2 2(pto?) _ p2p+to’
o= (e ) and (= € °

e2(ut+o?) _ e2uto?’ et+(0?/2) '
since given p and o2 we can set

EV = aff = ¢#*+(0"/2) — EX

and , ,
Var(v) — Olﬁ2 — 62(M+0' ) _ eQM"rO’ — Var(X)
Now, follow the algorithm on page 254.

™

c. fx(z)= %e 52271 Let V ~ exponential(3). Now, follow the algorithm on page 254 where

) Viafl VAV =2 1 +2Z7
pi = min T e B ;1

i—1

An R code to generate a sample size of 100 from a Weibull(3,2) is:

#initialize a and b

b <-2

a<-3

Z <- rexp(1,1/b)

ranvars <- matrix(c(Z),byrow=T,ncol=1)

for( i in seq(2000))

{

U <- runif(1,min=0,max=1)

V <- rexp(1,1/b)

p <- pmin((V/Z) "~ (a-1)*exp((-V"-a+V-Z+Z~a)/b),1)

if (U <= p)
Z <=V
ranvars <- cbind(ranvars,Z)
}
#0ne option: choose elements in position 1001,1002,...,1100

to be the sample

vector.1l <- ranvars[1001:1100]
mean(vector.1)

var(vector.1)

#Another option: choose elements in position 1010,1020,...,2000
to be the sample

vector.2 <- ranvars[seq(1010,2000,10)]
mean (vector.2)

var (vector.2)

Output:

[1] 1.048035

[1] 0.1758335

[1] 1.130649

[1] 0.1778724

5.69 Let w(v, z) = %, and then p(v, z) = min{w(v, z), 1}. We will show that

Zi~ fy = P(Ziy1 <a) = P(Y < a).



Second Edition
Write
P(Zit1 <a) = P(Vig1 < aand Uiy < pig1) + P(Z; < a and Uiy > pig1).
Since Z; ~ fy, suppressing the unnecessary subscripts we can write
P(Ziy1<a)=PV <aand U < p(V,Y))+ P(Y <aand U > p(V,Y)).
Add and subtract P(Y < a and U < p(V,Y)) to get

P(Zipn<a) = PY <a)+P(V<aand U <p(V,Y))
~P(Y <aand U < p(V,Y)).

Thus we need to show that
PV<aandU<p(V,Y)) =P <aand U < p(V,Y)).
Write out the probability as
PV <aand U < p(V,Y))

- / / (v,9) fy (y) fv (v)dydv
[ 1w <y (W) e (0) o (0)dyd

+/a /Oo I(w(v,y) 2 1) fy () fv(v)dydv

/ / w(v,y) < 1 fy () fv(y)dydv

/ / (v,9) = D) fy (y) fv (v)dydo.

Now, notice that w(v,y) = 1/w(y,v), and thus first term above can be written

/ / (v,9) < 1) fy (v) fv (y)dydv

/ / ) > 1) fy (v) fv (y)dydv
= P(Y <a,p(V,Y)=1U<p(V,Y)).

The second term is

[ / " Hw(o,y) > 1) fy ) (0)dydo

= [ [ rtw <0 ($AR) v
— /:1 /jo I(w(y,v) <1) <;:EZ;;¥EZ;> fv () fy (v)dydv
- /_a _00 I(w(y,v) < Dw(y,v) fv ) fy (v)dydv

= P(Y <a,U<p(V,Y),p(V,Y)<1)
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Putting it all together we have

PV <aand U < p(V,Y))

P(Y <a,p(VY)=1,U < p(V}Y))
+P(Y <a,U<p(V,Y),p(V.Y) <1)
= P <aand U < p(V,Y)),
and hence
P(Zi+1 < a) = P(Y < CL),

so fy is the stationary density.



