
Chapter 6

Principles of Data Reduction

6.1 By the Factorization Theorem, |X| is sufficient because the pdf of X is

f(x|σ2) =
1√
2πσ

e−x2/2σ2
=

1√
2πσ

e−|x|
2/2σ2

= g( |x||σ2) · 1︸︷︷︸
h(x)

.

6.2 By the Factorization Theorem, T (X) = mini(Xi/i) is sufficient because the joint pdf is

f(x1, . . . , xn|θ) =
n∏

i=1

eiθ−xiI(iθ,+∞)(xi) = einθI(θ,+∞)(T (x))︸ ︷︷ ︸
g(T (x)|θ)

· e−Σixi︸ ︷︷ ︸
h(x)

.

Notice, we use the fact that i > 0, and the fact that all xis > iθ if and only if mini(xi/i) > θ.

6.3 Let x(1) = mini xi. Then the joint pdf is

f(x1, . . . , xn|µ, σ) =
n∏

i=1

1
σ

e−(xi−µ)/σI(µ,∞)(xi) =
(

eµ/σ

σ

)n

e−Σixi/σI(µ,∞)(x(1))︸ ︷︷ ︸
g(x(1),Σixi|µ,σ)

· 1︸︷︷︸
h(x)

.

Thus, by the Factorization Theorem,
(
X(1),

∑
i Xi

)
is a sufficient statistic for (µ, σ).

6.4 The joint pdf is

n∏
j=1

{
h(xj)c(θ) exp

(
k∑

i=1

wi(θ)ti(xj)

)}
= c(θ)n exp

 k∑
i=1

wi(θ)
n∑

j=1

ti(xj)


︸ ︷︷ ︸

g(T (x)|θ)

·
n∏

j=1

h(xj)︸ ︷︷ ︸
h(x)

.

By the Factorization Theorem,
(∑n

j=1 t1(Xj), . . . ,
∑n

j=1 tk(Xj)
)

is a sufficient statistic for θ.

6.5 The sample density is given by

n∏
i=1

f(xi|θ) =
n∏

i=1

1
2iθ

I (−i(θ − 1) ≤ xi ≤ i(θ + 1))

=
(

1
2θ

)n
(

n∏
i=1

1
i

)
I
(
min

xi

i
≥ −(θ − 1)

)
I
(
max

xi

i
≤ θ + 1

)
.

Thus (minXi/i,max Xi/i) is sufficient for θ.
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6.6 The joint pdf is given by

f(x1, . . . , xn|α, β) =
n∏

i=1

1
Γ(α)βα

xi
α−1e−xi/β =

(
1

Γ(α)βα

)n
(

n∏
i=1

xi

)α−1

e−Σixi/β .

By the Factorization Theorem, (
∏n

i=1 Xi,
∑n

i=1 Xi) is sufficient for (α, β).

6.7 Let x(1) = mini{x1, . . . , xn}, x(n) = maxi{x1, . . . , xn}, y(1) = mini{y1, . . . , yn} and y(n) =
maxi{y1, . . . , yn}. Then the joint pdf is

f(x,y|θ)

=
n∏

i=1

1
(θ3 − θ1)(θ4 − θ2)

I(θ1,θ3)(xi)I(θ2,θ4)(yi)

=
(

1
(θ3 − θ1)(θ4 − θ2)

)n

I(θ1,∞)(x(1))I(−∞,θ3)(x(n))I(θ2,∞)(y(1))I(−∞,θ4)(y(n))︸ ︷︷ ︸
g(T (x)|θ)

· 1︸︷︷︸
h(x)

.

By the Factorization Theorem,
(
X(1), X(n), Y(1), Y(n)

)
is sufficient for (θ1, θ2, θ3, θ4).

6.9 Use Theorem 6.2.13.
a.

f(x|θ)
f(y|θ)

=
(2π)−n/2

e−Σi(xi−θ)2/2

(2π)−n/2
e−Σi(yi−θ)2/2

= exp

{
−1

2

[(
n∑

i=1

x2
i−

n∑
i=1

y2
i

)
+2θn(ȳ−x̄)

]}
.

This is constant as a function of θ if and only if ȳ = x̄ ; therefore X̄ is a minimal sufficient
statistic for θ.

b. Note, for X ∼ location exponential(θ), the range depends on the parameter. Now

f(x|θ)
f(y|θ)

=
∏n

i=1

(
e−(xi−θ)I(θ,∞)(xi)

)∏n
i=1

(
e−(yi−θ)I(θ,∞)(yi)

)
=

enθe−Σixi
∏n

i=1 I(θ,∞)(xi)
enθe−Σiyi

∏n
i=1 I(θ,∞)(yi)

=
e−ΣixiI(θ,∞)(minxi)
e−ΣiyiI(θ,∞)(min yi)

.

To make the ratio independent of θ we need the ratio of indicator functions independent
of θ. This will be the case if and only if min{x1, . . . , xn} = min{y1, . . . , yn}. So T (X) =
min{X1, . . . , Xn} is a minimal sufficient statistic.

c.

f(x|θ)
f(y|θ)

=
e−Σi(xi−θ)∏n

i=1

(
1 + e−(xi−θ)

)2 ∏n
i=1

(
1 + e−(yi−θ)

)2
e−Σi(yi−θ)

= e−Σi(yi−xi)

(∏n
i=1

(
1 + e−(yi−θ)

)∏n
i=1

(
1 + e−(xi−θ)

))2

.

This is constant as a function of θ if and only if x and y have the same order statistics.
Therefore, the order statistics are minimal sufficient for θ.

d. This is a difficult problem. The order statistics are a minimal sufficient statistic.



Second Edition 6-3

e. Fix sample points x and y. Define A(θ) = {i : xi ≤ θ}, B(θ) = {i : yi ≤ θ}, a(θ) = the
number of elements in A(θ) and b(θ) = the number of elements in B(θ). Then the function
f(x|θ)/f(y|θ) depends on θ only through the function

n∑
i=1

| xi−θ | −
n∑

i=1

| yi−θ |

=
∑

i∈A(θ)

(θ − xi) +
∑

i∈A(θ)c

(xi − θ)−
∑

i∈B(θ)

(θ − yi)−
∑

i∈B(θ)c

(yi − θ)

= (a(θ)− [n− a(θ)]− b(θ) + [n− b(θ)])θ

+

− ∑
i∈A(θ)

xi +
∑

i∈A(θ)c

xi +
∑

i∈B(θ)

yi −
∑

i∈B(θ)c

yi


= 2(a(θ)− b(θ))θ +

− ∑
i∈A(θ)

xi +
∑

i∈A(θ)c

xi +
∑

i∈B(θ)

yi −
∑

i∈B(θ)c

yi

 .

Consider an interval of θs that does not contain any xis or yis. The second term is constant
on such an interval. The first term will be constant, on the interval if and only if a(θ) = b(θ).
This will be true for all such intervals if and only if the order statistics for x are the same
as the order statistics for y. Therefore, the order statistics are a minimal sufficient statistic.

6.10 To prove T (X) = (X(1), X(n)) is not complete, we want to find g[T (X)] such that E g[T (X)] = 0
for all θ, but g[T (X)] 6≡ 0 . A natural candidate is R = X(n)−X(1), the range of X, because by
Example 6.2.17 its distribution does not depend on θ. From Example 6.2.17, R ∼ beta(n−1, 2).
Thus ER = (n − 1)/(n + 1) does not depend on θ, and E(R − ER) = 0 for all θ. Thus
g[X(n), X(1)] = X(n)−X(1)− (n− 1)/(n + 1) = R−ER is a nonzero function whose expected
value is always 0. So, (X(1), X(n)) is not complete. This problem can be generalized to show
that if a function of a sufficient statistic is ancillary, then the sufficient statistic is not complete,
because the expectation of that function does not depend on θ. That provides the opportunity
to construct an unbiased, nonzero estimator of zero.

6.11 a. These are all location families. Let Z(1), . . . , Z(n) be the order statistics from a random
sample of size n from the standard pdf f(z|0). Then (Z(1) + θ, . . . , Z(n) + θ) has the same
joint distribution as (X(1), . . . , X(n)), and (Y(1), . . . , Y(n−1)) has the same joint distribution
as (Z(n) + θ − (Z(1) + θ), . . . , Z(n) + θ − (Z(n−1) + θ)) = (Z(n) − Z(1), . . . , Z(n) − Z(n−1)).
The last vector depends only on (Z1, . . . , Zn) whose distribution does not depend on θ. So,
(Y(1), . . . , Y(n−1)) is ancillary.

b. For a), Basu’s lemma shows that (Y1, . . . ,Yn−1) is independent of the complete sufficient
statistic. For c), d), and e) the order statistics are sufficient, so (Y1, . . . ,Yn−1) is not inde-
pendent of the sufficient statistic. For b), X(1) is sufficient. Define Yn = X(1). Then the joint
pdf of (Y1, . . . ,Yn) is

f(y1, . . . , yn) = n!e−n(y1−θ)e−(n−1)yn

n−1∏
i=2

eyi ,
0 < yn−1 < yn−2 < · · · < y1

0 < yn < ∞.

Thus, Yn = X(1) is independent of (Y1, . . . , Yn−1).
6.12 a. Use Theorem 6.2.13 and write

f(x, n|θ)
f(y, n′|θ)

=
f(x|θ, N = n)P (N = n)
f(y|θ, N = n′)P (N = n

′)

=

(
n
x

)
θx(1−θ)n−x

pn(
n′

y

)
θy(1−θ)n′−y

pn′
= θx−y(1− θ)n−n′−x+y

(
n
x

)
pn(

n′

y

)
pn′

.
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The last ratio does not depend on θ. The other terms are constant as a function of θ if and
only if n = n′ and x = y. So (X, N) is minimal sufficient for θ. Because P (N = n) = pn

does not depend on θ, N is ancillary for θ. The point is that although N is independent of
θ, the minimal sufficient statistic contains N in this case. A minimal sufficient statistic may
contain an ancillary statistic.

b.

E
(

X

N

)
= E

(
E
(

X

N

∣∣∣∣N)) = E
(

1
N

E (X | N)
)

= E
(

1
N

Nθ

)
= E(θ) = θ.

Var
(

X

N

)
= Var

(
E
(

X

N

∣∣∣∣N))+ E
(

Var
(

X

N

∣∣∣∣N)) = Var(θ) + E
(

1
N2

Var (X | N)
)

= 0 + E
(

Nθ(1−θ)
N2

)
= θ(1− θ)E

(
1
N

)
.

We used the fact that X|N ∼ binomial(N, θ).
6.13 Let Y1 = log X1 and Y2 = log X2. Then Y1 and Y2 are iid and, by Theorem 2.1.5, the pdf of

each is

f(y|α) = α exp {αy − eαy} =
1

1/α
exp

{
y

1/α
− ey/(1/α)

}
, −∞ < y < ∞.

We see that the family of distributions of Yi is a scale family with scale parameter 1/α. Thus,
by Theorem 3.5.6, we can write Yi = 1

αZi, where Z1 and Z2 are a random sample from f(z|1).
Then

logX1

logX2
=

Y1

Y2
=

(1/α)Z1

(1/α)Z2

=
Z1

Z2
.

Because the distribution of Z1/Z2 does not depend on α, (log X1)/(log X2) is an ancillary
statistic.

6.14 Because X1, . . . , Xn is from a location family, by Theorem 3.5.6, we can write Xi = Zi+µ, where
Z1, . . . , Zn is a random sample from the standard pdf, f(z), and µ is the location parameter. Let
M(X) denote the median calculated from X1, . . . , Xn. Then M(X) = M(Z)+µ and X̄ = Z̄+µ.
Thus, M(X)− X̄ = (M(Z) + µ)− (Z̄ + µ) = M(Z)− Z̄. Because M(X)− X̄ is a function of
only Z1, . . . , Zn, the distribution of M(X)− X̄ does not depend on µ; that is, M(X)− X̄ is an
ancillary statistic.

6.15 a. The parameter space consists only of the points (θ, ν) on the graph of the function ν = aθ2.
This quadratic graph is a line and does not contain a two-dimensional open set.

b. Use the same factorization as in Example 6.2.9 to show (X̄, S2) is sufficient. E(S2) = aθ2

and E(X̄2) = VarX̄ + (EX̄)2 = aθ2/n + θ2 = (a + n)θ2/n. Therefore,

E
(

n

a + n
X̄2−S2

a

)
=
(

n

a + n

)(
a + n

n
θ2

)
− 1

a
aθ2 = 0, for all θ.

Thus g(X̄, S2) = n
a+nX̄2 − S2

a has zero expectation so (X̄, S2) not complete.

6.17 The population pmf is f(x|θ) = θ(1−θ)x−1 = θ
1−θ elog(1−θ)x, an exponential family with t(x) =

x. Thus,
∑

i Xi is a complete, sufficient statistic by Theorems 6.2.10 and 6.2.25.
∑

i Xi − n ∼
negative binomial(n, θ).

6.18 The distribution of Y =
∑

i Xi is Poisson(nλ). Now

Eg(Y ) =
∞∑

y=0

g(y)
(nλ)y

e−nλ

y!
.

If the expectation exists, this is an analytic function which cannot be identically zero.
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6.19 To check if the family of distributions of X is complete, we check if Ep g(X) = 0 for all p,
implies that g(X) ≡ 0. For Distribution 1,

Ep g(X) =
2∑

x=0

g(x)P (X = x) = pg(0) + 3pg(1) + (1− 4p)g(2).

Note that if g(0) = −3g(1) and g(2) = 0, then the expectation is zero for all p, but g(x) need
not be identically zero. Hence the family is not complete. For Distribution 2 calculate

Ep g(X) = g(0)p + g(1)p2 + g(2)(1− p− p2) = [g(1)− g(2)]p2 + [g(0)− g(2)]p + g(2).

This is a polynomial of degree 2 in p. To make it zero for all p each coefficient must be zero.
Thus, g(0) = g(1) = g(2) = 0, so the family of distributions is complete.

6.20 The pdfs in b), c), and e) are exponential families, so they have complete sufficient statistics
from Theorem 6.2.25. For a), Y = max{Xi} is sufficient and

f(y) =
2n

θ2n
y2n−1, 0 < y < θ.

For a function g(y),

E g(Y ) =
∫ θ

0

g(y)
2n

θ2n
y2n−1 dy = 0 for all θ implies g(θ)

2nθ2n−1

θ2n
= 0 for all θ

by taking derivatives. This can only be zero if g(θ) = 0 for all θ, so Y = max{Xi} is complete.
For d), the order statistics are minimal sufficient. This is a location family. Thus, by Example
6.2.18 the range R = X(n) − X(1) is ancillary, and its expectation does not depend on θ. So
this sufficient statistic is not complete.

6.21 a. X is sufficient because it is the data. To check completeness, calculate

Eg(X) =
θ

2
g(−1) + (1− θ)g(0) +

θ

2
g(1).

If g(−1) = g(1) and g(0) = 0, then Eg(X) = 0 for all θ, but g(x) need not be identically 0.
So the family is not complete.

b. |X| is sufficient by Theorem 6.2.6, because f(x|θ) depends on x only through the value of
|x|. The distribution of |X| is Bernoulli, because P (|X| = 0) = 1 − θ and P (|X| = 1) = θ.
By Example 6.2.22, a binomial family (Bernoulli is a special case) is complete.

c. Yes, f(x|θ) = (1 − θ)(θ/(2(1 − θ))|x| = (1 − θ)e|x|log[θ/(2(1−θ)], the form of an exponential
family.

6.22 a. The sample density is
∏

i θxθ−1
i = θn(

∏
i xi)θ−1, so

∏
i Xi is sufficient for θ, not

∑
i Xi.

b. Because
∏

i f(xi|θ) = θne(θ−1) log(Πixi), log (
∏

i Xi) is complete and sufficient by Theorem
6.2.25. Because

∏
i Xi is a one-to-one function of log (

∏
i Xi),

∏
i Xi is also a complete

sufficient statistic.
6.23 Use Theorem 6.2.13. The ratio

f(x|θ)
f(y|θ)

=
θ−nI(x(n)/2,x(1))(θ)
θ−nI(y(n)/2,y(1))(θ)

is constant (in fact, one) if and only if x(1) = y(1) and x(n) = y(n). So (X(1), X(n)) is a
minimal sufficient statistic for θ. From Exercise 6.10, we know that if a function of the sufficient
statistics is ancillary, then the sufficient statistic is not complete. The uniform(θ, 2θ) family is
a scale family, with standard pdf f(z) ∼ uniform(1, 2). So if Z1, . . . , Zn is a random sample
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from a uniform(1, 2) population, then X1 = θZ1, . . . , Xn = θZn is a random sample from a
uniform(θ, 2θ) population, and X(1) = θZ(1) and X(n) = θZ(n). So X(1)/X(n) = Z(1)/Z(n), a
statistic whose distribution does not depend on θ. Thus, as in Exercise 6.10, (X(1), X(n)) is not
complete.

6.24 If λ = 0, Eh(X) = h(0). If λ = 1,

Eh(X) = e−1h(0) + e−1
∞∑

x=1

h(x)
x!

.

Let h(0) = 0 and
∑∞

x=1
h(x)
x! = 0, so Eh(X) = 0 but h(x) 6≡ 0. (For example, take h(0) = 0,

h(1) = 1, h(2) = −2, h(x) = 0 for x ≥ 3 .)

6.25 Using the fact that (n − 1)s2
x =

∑
i x2

i − nx̄2, for any (µ, σ2) the ratio in Example 6.2.14 can
be written as

f(x|µ, σ2)
f(y|µ, σ2)

= exp

[
µ

σ2

(∑
i

xi −
∑

i

yi

)
− 1

2σ2

(∑
i

x2
i −

∑
i

y2
i

)]
.

a. Do part b) first showing that
∑

i X2
i is a minimal sufficient statistic. Because

(∑
i Xi,

∑
i X2

i

)
is not a function of

∑
i X2

i , by Definition 6.2.11
(∑

i Xi,
∑

i X2
i

)
is not minimal.

b. Substituting σ2 = µ in the above expression yields

f(x|µ, µ)
f(y|µ, µ)

= exp

[∑
i

xi −
∑

i

yi

]
exp

[
− 1

2µ

(∑
i

x2
i −

∑
i

y2
i

)]
.

This is constant as a function of µ if and only if
∑

i x2
i =

∑
i y2

i . Thus,
∑

i X2
i is a minimal

sufficient statistic.

c. Substituting σ2 = µ2 in the first expression yields

f(x|µ, µ2)
f(y|µ, µ2)

= exp

[
1
µ

(∑
i

xi −
∑

i

yi

)
− 1

2µ2

(∑
i

x2
i −

∑
i

y2
i

)]
.

This is constant as a function of µ if and only if
∑

i xi =
∑

i yi and
∑

i x2
i =

∑
i y2

i . Thus,(∑
i Xi,

∑
i X2

i

)
is a minimal sufficient statistic.

d. The first expression for the ratio is constant a function of µ and σ2 if and only if
∑

i xi =∑
i yi and

∑
i x2

i =
∑

i y2
i . Thus,

(∑
i Xi,

∑
i X2

i

)
is a minimal sufficient statistic.

6.27 a. This pdf can be written as

f(x|µ, λ) =
(

λ

2π

)1/2( 1
x3

)1/2

exp
(

λ

µ

)
exp

(
− λ

2µ2
x− λ

2
1
x

)
.

This is an exponential family with t1(x) = x and t2(x) = 1/x. By Theorem 6.2.25, the
statistic (

∑
i Xi,

∑
i(1/Xi)) is a complete sufficient statistic. (X̄, T ) given in the problem

is a one-to-one function of (
∑

i Xi,
∑

i(1/Xi)). Thus, (X̄, T ) is also a complete sufficient
statistic.

b. This can be accomplished using the methods from Section 4.3 by a straightforward but
messy two-variable transformation U = (X1 +X2)/2 and V = 2λ/T = λ[(1/X1)+ (1/X2)−
(2/[X1 + X2])]. This is a two-to-one transformation.
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6.29 Let fj = logistic(αj , βj), j = 0, 1, . . . , k. From Theorem 6.6.5, the statistic

T (x) =
(∏n

i=1 f1(xi)∏n
i=1 f0(xi)

, . . . ,

∏n
i=1 fk(xi)∏n
i=1 f0(xi)

)
=
(∏n

i=1 f1(x(i))∏n
i=1 f0(x(i))

, . . . ,

∏n
i=1 fk(x(i))∏n
i=1 f0(x(i))

)
is minimal sufficient for the family {f0, f1, . . . , fk}. As T is a 1 − 1 function of the order
statistics, the order statistics are also minimal sufficient for the family {f0, f1, . . . , fk}. If F is
a nonparametric family, fj ∈ F , so part (b) of Theorem 6.6.5 can now be directly applied to
show that the order statistics are minimal sufficient for F .

6.30 a. From Exercise 6.9b, we have that X(1) is a minimal sufficient statistic. To check completeness
compute fY1(y), where Y1 = X(1). From Theorem 5.4.4 we have

fY1(y) = fX(y) (1−FX(y))n−1
n = e−(y−µ)

[
e−(y−µ)

]n−1

n = ne−n(y−µ), y > µ.

Now, write Eµ g(Y1) =
∫∞

µ
g(y)ne−n(y−µ) dy. If this is zero for all µ, then

∫∞
µ

g(y)e−ny dy = 0
for all µ (because nenµ > 0 for all µ and does not depend on y). Moreover,

0 =
d

dµ

[∫ ∞

µ

g(y)e−ny dy

]
= −g(µ)e−nµ

for all µ. This implies g(µ) = 0 for all µ, so X(1) is complete.
b. Basu’s Theorem says that if X(1) is a complete sufficient statistic for µ, then X(1) is inde-

pendent of any ancillary statistic. Therefore, we need to show only that S2 has distribution
independent of µ; that is, S2 is ancillary. Recognize that f(x|µ) is a location family. So we
can write Xi = Zi + µ, where Z1, . . . , Zn is a random sample from f(x|0). Then

S2 =
1

n− 1

∑
(Xi − X̄)2 =

1
n− 1

∑
((Zi + µ)− (Z̄ + µ))2 =

1
n− 1

∑
(Zi − Z̄)2.

Because S2 is a function of only Z1, . . . , Zn, the distribution of S2 does not depend on µ;
that is, S2 is ancillary. Therefore, by Basu’s theorem, S2 is independent of X(1).

6.31 a. (i) By Exercise 3.28 this is a one-dimensional exponential family with t(x) = x. By Theorem
6.2.25,

∑
i Xi is a complete sufficient statistic. X̄ is a one-to-one function of

∑
i Xi,

so X̄ is also a complete sufficient statistic. From Theorem 5.3.1 we know that (n −
1)S2/σ2 ∼ χ2

n−1 = gamma((n− 1)/2, 2). S2 = [σ2/(n− 1)][(n− 1)S2/σ2], a simple scale
transformation, has a gamma((n−1)/2, 2σ2/(n−1)) distribution, which does not depend
on µ; that is, S2 is ancillary. By Basu’s Theorem, X̄ and S2 are independent.

(ii) The independence of X̄ and S2 is determined by the joint distribution of (X̄, S2) for each
value of (µ, σ2). By part (i), for each value of (µ, σ2), X̄ and S2 are independent.

b. (i) µ is a location parameter. By Exercise 6.14, M − X̄ is ancillary. As in part (a) X̄ is a
complete sufficient statistic. By Basu’s Theorem, X̄ and M−X̄ are independent. Because
they are independent, by Theorem 4.5.6 Var M = Var(M−X̄+X̄) = Var(M−X̄)+Var X̄.

(ii) If S2 is a sample variance calculated from a normal sample of size N , (N − 1)S2/σ2 ∼
χ2

N−1. Hence, (N − 1)2VarS2/(σ2)2 = 2(N − 1) and VarS2 = 2(σ2)2/(N − 1). Both M
and M − X̄ are asymptotically normal, so, M1, . . . ,MN and M1 − X̄1, . . . ,MN − X̄N

are each approximately normal samples if n is reasonable large. Thus, using the above
expression we get the two given expressions where in the straightforward case σ2 refers
to VarM , and in the swindle case σ2 refers to Var(M − X̄).

c. (i)

E(Xk) = E
(

X

Y
Y

)k

= E

[(
X

Y

)k (
Y k
)] indep.

= E
(

X

Y

)k

E
(
Y k
)
.

Divide both sides by E
(
Y k
)

to obtain the desired equality.
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(ii) If α is fixed, T =
∑

i Xi is a complete sufficient statistic for β by Theorem 6.2.25. Because
β is a scale parameter, if Z1, . . . , Zn is a random sample from a gamma(α, 1) distribution,
then X(i)/T has the same distribution as (βZ(i))/ (β

∑
i Zi) = Z(i)/ (

∑
i Zi), and this

distribution does not depend on β. Thus, X(i)/T is ancillary, and by Basu’s Theorem, it
is independent of T . We have

E(X(i)|T ) = E
(

X(i)

T
T

∣∣∣∣T) = TE
(

X(i)

T

∣∣∣∣T) indep.
= TE

(
X(i)

T

)
part (i)

= T
E(X(i))

ET
.

Note, this expression is correct for each fixed value of (α, β), regardless whether α is
“known” or not.

6.32 In the Formal Likelihood Principle, take E1 = E2 = E. Then the conclusion is Ev(E, x1) =
Ev(E, x2) if L(θ|x1)/L(θ|x2) = c. Thus evidence is equal whenever the likelihood functions are
equal, and this follows from Formal Sufficiency and Conditionality.

6.33 a. For all sample points except (2,x∗2) (but including (1,x∗1)), T (j,xj) = (j,xj). Hence,

g(T (j,xj)|θ)h(j,xj) = g((j,xj)|θ)1 = f∗((j,xj)|θ).

For (2,x∗2) we also have

g(T (2,x∗2)|θ)h(2,x∗2) = g((1,x∗1)|θ)C = f∗((1,x∗1)|θ)C = C
1
2
f1(x∗1|θ)

= C
1
2
L(θ|x∗1) =

1
2
L(θ|x∗2) =

1
2
f2(x∗2|θ) = f∗((2,x∗2)|θ).

By the Factorization Theorem, T (J,XJ) is sufficient.
b. Equations 6.3.4 and 6.3.5 follow immediately from the two Principles. Combining them we

have Ev(E1,x∗1) = Ev(E2,x∗2), the conclusion of the Formal Likelihood Principle.
c. To prove the Conditionality Principle. Let one experiment be the E∗ experiment and the

other Ej . Then

L(θ|(j,xj)) = f∗((j,xj)|θ) =
1
2
fj(xj |θ) =

1
2
L(θ|xj).

Letting (j,xj) and xj play the roles of x∗1 and x∗2 in the Formal Likelihood Principle we
can conclude Ev(E∗, (j,xj)) = Ev(Ej ,xj), the Conditionality Principle. Now consider the
Formal Sufficiency Principle. If T (X) is sufficient and T (x) = T (y), then L(θ|x) = CL(θ|y),
where C = h(x)/h(y) and h is the function from the Factorization Theorem. Hence, by the
Formal Likelihood Principle, Ev(E,x) = Ev(E,y), the Formal Sufficiency Principle.

6.35 Let 1 = success and 0 = failure. The four sample points are {0, 10, 110, 111}. From the likelihood
principle, inference about p is only through L(p|x). The values of the likelihood are 1, p, p2,
and p3, and the sample size does not directly influence the inference.

6.37 a. For one observation (X, Y ) we have

I(θ) = −E
(

∂2

∂θ2
log f(X, Y |θ)

)
= −E

(
−2Y

θ3

)
=

2EY

θ3
.

But, Y ∼ exponential(θ), and E Y = θ. Hence, I(θ) = 2/θ2 for a sample of size one, and
I(θ) = 2n/θ2 for a sample of size n.

b. (i) The cdf of T is

P (T ≤ t) = P

(∑
i Yi∑
i Xi

≤ t2
)

= P

(
2
∑

i Yi/θ

2
∑

i Xiθ
≤ t2/θ2

)
= P (F2n,2n ≤ t2/θ2)
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where F2n,2n is an F random variable with 2n degrees of freedom in the numerator and
denominator. This follows since 2Yi/θ and 2Xiθ are all independent exponential(1), or
χ2

2. Differentiating (in t) and simplifying gives the density of T as

fT (t) =
Γ(2n)
Γ(n)2

2
t

(
t2

t2 + θ2

)n(
θ2

t2 + θ2

)n

,

and the second derivative (in θ) of the log density is

2n
t4 + 2t2θ2 − θ4

θ2(t2 + θ2)2
=

2n

θ2

(
1− 2

(t2/θ2 + 1)2

)
,

and the information in T is

2n

θ2

[
1− 2E

(
1

T 2/θ2 + 1

)2
]

=
2n

θ2

1− 2E

(
1

F 2
2n,2n + 1

)2
 .

The expected value is

E

(
1

F 2
2n,2n + 1

)2

=
Γ(2n)
Γ(n)2

∫ ∞

0

1
(1 + w)2

wn−1

(1 + w)2n
=

Γ(2n)
Γ(n)2

Γ(n)Γ(n + 2)
Γ(2n + 2)

=
n + 1

2(2n + 1)
.

Substituting this above gives the information in T as

2n

θ2

[
1− 2

n + 1
2(2n + 1)

]
= I(θ)

n

2n + 1
,

which is not the answer reported by Joshi and Nabar.
(ii) Let W =

∑
i Xi and V =

∑
i Yi. In each pair, Xi and Yi are independent, so W and V are

independent. Xi ∼ exponential(1/θ); hence, W ∼ gamma(n, 1/θ). Yi ∼ exponential(θ);
hence, V ∼ gamma(n, θ). Use this joint distribution of (W,V ) to derive the joint pdf of
(T,U) as

f(t, u|θ) =
2

[Γ(n)]2t
u2n−1 exp

(
−uθ

t
− ut

θ

)
, u > 0, t > 0.

Now, the information in (T,U) is

−E
(

∂2

∂θ2
log f(T,U |θ)

)
= −E

(
−2UT

θ3

)
= E

(
2V

θ3

)
=

2nθ

θ3
=

2n

θ2
.

(iii) The pdf of the sample is f(x,y) = exp [−θ (
∑

i xi)− (
∑

i yi) /θ] . Hence, (W,V ) defined
as in part (ii) is sufficient. (T,U) is a one-to-one function of (W,V ), hence (T,U) is also
sufficient. But, E U2 = EWV = (n/θ)(nθ) = n2 does not depend on θ. So E(U2−n2) = 0
for all θ, and (T,U) is not complete.

6.39 a. The transformation from Celsius to Fahrenheit is y = 9x/5 + 32. Hence,

5
9
(T ∗(y)− 32) =

5
9

((.5)(y) + (.5)(212)− 32)

=
5
9

((.5)(9x/5 + 32) + (.5)(212)− 32) = (.5)x + 50 = T (x).

b. T (x) = (.5)x + 50 6= (.5)x + 106 = T ∗(x). Thus, we do not have equivariance.
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6.40 a. Because X1, . . . , Xn is from a location scale family, by Theorem 3.5.6, we can write Xi =
σZi + µ, where Z1, . . . , Zn is a random sample from the standard pdf f(z). Then

T1(X1, . . . , Xn)
T2(X1, . . . , Xn)

=
T1(σZ1+µ, . . . , σZn+µ)
T2(σZ1+µ, . . . , σZn+µ)

=
σT1(Z1, . . . , Zn)
σT2(Z1, . . . , Zn)

=
T1(Z1, . . . , Zn)
T2(Z1, . . . , Zn)

.

Because T1/T2 is a function of only Z1, . . . , Zn, the distribution of T1/T2 does not depend
on µ or σ; that is, T1/T2 is an ancillary statistic.

b. R(x1, . . . , xn) = x(n) − x(1). Because a > 0, max{ax1 + b, . . . , axn + b} = ax(n) + b and
min{ax1+b, . . . , axn+b} = ax(1)+b. Thus, R(ax1+b, . . . , axn+b) = (ax(n)+b)−(ax(1)+b) =
a(x(n) − x(1)) = aR(x1, . . . , xn). For the sample variance we have

S2(ax1 + b, . . . , axn + b) =
1

n− 1

∑
((axi + b)− (ax̄ + b))2

= a2 1
n− 1

∑
(xi − x̄)2 = a2S2(x1, . . . , xn).

Thus, S(ax1 + b, . . . , axn + b) = aS(x1, . . . , xn). Therefore, R and S both satisfy the above
condition, and R/S is ancillary by a).

6.41 a. Measurement equivariance requires that the estimate of µ based on y be the same as the
estimate of µ based on x; that is, T ∗(x1 + a, . . . , xn + a)− a = T ∗(y)− a = T (x).

b. The formal structures for the problem involving X and the problem involving Y are the same.
They both concern a random sample of size n from a normal population and estimation of
the mean of the population. Thus, formal invariance requires that T (x) = T ∗(x) for all x.
Combining this with part (a), the Equivariance Principle requires that T (x1+a, . . . , xn+a)−
a = T ∗(x1+a, . . . , xn+a)−a = T (x1, . . . , xn), i.e., T (x1+a, . . . , xn+a) = T (x1, . . . , xn)+a.

c. W (x1 + a, . . . , xn + a) =
∑

i(xi + a)/n = (
∑

i xi) /n + a = W (x1, . . . , xn) + a, so W (x)
is equivariant. The distribution of (X1, . . . , Xn) is the same as the distribution of (Z1 +
θ, . . . , Zn + θ), where Z1, . . . , Zn are a random sample from f(x − 0) and E Zi = 0. Thus,
EθW = E

∑
i(Zi + θ)/n = θ, for all θ.

6.43 a. For a location-scale family, if X ∼ f(x|θ, σ2), then Y = ga,c(X) ∼ f(y|cθ + a, c2σ2). So
for estimating σ2, ḡa,c(σ2) = c2σ2. An estimator of σ2 is invariant with respect to G1 if
W (cx1 + a, . . . , cxn + a) = c2W (x1, . . . , xn). An estimator of the form kS2 is invariant
because

kS2(cx1+a, . . . , cxn+a) =
k

n− 1

n∑
i=1

(
(cxi + a)−

n∑
i=1

(cxi + a)/n

)2

=
k

n− 1

n∑
i=1

((cxi + a)− (cx̄ + a))2

= c2 k

n− 1

n∑
i=1

(xi − x̄)2 = c2kS2(x1, . . . , xn).

To show invariance with respect to G2 , use the above argument with c = 1. To show
invariance with respect to G3, use the above argument with a = 0. ( G2 and G3 are both
subgroups of G1. So invariance with respect to G1 implies invariance with respect to G2 and
G3.)

b. The transformations in G2 leave the scale parameter unchanged. Thus, ḡa(σ2) = σ2. An
estimator of σ2 is invariant with respect to this group if

W (x1 + a, . . . , xn + a) = W (ga(x)) = ḡa(W (x)) = W (x1, . . . , xn).
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An estimator of the given form is invariant if, for all a and (x1, . . . , xn),

W (x1 + a, . . . , xn + a) = φ

(
x̄+a

s

)
s2 = φ

( x̄

s

)
s2 = W (x1, . . . , xn).

In particular, for a sample point with s = 1 and x̄ = 0, this implies we must have φ(a) = φ(0),
for all a; that is, φ must be constant. On the other hand, if φ is constant, then the estimators
are invariant by part a). So we have invariance if and only if φ is constant. Invariance
with respect to G1 also requires φ to be constant because G2 is a subgroup of G1. Finally,
an estimator of σ2 is invariant with respect to G3 if W (cx1, . . . , cxn) = c2W (x1, . . . , xn).
Estimators of the given form are invariant because

W (cx1, . . . , cxn) = φ
(cx̄

cs

)
c2s2 = c2φ

( x̄

s

)
s2 = c2W (x1, . . . , xn).


