
Chapter 7

Point Estimation

7.1 For each value of x, the MLE θ̂ is the value of θ that maximizes f(x|θ). These values are in the
following table.

x 0 1 2 3 4
θ̂ 1 1 2 or 3 3 3

At x = 2, f(x|2) = f(x|3) = 1/4 are both maxima, so both θ̂ = 2 or θ̂ = 3 are MLEs.
7.2 a.

L(β|x) =
n∏

i=1

1
Γ(α)βα

xα−1
i e−xi/β =

1
Γ(α)nβnα

[
n∏

i=1

xi

]α−1

e−Σixi/β

logL(β|x) = − log Γ(α)n − nα log β + (α−1) log

[
n∏

i=1

xi

]
−
∑

i xi

β

∂logL

∂β
= −nα

β
+
∑

i xi

β2

Set the partial derivative equal to 0 and solve for β to obtain β̂ =
∑

i xi/(nα). To check
that this is a maximum, calculate

∂2logL

∂β2

∣∣∣∣
β=β̂

=
nα

β2
−

2
∑

i xi

β3

∣∣∣∣
β=β̂

=
(nα)3

(
∑

i xi)
2 −

2(nα)3

(
∑

i xi)
2 = − (nα)3

(
∑

i xi)
2 < 0.

Because β̂ is the unique point where the derivative is 0 and it is a local maximum, it is a
global maximum. That is, β̂ is the MLE.

b. Now the likelihood function is

L(α, β|x) =
1

Γ(α)nβnα

[
n∏

i=1

xi

]α−1

e−Σixi/β ,

the same as in part (a) except α and β are both variables. There is no analytic form for the
MLEs, The values α̂ and β̂ that maximize L. One approach to finding α̂ and β̂ would be to
numerically maximize the function of two arguments. But it is usually best to do as much
as possible analytically, first, and perhaps reduce the complexity of the numerical problem.
From part (a), for each fixed value of α, the value of β that maximizes L is

∑
i xi/(nα).

Substitute this into L. Then we just need to maximize the function of the one variable α
given by

1
Γ(α)n (

∑
i xi/(nα))nα

[
n∏

i=1

xi

]α−1

e−Σixi/(Σixi/(nα))

=
1

Γ(α)n (
∑

i xi/(nα))nα

[
n∏

i=1

xi

]α−1

e−nα.
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For the given data, n = 14 and
∑

i xi = 323.6. Many computer programs can be used
to maximize this function. From PROC NLIN in SAS we obtain α̂ = 514.219 and, hence,
β̂ = 323.6

14(514.219) = .0450.

7.3 The log function is a strictly monotone increasing function. Therefore, L(θ|x) > L(θ′|x) if and
only if log L(θ|x) > log L(θ′|x). So the value θ̂ that maximizes log L(θ|x) is the same as the
value that maximizes L(θ|x).

7.5 a. The value ẑ solves the equation

(1− p)n =
∏

i

(1− xiz),

where 0 ≤ z ≤ (maxi xi)−1. Let k̂ = greatest integer less than or equal to 1/ẑ. Then from
Example 7.2.9, k̂ must satisfy

[k(1− p)]n ≥
∏

i

(k − xi) and [(k + 1)(1− p)]n <
∏

i

(k + 1− xi).

Because the right-hand side of the first equation is decreasing in ẑ, and because k̂ ≤ 1/ẑ (so
ẑ ≤ 1/k̂) and k̂ + 1 > 1/ẑ, k̂ must satisfy the two inequalities. Thus k̂ is the MLE.

b. For p = 1/2, we must solve
(

1
2

)4 = (1 − 20z)(1 − z)(1 − 19z), which can be reduced to the
cubic equation −380z3 + 419z2 − 40z + 15/16 = 0. The roots are .9998, .0646, and .0381,
leading to candidates of 1, 15, and 26 for k̂. The first two are less than maxi xi. Thus k̂ = 26.

7.6 a. f(x|θ) =
∏

i θx−2
i I[θ,∞)(xi) =

(∏
i x−2

i

)
θnI[θ,∞)(x(1)). Thus, X(1) is a sufficient statistic for

θ by the Factorization Theorem.
b. L(θ|x) = θn

(∏
i x−2

i

)
I[θ,∞)(x(1)). θn is increasing in θ. The second term does not involve θ.

So to maximize L(θ|x), we want to make θ as large as possible. But because of the indicator
function, L(θ|x) = 0 if θ > x(1). Thus, θ̂ = x(1).

c. EX =
∫∞

θ
θx−1 dx = θ logx|∞θ = ∞. Thus the method of moments estimator of θ does not

exist. (This is the Pareto distribution with α = θ, β = 1.)
7.7 L(0|x) = 1, 0 < xi < 1, and L(1|x) =

∏
i 1/(2

√
xi), 0 < xi < 1. Thus, the MLE is 0 if

1 ≥
∏

i 1/(2
√

xi), and the MLE is 1 if 1 <
∏

i 1/(2
√

xi).
7.8 a. EX2 = VarX + µ2 = σ2. Therefore X2 is an unbiased estimator of σ2.

b.

L(σ|x) =
1√
2πσ

e−x2/(2σ2). log L(σ|x) = log(2π)−1/2 − log σ − x2/(2σ2).

∂logL

∂σ
= − 1

σ
+

x2

σ3

set= 0 ⇒ σ̂X2 = σ̂3 ⇒ σ̂ =
√

X2 = |X|.

∂2logL

∂σ2
=

−3x2σ2

σ6
+

1
σ2

, which is negative at σ̂ = |x|.

Thus, σ̂ = |x| is a local maximum. Because it is the only place where the first derivative is
zero, it is also a global maximum.

c. Because EX = 0 is known, just equate EX2 = σ2 = 1
n

∑1
i=1 X2

i = X2 ⇒ σ̂ = |X|.
7.9 This is a uniform(0, θ) model. So EX = (0 + θ)/2 = θ/2. The method of moments estimator

is the solution to the equation θ̃/2 = X̄, that is, θ̃ = 2X̄. Because θ̃ is a simple function of the
sample mean, its mean and variance are easy to calculate. We have

E θ̃ = 2E X̄ = 2EX = 2
θ

2
= θ, and Var θ̃ = 4Var X̄ = 4

θ2/12
n

=
θ2

3n
.
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The likelihood function is

L(θ|x) =
n∏

i=1

1
θ
I[0,θ](xi) =

1
θn

I[0,θ](x(n))I[0,∞)(x(1)),

where x(1) and x(n) are the smallest and largest order statistics. For θ ≥ x(n), L = 1/θn, a
decreasing function. So for θ ≥ x(n), L is maximized at θ̂ = x(n). L = 0 for θ < x(n). So the
overall maximum, the MLE, is θ̂ = X(n). The pdf of θ̂ = X(n) is nxn−1/θn, 0 ≤ x ≤ θ. This
can be used to calculate

E θ̂ =
n

n + 1
θ, E θ̂2 =

n

n + 2
θ2 and Var θ̂ =

nθ2

(n + 2)(n + 1)2
.

θ̃ is an unbiased estimator of θ; θ̂ is a biased estimator. If n is large, the bias is not large
because n/(n + 1) is close to one. But if n is small, the bias is quite large. On the other hand,
Var θ̂ < Var θ̃ for all θ. So, if n is large, θ̂ is probably preferable to θ̃.

7.10 a. f(x|θ) =
∏

i
α

βα xα−1
i I[0,β](xi) =

(
α

βα

)n

(
∏

i xi)
α−1

I(−∞,β](x(n))I[0,∞)(x(1)) = L(α, β|x). By
the Factorization Theorem, (

∏
i Xi, X(n)) are sufficient.

b. For any fixed α, L(α, β|x) = 0 if β < x(n), and L(α, β|x) a decreasing function of β if
β ≥ x(n). Thus, X(n) is the MLE of β. For the MLE of α calculate

∂

∂α
logL =

∂

∂α

[
nlogα−nαlogβ+(α−1)log

∏
i

xi

]
=

n

α
− n log β + log

∏
i

xi.

Set the derivative equal to zero and use β̂ = X(n) to obtain

α̂ =
n

nlogX(n)− log
∏

i Xi
=

[
1
n

∑
i

(logX(n)− logXi)

]−1

.

The second derivative is −n/α2 < 0, so this is the MLE.
c. X(n) = 25.0, log

∏
i Xi =

∑
i log Xi = 43.95 ⇒ β̂ = 25.0, α̂ = 12.59.

7.11 a.

f(x|θ) =
∏

i

θxθ−1
i = θn

(∏
i

xi

)θ−1

= L(θ|x)

d

dθ
log L =

d

dθ

[
nlogθ+(θ−1)log

∏
i

xi

]
=

n

θ
+
∑

i

log xi.

Set the derivative equal to zero and solve for θ to obtain θ̂ = (− 1
n

∑
i log xi)−1. The second

derivative is −n/θ2 < 0, so this is the MLE. To calculate the variance of θ̂, note that
Yi = − log Xi ∼ exponential(1/θ), so −

∑
i log Xi ∼ gamma(n, 1/θ). Thus θ̂ = n/T , where

T ∼ gamma(n, 1/θ). We can either calculate the first and second moments directly, or use
the fact that θ̂ is inverted gamma (page 51). We have

E
1
T

=
θn

Γ(n)

∫ ∞

0

1
t
tn−1e−θt dt =

θn

Γ(n)
Γ(n− 1)

θn−1
=

θ

n− 1
.

E
1

T 2
=

θn

Γ(n)

∫ ∞

0

1
t2

tn−1e−θt dt =
θn

Γ(n)
Γ(n− 2)

θn−2
=

θ2

(n− 1)(n− 2)
,
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and thus

E θ̂ =
n

n− 1
θ and Var θ̂ =

n2

(n− 1)2(n− 2)
θ2 → 0 as n →∞.

b. Because X ∼ beta(θ, 1), EX = θ/(θ + 1) and the method of moments estimator is the
solution to

1
n

∑
i

Xi =
θ

θ+1
⇒ θ̃ =

∑
i Xi

n−
∑

i Xi
.

7.12 Xi ∼ iid Bernoulli(θ), 0 ≤ θ ≤ 1/2.

a. method of moments:
EX = θ =

1
n

∑
i

Xi = X̄ ⇒ θ̃ = X̄.

MLE: In Example 7.2.7, we showed that L(θ|x) is increasing for θ ≤ x̄ and is decreasing
for θ ≥ x̄. Remember that 0 ≤ θ ≤ 1/2 in this exercise. Therefore, when X̄ ≤ 1/2, X̄ is
the MLE of θ, because X̄ is the overall maximum of L(θ|x). When X̄ > 1/2, L(θ|x) is an
increasing function of θ on [0, 1/2] and obtains its maximum at the upper bound of θ which
is 1/2. So the MLE is θ̂ = min

{
X̄, 1/2

}
.

b. The MSE of θ̃ is MSE(θ̃) = Var θ̃ + bias(θ̃)2 = (θ(1− θ)/n) + 02 = θ(1− θ)/n. There is no
simple formula for MSE(θ̂), but an expression is

MSE(θ̂) = E(θ̂ − θ)2 =
n∑

y=0

(θ̂ − θ)2
(

n

y

)
θy(1− θ)n−y

=
[n/2]∑
y=0

( y

n
− θ
)2
(

n

y

)
θy(1− θ)n−y +

n∑
y=[n/2]+1

(
1
2
− θ

)2(
n

y

)
θy(1− θ)n−y,

where Y =
∑

i Xi ∼ binomial(n, θ) and [n/2] = n/2, if n is even, and [n/2] = (n − 1)/2, if
n is odd.

c. Using the notation used in (b), we have

MSE(θ̃) = E(X̄ − θ)2 =
n∑

y=0

( y

n
− θ
)2
(

n

y

)
θy(1− θ)n−y.

Therefore,

MSE(θ̃)−MSE(θ̂) =
n∑

y=[n/2]+1

[( y

n
− θ
)2

−
(

1
2
− θ

)2
](

n

y

)
θy(1− θ)n−y

=
n∑

y=[n/2]+1

(
y

n
+

1
2
− 2θ

)(
y

n
− 1

2

)(
n

y

)
θy(1− θ)n−y.

The facts that y/n > 1/2 in the sum and θ ≤ 1/2 imply that every term in the sum is positive.
Therefore MSE(θ̂) < MSE(θ̃) for every θ in 0 < θ ≤ 1/2. (Note: MSE(θ̂) = MSE(θ̃) = 0 at
θ = 0.)

7.13 L(θ|x) =
∏

i
1
2e−

1
2 |xi−θ| = 1

2n e−
1
2Σi|xi−θ|, so the MLE minimizes

∑
i |xi − θ| =

∑
i |x(i) − θ|,

where x(1), . . . , x(n) are the order statistics. For x(j) ≤ θ ≤ x(j+1),

n∑
i=1

|x(i) − θ| =
j∑

i=1

(θ − x(i)) +
n∑

i=j+1

(x(i) − θ) = (2j − n)θ −
j∑

i=1

x(i) +
n∑

i=j+1

x(i).
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This is a linear function of θ that decreases for j < n/2 and increases for j > n/2. If n is even,
2j − n = 0 if j = n/2. So the likelihood is constant between x(n/2) and x((n/2)+1), and any
value in this interval is the MLE. Usually the midpoint of this interval is taken as the MLE. If
n is odd, the likelihood is minimized at θ̂ = x((n+1)/2).

7.15 a. The likelihood is

L(µ, λ|x) =
λn/2

(2π)n
∏

i xi
exp

{
−λ

2

∑
i

(xi − µ)2

µ2xi

}
.

For fixed λ, maximizing with respect to µ is equivalent to minimizing the sum in the expo-
nential.

d

dµ

∑
i

(xi − µ)2

µ2xi
=

d

dµ

∑
i

((xi/µ)− 1)2

xi
= −

∑
i

2 ((xi/µ)− 1)
xi

xi

µ2
.

Setting this equal to zero is equivalent to setting∑
i

(
xi

µ
− 1
)

= 0,

and solving for µ yields µ̂n = x̄. Plugging in this µ̂n and maximizing with respect to λ
amounts to maximizing an expression of the form λn/2e−λb. Simple calculus yields

λ̂n =
n

2b
where b =

∑
i

(xi − x̄)2

2x̄2xi
.

Finally,

2b =
∑

i

xi

x̄2
− 2

∑
i

1
x̄

+
∑

i

1
xi

= −n

x̄
+
∑

i

1
xi

=
∑

i

(
1
xi
− 1

x̄

)
.

b. This is the same as Exercise 6.27b.
c. This involved algebra can be found in Schwarz and Samanta (1991).

7.17 a. This is a special case of the computation in Exercise 7.2a.
b. Make the transformation

z = (x2 − 1)/x1, w = x1 ⇒ x1 = w, x2 = wz + 1.

The Jacobean is |w|, and

fZ(z) =
∫

fX1(w)fX2(wz + 1)wdw =
1
θ2

e−1/θ

∫
we−w(1+z)/θdw,

where the range of integration is 0 < w < −1/z if z < 0, 0 < w < ∞ if z > 0. Thus,

fZ(z) =
1
θ2

e−1/θ

{∫ −1/z

0
we−w(1+z)/θdw if z < 0∫∞

0
we−w(1+z)/θdw if z ≥ 0

Using the fact that
∫

we−w/adw = −e−w/a(aw + a2), we have

fZ(z) = e−1/θ

{
zθ+e(1+z)/zθ(1+z−zθ)

θz(1+z)2 if z < 0
1

(1+z)2 if z ≥ 0
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c. From part (a) we get θ̂ = 1. From part (b), X2 = 1 implies Z = 0 which, if we use the second
density, gives us θ̂ = ∞.

d. The posterior distributions are just the normalized likelihood times prior, so of course they
are different.

7.18 a. The usual first two moment equations for X and Y are

x̄ = EX = µX ,
1
n

∑
i

x2
i = EX2 = σ2

X + µ2
X ,

ȳ = EY = µY ,
1
n

∑
i

y2
i = EY 2 = σ2

Y + µ2
Y .

We also need an equation involving ρ.

1
n

∑
i

xiyi = EXY = Cov(X, Y ) + (EX)(EY ) = ρσXσY + µXµY .

Solving these five equations yields the estimators given. Facts such as

1
n

∑
i

x2
i − x̄2 =

∑
i x2

i − (
∑

i xi)
2
/n

n
=
∑

i(xi − x̄)2

n

are used.
b. Two answers are provided. First, use the Miscellanea: For

L(θ|x) = h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
,

the solutions to the k equations
∑n

j=1 ti(xj) = Eθ

(∑n
j=1 ti(Xj)

)
= nEθti(X1), i = 1, . . . , k,

provide the unique MLE for θ. Multiplying out the exponent in the bivariate normal pdf
shows it has this exponential family form with k = 5 and t1(x, y) = x, t2(x, y) = y, t3(x, y) =
x2, t4(x, y) = y2 and t5(x, y) = xy. Setting up the method of moment equations, we have∑

i

xi = nµX ,
∑

i

x2
i = n(µ2

X + σ2
X),∑

i

yi = nµY ,
∑

i

y2
i = n(µ2

Y + σ2
Y ),∑

i

xiyi =
∑

i

[Cov(X,Y ) + µXµY ] = n(ρσXσY + µXµY ).

These are the same equations as in part (a) if you divide each one by n. So the MLEs are
the same as the method of moment estimators in part (a).
For the second answer, use the hint in the book to write

L(θ|x,y) = L(θ|x)L(θ,x|y)

= (2πσ2
X)−

n
2 exp

{
− 1

2σ2
X

∑
i

(xi − µX)2
}

︸ ︷︷ ︸
A

×
(
2πσ2

Y (1−ρ2)
)−n

2 exp

[
−1

2σ2
Y (1− ρ2)

∑
i

{
yi −

(
µY + ρ

σY

σX
(xi − µX)

)}2
]

︸ ︷︷ ︸
B
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We know that x̄ and σ̂2
X =

∑
i(xi − x̄)2/n maximizes A; the question is whether given σY ,

µY , and ρ, does x̄, σ̂2
X maximize B? Let us first fix σ2

X and look for µ̂X , that maximizes B.
We have

∂logB

∂µX
∝ −2

(∑
i

[
(yi − µY )−ρσY

σX
(xi − µX)

])
ρσY

σX

set= 0

⇒
∑

i

(yi − µY ) =
ρσY

σX
Σ(xi − µ̂X).

Similarly do the same procedure for L(θ|y)L(θ,y|x) This implies
∑

i(xi−µX) = ρσX

σY

∑
i(yi−

µ̂Y ). The solutions µ̂X and µ̂Y therefore must satisfy both equations. If
∑

i(yi− µ̂Y ) 6= 0 or∑
i(xi − µ̂X) 6= 0, we will get ρ = 1/ρ, so we need

∑
i(yi − µ̂Y ) = 0 and

∑
i(xi − µ̂X) = 0.

This implies µ̂X = x̄ and µ̂Y = ȳ. (∂2log B
∂µ2

X

< 0. Therefore it is maximum). To get σ̂2
X take

∂log B

∂σ2
X

∝
∑

i

ρσY

σ2
X

(xi − µ̂X)
[
(yi − µY )−ρσY

σX
(xi − µX)

]
set= 0.

⇒
∑

i

(xi − µ̂X)(yi − µ̂Y ) =
ρσY

σ̂X

∑
(xi − µ̂X)2.

Similarly,
∑

i(xi − µ̂X)(yi − µ̂Y ) = ρσX

σ̂Y

∑
i(yi − µ̂Y )2. Thus σ̂2

X and σ̂2
Y must satisfy the

above two equations with µ̂X = X̄, µ̂Y = Ȳ . This implies

σ̂Y

σ̂X

∑
i

(xi − x̄)2 =
σ̂X

σ̂Y

∑
i

(yi − ȳ)2 ⇒
∑

i (xi − x̄)2

σ̂2
X

=
∑

i (yi − ȳ)2

σ̂2
Y

.

Therefore, σ̂2
X = a

∑
i(xi − x̄)2, σ̂2

Y = a
∑

i(yi − ȳ)2 where a is a constant. Combining the
knowledge that

(
x̄, 1

n

∑
i (xi − x̄)2

)
= (µ̂X , σ̂2

X) maximizes A, we conclude that a = 1/n.
Lastly, we find ρ̂, the MLE of ρ. Write

log L(x̄, ȳ, σ̂2
X , σ̂2

Y , ρ|x,y)

= −n

2
log(1− ρ2)− 1

2(1−ρ2)

∑
i

[
(xi − x̄)2

σ̂2
X

−
2ρ(xi − x̄)(yi − ȳ)

σ̂X ,σ̂Y
+

(yi − ȳ)2

σ̂2
Y

]

= −n

2
log(1− ρ2)− 1

2(1−ρ2)

2n− 2ρ
∑

i

(xi − x̄)(yi − ȳ)
σ̂X σ̂Y︸ ︷︷ ︸
A


because σ̂2

X = 1
n

∑
i(xi − x̄)2 and σ̂2

Y = 1
n

∑
i(yi − ȳ)2. Now

log L = −n

2
log(1− ρ2)− n

1− ρ2
+

ρ

1− ρ2
A

and
∂log L

∂ρ
=

n

1− ρ2
− nρ

(1−ρ2)2
+

A(1−ρ2) + 2Aρ2

(1−ρ2)2
set= 0.

This implies

A + Aρ2−nρ̂−nρ̂3

(1−ρ2)2
= 0 ⇒ A(1 + ρ̂2) = nρ̂(1 + ρ̂2)

⇒ ρ̂ =
A

n
=

1
n

∑
i

(xi − x̄)(yi − ȳ)
σ̂X σ̂Y

.
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7.19 a.

L(θ|y) =
∏

i

1√
2πσ2

exp
(
− 1

2σ2
(yi − βxi)2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

∑
i

(y2
i−2βxiyi + β2x2

i )

)

= (2πσ2)−n/2 exp
(
−

β2
∑

i x2
i

2σ2

)
exp

(
− 1

2σ2

∑
i

y2
i +

β

σ2

∑
i

xiyi

)
.

By Theorem 6.1.2, (
∑

i Y 2
i ,
∑

i xiYi) is a sufficient statistic for (β, σ2).
b.

logL(β,σ2|y) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

∑
y2

i +
β

σ2

∑
i

xiyi −
β2

2σ2

∑
i

x2
i .

For a fixed value of σ2,

∂logL

∂β
=

1
σ2

∑
i

xiyi −
β

σ2

∑
i

x2
i

set= 0 ⇒ β̂ =
∑

i xiyi∑
i x2

i

.

Also,
∂2logL

∂β2
=

1
σ2

∑
i

x2
i < 0,

so it is a maximum. Because β̂ does not depend on σ2, it is the MLE. And β̂ is unbiased
because

E β̂ =
∑

i xiEYi∑
i x2

i

=
∑

i xi · βxi∑
i x2

i

= β.

c. β̂ =
∑

i aiYi, where ai = xi/
∑

j x2
j are constants. By Corollary 4.6.10, β̂ is normally dis-

tributed with mean β, and

Var β̂ =
∑

i

a2
i VarYi =

∑
i

(
xi∑
j x2

j

)2

σ2 =
∑

i x2
i

(
∑

j x2
j )2

σ2 =
σ2∑
i x2

i

.

7.20 a.

E
∑

i Yi∑
i xi

=
1∑
i xi

∑
i

EYi =
1∑
i xi

∑
i

βxi = β.

b.

Var
(∑

i Yi∑
i xi

)
=

1
(
∑

i xi)2
∑

i

VarYi =
∑

i σ2

(
∑

i xi)2
=

nσ2

n2x̄2
=

σ2

nx̄2
.

Because
∑

i x2
i − nx̄2 =

∑
i(xi − x̄)2 ≥ 0,

∑
i x2

i ≥ nx̄2. Hence,

Var β̂ =
σ2∑
i x2

i

≤ σ2

nx̄2
= Var

(∑
i Yi∑
i xi

)
.

(In fact, β̂ is BLUE (Best Linear Unbiased Estimator of β), as discussed in Section 11.3.2.)
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7.21 a.

E
1
n

∑
i

Yi

xi
=

1
n

∑
i

EYi

xi
=

1
n

∑
i

βxi

xi
= β.

b.

Var
1
n

∑
i

Yi

xi
=

1
n2

∑
i

VarYi

x2
i

=
σ2

n2

∑
i

1
x2

i

.

Using Example 4.7.8 with ai = 1/x2
i we obtain

1
n

∑
i

1
x2

i

≥ n∑
i x2

i

.

Thus,

Var β̂ =
σ2∑
i x2

i

≤ σ2

n2

∑
i

1
x2

i

= Var
1
n

∑
i

Yi

xi
.

Because g(u) = 1/u2 is convex, using Jensen’s Inequality we have

1
x̄2
≤ 1

n

∑
i

1
x2

i

.

Thus,

Var
(∑

i Yi∑
i xi

)
=

σ2

nx̄2
≤ σ2

n2

∑
i

1
x2

i

= Var
1
n

∑
i

Yi

xi
.

7.22 a.

f(x̄, θ) = f(x̄|θ)π(θ) =
√

n√
2πσ

e−n(x̄−θ)2/(2σ2) 1√
2πτ

e−(θ−µ)2/2τ2
.

b. Factor the exponent in part (a) as

−n

2σ2
(x̄− θ)2 − 1

2τ2
(θ − µ)2 = − 1

2v2
(θ − δ(x))2 − 1

τ2 + σ2/n
(x̄− µ)2,

where δ(x) = (τ2x̄+(σ2/n)µ)/(τ2 +σ2/n) and v = (σ2τ2/n)
/

(τ +σ2/n). Let n(a, b) denote
the pdf of a normal distribution with mean a and variance b. The above factorization shows
that

f(x, θ) = n(θ, σ2/n)× n(µ, τ2) = n(δ(x), v2)× n(µ, τ2 + σ2/n),

where the marginal distribution of X̄ is n(µ, τ2 +σ2/n) and the posterior distribution of θ|x
is n(δ(x), v2). This also completes part (c).

7.23 Let t = s2 and θ = σ2. Because (n− 1)S2/σ2 ∼ χ2
n−1, we have

f(t|θ) =
1

Γ ((n− 1)/2) 2(n−1)/2

(
n− 1

θ
t

)[(n−1)/2]−1

e−(n−1)t/2θ n− 1
θ

.

With π(θ) as given, we have (ignoring terms that do not depend on θ)

π(θ|t) ∝

[(
1
θ

)((n−1)/2)−1

e−(n−1)t/2θ 1
θ

] [
1

θα+1
e−1/βθ

]

∝
(

1
θ

)((n−1)/2)+α+1

exp
{
−1

θ

[
(n− 1)t

2
+

1
β

]}
,
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which we recognize as the kernel of an inverted gamma pdf, IG(a, b), with

a =
n− 1

2
+ α and b =

[
(n− 1)t

2
+

1
β

]−1

.

Direct calculation shows that the mean of an IG(a, b) is 1/((a− 1)b), so

E(θ|t) =
n−1

2 t + 1
β

n−1
2 + α−1

=
n−1

2 s2 + 1
β

n−1
2 + α−1

.

This is a Bayes estimator of σ2.
7.24 For n observations, Y =

∑
i Xi ∼ Poisson(nλ).

a. The marginal pmf of Y is

m(y) =
∫ ∞

0

(nλ)ye−nλ

y!
1

Γ(α)βα
λα−1e−λ/β dλ

=
ny

y!Γ(α)βα

∫ ∞

0

λ(y+α)−1e−
λ

β/(nβ+1) dλ =
ny

y!Γ(α)βα
Γ(y + α)

(
β

nβ+1

)y+α

.

Thus,

π(λ|y) =
f(y|λ)π(λ)

m(y)
=

λ(y+α)−1e−
λ

β/(nβ+1)

Γ(y+α)
(

β
nβ+1

)y+α ∼ gamma
(

y + α,
β

nβ+1

)
.

b.

E(λ|y) = (y + α)
β

nβ+1
=

β

nβ+1
y +

1
nβ+1

(αβ).

Var(λ|y) = (y + α)
β2

(nβ+1)2
.

7.25 a. We will use the results and notation from part (b) to do this special case. From part (b),
the Xis are independent and each Xi has marginal pdf

m(x|µ, σ2, τ2) =
∫ ∞

−∞
f(x|θ, σ2)π(θ|µ, τ2) dθ =

∫ ∞

−∞

1
2πστ

e−(x−θ)2/2σ2
e−(θ−µ)2/2τ2

dθ.

Complete the square in θ to write the sum of the two exponents as

−

(
θ −

[
xτ2

σ2+τ2 + µσ2

σ2+τ2

])2

2 σ2τ2

σ2+τ2

− (x− µ)2

2(σ2 + τ2)
.

Only the first term involves θ; call it −A(θ). Also, e−A(θ) is the kernel of a normal pdf. Thus,∫ ∞

−∞
e−A(θ) dθ =

√
2π

στ√
σ2 + τ2

,

and the marginal pdf is

m(x|µ, σ2, τ2) =
1

2πστ

√
2π

στ√
σ2 + τ2

exp
{
− (x− µ)2

2(σ2 + τ2)

}
=

1√
2π
√

σ2 + τ2
exp

{
− (x− µ)2

2(σ2 + τ2)

}
,

a n(µ, σ2 + τ2) pdf.
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b. For one observation of X and θ the joint pdf is

h(x, θ|τ) = f(x|θ)π(θ|τ),

and the marginal pdf of X is

m(x|τ) =
∫ ∞

−∞
h(x, θ|τ) dθ.

Thus, the joint pdf of X = (X1, . . . , Xn) and θ = (θ1, . . . , θn) is

h(x,θ|τ) =
∏

i

h(xi, θi|τ),

and the marginal pdf of X is

m(x|τ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
i

h(xi, θi|τ) dθ1 . . . dθn

=
∫ ∞

−∞
· · ·
{∫ ∞

−∞
h(x1, θ1|τ) dθ1

} n∏
i=2

h(xi, θi|τ) dθ2 . . . dθn.

The dθ1 integral is just m(x1|τ), and this is not a function of θ2, . . . , θn. So, m(x1|τ) can be
pulled out of the integrals. Doing each integral in turn yields the marginal pdf

m(x|τ) =
∏

i

m(xi|τ).

Because this marginal pdf factors, this shows that marginally X1, . . . , Xn are independent,
and they each have the same marginal distribution, m(x|τ).

7.26 First write
f(x1, . . . , xn|θ)π(θ) ∝ e−

n
2σ2 (x̄−θ)2−|θ|/a

where the exponent can be written

n

2σ2
(x̄− θ)2−|θ|

a
=

n

2σ2
(θ − δ±(x)) +

n

2σ2

(
x̄2 − δ2

±(x)
)

with δ±(x) = x̄± σ2

na , where we use the “+” if θ > 0 and the “−” if θ < 0. Thus, the posterior
mean is

E(θ|x) =

∫∞
−∞ θe−

n
2σ2 (θ−δ±(x))2 dθ∫∞

−∞ e−
n

2σ2 (θ−δ±(x))2 dθ
.

Now use the facts that for constants a and b,∫ ∞

0

e−
a
2 (t−b)2 dt =

∫ 0

−∞
e−

a
2 (t−b)2 dt =

√
π

2a
,∫ ∞

0

te−
a
2 (t−b)2 dt =

∫ ∞

0

(t− b)e−
a
2 (t−b)2 dt +

∫ ∞

0

be−
a
2 (t−b)2 dt =

1
a
e−

a
2 b2 + b

√
π

2a
,∫ 0

−∞
te−

a
2 (t−b)2 dt = −1

a
e−

a
2 b2 + b

√
π

2a
,

to get

E(θ|x) =

√
πσ2

2n (δ−(x) + δ+(x))+σ2

n

(
e−

n
2σ2 δ2

+(x)−e−
n

2σ2 δ2
−(x)

)
2
√

πσ2

2n

.
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7.27 a. The log likelihood is

log L =
n∑

i=1

−βτi + yi log(βτi)− τi + xi log(τi)− log yi!− log xi!

and differentiation gives

∂

∂β
log L =

n∑
i=1

−τi +
yiτi

βτi
⇒ β =

∑n
i=1 yi∑n
i=1 τi

∂

∂τj
log L = −β +

yjβ

βτj
− i +

xj

τj
⇒ τj =

xj + yj

1 + β

⇒
n∑

j=1

τj =

∑n
j=1 xj +

∑n
j=1 yj

1 + β
.

Combining these expressions yields β̂ =
∑n

j=1 yj/
∑n

j=1 xj and τ̂j = xj+yj

1+β̂
.

b. The stationary point of the EM algorithm will satisfy

β̂ =
∑n

i=1 yi

τ̂1 +
∑n

i=2 xi

τ̂1 =
τ̂1 + y1

β̂ + 1

τ̂j =
xj + yj

β̂ + 1
.

The second equation yields τ1 = y1/β, and substituting this into the first equation yields
β =

∑n
j=2 yj/

∑n
j=2 xj . Summing over j in the third equation, and substituting β =∑n

j=2 yj/
∑n

j=2 xj shows us that
∑n

j=2 τ̂j =
∑n

j=2 xj , and plugging this into the first equa-
tion gives the desired expression for β̂. The other two equations in (7.2.16) are obviously
satisfied.

c. The expression for β̂ was derived in part (b), as were the expressions for τ̂i.

7.29 a. The joint density is the product of the individual densities.
b. The log likelihood is

log L =
n∑

i=1

−mβτi + yi log(mβτi) + xi log(τi) + log m!− log yi!− log xi!

and

∂

∂β
log L = 0 ⇒ β =

∑n
i=1 yi∑n

i=1 mτi

∂

∂τj
log L = 0 ⇒ τj =

xj + yj

mβ
.

Since
∑

τj = 1, β̂ =
∑n

i=1 yi/m =
∑n

i=1 yi/
∑n

i=1 xi. Also,
∑

j τj =
∑

j(yj + xj) = 1, which
implies that mβ =

∑
j(yj + xj) and τ̂j = (xj + yj)/

∑
i(yi + xi).

c. In the likelihood function we can ignore the factorial terms, and the expected complete-data
likelihood is obtained by on the rth iteration by replacing x1 with E(X1|τ̂ (r)

1 ) = mτ̂
(r)
1 .

Substituting this into the MLEs of part (b) gives the EM sequence.
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The MLEs from the full data set are β̂ = 0.0008413892 and

τ̂ = (0.06337310, 0.06374873, 0.06689681, 0.04981487, 0.04604075, 0.04883109,

0.07072460, 0.01776164, 0.03416388, 0.01695673, 0.02098127, 0.01878119,

0.05621836, 0.09818091, 0.09945087, 0.05267677, 0.08896918, 0.08642925).

The MLEs for the incomplete data were computed using R, where we take m =
∑

xi. The
R code is

#mles on the incomplete data#
xdatam<-c(3560,3739,2784,2571,2729,3952,993,1908,948,1172,

1047,3138,5485,5554,2943,4969,4828)
ydata<-c(3,4,1,1,3,1,2,0,2,0,1,3,5,4,6,2,5,4)
xdata<-c(mean(xdatam),xdatam); for (j in 1:500) {
xdata<-c(sum(xdata)*tau[1],xdatam) beta<-sum(ydata)/sum(xdata)
tau<-c((xdata+ydata)/(sum(xdata)+sum(ydata))) } beta tau

The MLEs from the incomplete data set are β̂ = 0.0008415534 and

τ̂ = (0.06319044, 0.06376116, 0.06690986, 0.04982459, 0.04604973, 0.04884062,

0.07073839, 0.01776510, 0.03417054, 0.01696004, 0.02098536, 0.01878485,

0.05622933, 0.09820005, 0.09947027, 0.05268704, 0.08898653, 0.08644610).

7.31 a. By direct substitution we can write

log L(θ|y) = E
[
log L(θ|y,X)| θ̂(r),y

]
− E

[
log k(X|θ,y)| θ̂(r),y

]
.

The next iterate, θ̂(r+1) is obtained by maximizing the expected complete-data log likelihood,
so for any θ, E

[
log L(θ̂(r+1)y,X)

∣∣∣ θ̂(r),y
]
≥ E

[
log L(θ|y,X)| θ̂(r),y

]
b. Write

E [log k(X|θ,y)|θ′,y] =
∫

log k(x|θ,y) log k(x|θ′,y)dx ≤
∫

log k(x|θ′,y) log k(x|θ′,y)dx,

from the hint. Hence E
[
log k(X|θ̂(r+1),y)

∣∣∣ θ̂(r),y
]
≤ E

[
log k(X|θ̂(r),y)

∣∣∣ θ̂(r),y
]
, and so the

entire right hand side in part (a) is decreasing.

7.33 Substitute α = β =
√

n/4 into MSE(p̂B) = np(1−p)

(α+β+n)2
+
(

np+α
α+β+n − p

)2

and simplify to obtain

MSE(p̂B) =
n

4(
√

n + n)2
,

independent of p, as desired.

7.35 a.

δp (g(x)) = δp(x1 + a, . . . , xn + a)

=

∫∞
−∞ t

∏
i f(xi + a− t) dt∫∞

−∞
∏

i f(xi + a− t) dt
=

∫∞
−∞ (y + a)

∏
i f(xi − y) dy∫∞

−∞
∏

i f(xi − y) dy
(y = t− a)

= a + δp(x) = ḡ (δp(x)) .
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b. ∏
i

f(xi − t) =
1

(2π)n/2
e−

1
2Σi(xi−t)2 =

1
(2π)n/2

e−
1
2 n(x̄−t)2e−

1
2 (n−1)s2

,

so

δp(x) =
(
√

n/
√

2π)
∫∞
−∞ te−

1
2 n(x̄−t)2dt

(
√

n/
√

2π)
∫∞
−∞ e−

1
2 n(x̄−t)2 dt

=
x̄

1
= x̄.

c. ∏
i

f(xi − t) =
∏

i

I

(
t− 1

2
≤ xi ≤ t +

1
2

)
= I

(
x(n) −

1
2
≤ t ≤ x(1) +

1
2

)
,

so

δp(x) =

∫ x(1)+1/2

x(n)+1/2 t dt∫ x(1)+1/2

x(n)+1/2 1 dt
=

x(1) + x(n)

2
.

7.37 To find a best unbiased estimator of θ, first find a complete sufficient statistic. The joint pdf is

f(x|θ) =
(

1
2θ

)n∏
i

I(−θ,θ)(xi) =
(

1
2θ

)n

I[0,θ)(max
i
|xi|).

By the Factorization Theorem, maxi |Xi| is a sufficient statistic. To check that it is a complete
sufficient statistic, let Y = maxi|Xi|. Note that the pdf of Y is fY (y) = nyn−1/θn, 0 < y < θ.
Suppose g(y) is a function such that

E g(Y ) =
∫ θ

0

nyn−1

θn
g(y) dy = 0, for all θ.

Taking derivatives shows that θn−1g(θ) = 0, for all θ. So g(θ) = 0, for all θ, and Y = maxi|Xi|
is a complete sufficient statistic. Now

EY =
∫ θ

0

y
nyn−1

θn
dy =

n

n + 1
θ ⇒ E

(
n + 1

n
Y

)
= θ.

Therefore n+1
n maxi|Xi| is a best unbiased estimator for θ because it is a function of a complete

sufficient statistic. (Note that
(
X(1), X(n)

)
is not a minimal sufficient statistic (recall Exercise

5.36). It is for θ < Xi < 2θ, −2θ < Xi < θ, 4θ < Xi < 6θ, etc., but not when the range is
symmetric about zero. Then maxi|Xi| is minimal sufficient.)

7.38 Use Corollary 7.3.15.

a.

∂

∂θ
logL(θ|x) =

∂

∂θ
log
∏

i

θxθ−1
i =

∂

∂θ

∑
i

[logθ + (θ−1) logxi]

=
∑

i

[
1
θ

+ logxi

]
= −n

[
−
∑

i

logxi

n
−1

θ

]
.

Thus, −
∑

i log Xi/n is the UMVUE of 1/θ and attains the Cramér-Rao bound.
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b.

∂

∂θ
logL(θ|x) =

∂

∂θ
log
∏

i

logθ

θ−1
θxi =

∂

∂θ

∑
i

[loglogθ − log(θ−1) + xilogθ]

=
∑

i

(
1

θlogθ
− 1

θ−1

)
+

1
θ

∑
i

xi =
n

θlogθ
− n

θ−1
+

nx̄

θ

=
n

θ

[
x̄−
(

θ

θ−1
− 1

logθ

)]
.

Thus, X̄ is the UMVUE of θ
θ−1 −

1
logθ and attains the Cramér-Rao lower bound.

Note: We claim that if ∂
∂θ log L(θ|X) = a(θ)[W (X) − τ(θ)], then EW (X) = τ(θ), because

under the condition of the Cramér-Rao Theorem, E ∂
∂θ log L(θ|x) = 0. To be rigorous, we

need to check the “interchange differentiation and integration“ condition. Both (a) and (b)
are exponential families, and this condition is satisfied for all exponential families.

7.39

Eθ

[
∂2

∂θ2
log f(X|θ)

]
= Eθ

[
∂

∂θ

(
∂

∂θ
log f(X|θ)

)]

= Eθ

[
∂

∂θ

(
∂
∂θf(X|θ)
f(X|θ)

)]
= Eθ

 ∂2

∂θ2 f(X|θ)
f(X|θ)

−

(
∂
∂θf(X|θ)
f(X|θ)

)2
 .

Now consider the first term:

Eθ

[
∂2

∂θ2 f(X|θ)
f(X|θ)

]
=

∫ [
∂2

∂θ2
f(x|θ)

]
dx =

d

dθ

∫
∂

∂θ
f(x|θ) dx (assumption)

=
d

dθ
Eθ

[
∂

∂θ
log f(X|θ)

]
= 0, (7.3.8)

and the identity is proved.
7.40

∂

∂θ
logL(θ|x) =

∂

∂p
log
∏

i

pxi(1− p)1−xi =
∂

∂p

∑
i

xi log p + (1− xi) log(1− p)

=
∑

i

[
xi

p
−

(1− xi)
1−p

]
=

nx̄

p
− n− nx̄

1−p
=

n

p(1− p)
[x̄− p].

By Corollary 7.3.15, X̄ is the UMVUE of p and attains the Cramér-Rao lower bound. Alter-
natively, we could calculate

−nEθ

(
∂2

∂θ2
logf(X|θ)

)
= −nE

(
∂2

∂p2
log
[
pX(1− p)1−X

])
= −nE

(
∂2

∂p2
[Xlogp + (1−X) log(1− p)]

)
= −nE

(
∂

∂p

[
X

p
− (1−X)

1−p

])
= −nE

(
−X

p2
− 1−X

(1− p)2

)

= −n

(
−1

p
− 1

1−p

)
=

n

p(1− p)
.
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Then using τ(θ) = p and τ ′(θ) = 1,

τ ′(θ)
−nEθ

(
∂2

∂θ2 logf(X|θ)
) =

1
n/p(1− p)

=
p(1− p)

n
= VarX̄.

We know that EX̄ = p. Thus, X̄ attains the Cramér-Rao bound.
7.41 a. E (

∑
i aiXi) =

∑
i aiEXi =

∑
i aiµ = µ

∑
i ai = µ. Hence the estimator is unbiased.

b. Var (
∑

i aiXi) =
∑

i a2
i VarXi =

∑
i a2

i σ
2 = σ2

∑
i a2

i . Therefore, we need to minimize
∑

i a2
i ,

subject to the constraint
∑

i ai = 1. Add and subtract the mean of the ai, 1/n, to get

∑
i

a2
i =

∑
i

[(
ai −

1
n

)
+

1
n

]2
=
∑

i

(
ai −

1
n

)2

+
1
n

,

because the cross-term is zero. Hence,
∑

i a2
i is minimized by choosing ai = 1/n for all i.

Thus,
∑

i(1/n)Xi = X̄ has the minimum variance among all linear unbiased estimators.
7.43 a. This one is real hard - it was taken from an American Statistician article, but the proof is

not there. A cryptic version of the proof is in Tukey (Approximate Weights, Ann. Math.
Statist. 1948, 91-92); here is a more detailed version.
Let qi = q∗i (1 + λti) with 0 ≤ λ ≤ 1 and |ti| ≤ 1. Recall that q∗i = (1/σ2

i )/
∑

j(1/σ2
j ) and

VarW ∗ = 1/
∑

j(1/σ2
j ). Then

Var

(
qiWi∑

j qj

)
=

1
(
∑

j qj)2
∑

i

qiσ
2
i

=
1

[
∑

j q∗j (1 + λtj)]2
∑

i

q∗2i (1 + λti)2σ2
i

=
1

[
∑

j q∗j (1 + λtj)]2
∑

j(1/σ2
j )

∑
i

q∗i (1 + λti)2,

using the definition of q∗i . Now write∑
i

q∗i (1 + λti)2 = 1 + 2λ
∑

j

qjtj + λ2
∑

j

qjt
2
j = [1 + λ

∑
j

qjtj ]2 + λ2[
∑

j

qjt
2
j − (

∑
j

qjtj)2],

where we used the fact that
∑

j q∗j = 1. Now since

[
∑

j

q∗j (1 + λtj)]2 = [1 + λ
∑

j

qjtj ]2,

Var

(
qiWi∑

j qj

)
=

1∑
j(1/σ2

j )

[
1 +

λ2[
∑

j qjt
2
j − (

∑
j qjtj)2]

[1 + λ
∑

j qjtj ]2

]

≤ 1∑
j(1/σ2

j )

[
1 +

λ2[1− (
∑

j qjtj)2]
[1 + λ

∑
j qjtj ]2

]
,

since
∑

j qjt
2
j ≤ 1. Now let T =

∑
j qjtj , and

Var

(
qiWi∑

j qj

)
≤ 1∑

j(1/σ2
j )

[
1 +

λ2[1− T 2]
[1 + λT ]2

]
,
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and the right hand side is maximized at T = −λ, with maximizing value

Var

(
qiWi∑

j qj

)
≤ 1∑

j(1/σ2
j )

[
1 +

λ2[1− λ2]
[1− λ2]2

]
= VarW ∗ 1

1− λ2
.

Bloch and Moses (1988) define λ as the solution to

bmax/bmin =
1 + λ

1− λ
,

where bi/bj are the ratio of the normalized weights which, in the present notation, is

bi/bj = (1 + λti)/(1 + λtj).

The right hand side is maximized by taking ti as large as possible and tj as small as possible,
and setting ti = 1 and tj = −1 (the extremes) yields the Bloch and Moses (1988) solution.

b.

bi =
1/k

(1/σ2
i )
/(∑

j 1/σ2
j

) =
σ2

i

k

∑
j

1/σ2
j .

Thus,

bmax =
σ2

max

k

∑
j

1/σ2
j and bmin =

σ2
min

k

∑
j

1/σ2
j

and B = bmax/bmin = σ2
max/σ2

min. Solving B = (1 + λ)/(1− λ) yields λ = (B − 1)/(B + 1).
Substituting this into Tukey’s inequality yields

VarW

VarW ∗ ≤
(B + 1)2

4B
=

((σ2
max/σ2

min) + 1)2

4(σ2
max/σ2

min)
.

7.44
∑

i Xi is a complete sufficient statistic for θ when Xi ∼ n(θ, 1). X̄2 − 1/n is a function of∑
i Xi. Therefore, by Theorem 7.3.23, X̄2 − 1/n is the unique best unbiased estimator of its

expectation.

E
(

X̄2− 1
n

)
= Var X̄ + (E X̄)2 − 1

n
=

1
n

+ θ2 − 1
n

= θ2.

Therefore, X̄2 − 1/n is the UMVUE of θ2. We will calculate

Var
(
X̄2−1/n

)
= Var(X̄2) = E(X̄4)− [E(X̄2)]2, where X̄ ∼ n (θ, 1/n) ,

but first we derive some general formulas that will also be useful in later exercises. Let Y ∼
n(θ, σ2). Then here are formulas for EY 4 and VarY 2.

EY 4 = E[Y 3(Y − θ + θ)] = EY 3(Y − θ) + EY 3θ = E Y 3(Y − θ) + θEY 3.

EY 3(Y−θ) = σ2E(3Y 2) = σ23
(
σ2+θ2

)
= 3σ4 + 3θ2σ2. (Stein’s Lemma)

θEY 3 = θ
(
3θσ2 + θ3

)
= 3θ2σ2 + θ4. (Example 3.6.6)

VarY 2 = 3σ4 + 6θ2σ2 + θ4 − (σ2 + θ2)2 = 2σ4 + 4θ2σ2.

Thus,

Var
(

X̄2 − 1
n

)
= Var X̄2 = 2

1
n2

+ 4θ2 1
n

>
4θ2

n
.
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To calculate the Cramér-Rao lower bound, we have

Eθ

(
∂2logf(X|θ)

∂θ2

)
= Eθ

(
∂2

∂θ2
log

1√
2π

e−(X−θ)2/2

)
= Eθ

(
∂2

∂θ2

[
log(2π)−1/2−1

2
(X−θ)2

])
= Eθ

(
∂

∂θ
(X−θ)

)
= −1,

and τ(θ) = θ2, [τ ′(θ)]2 = (2θ)2 = 4θ2 so the Cramér-Rao Lower Bound for estimating θ2 is

[τ ′(θ)]2

−nEθ

(
∂2

∂θ2 logf(X|θ)
) =

4θ2

n
.

Thus, the UMVUE of θ2 does not attain the Cramér-Rao bound. (However, the ratio of the
variance and the lower bound → 1 as n →∞.)

7.45 a. Because ES2 = σ2, bias(aS2) = E(aS2)− σ2 = (a− 1)σ2. Hence,

MSE(aS2) = Var(aS2) + bias(aS2)2 = a2Var(S2) + (a− 1)2σ4.

b. There were two typos in early printings; κ = E[X − µ]4/σ4 and

Var(S2) =
1
n

(
κ− n− 3

n− 1

)
σ4.

See Exercise 5.8b for the proof.

c. There was a typo in early printings; under normality κ = 3. Under normality we have

κ =
E[X − µ]4

σ4
= E

[
X − µ

σ

]4
= E Z4,

where Z ∼ n(0, 1). Now, using Lemma 3.6.5 with g(z) = z3 we have

κ = EZ4 = E g(Z)Z = 1E(3Z2) = 3EZ2 = 3.

To minimize MSE(S2) in general, write Var(S2) = Bσ4. Then minimizing MSE(S2) is
equivalent to minimizing a2B + (a − 1)2. Set the derivative of this equal to 0 (B is not a
function of a) to obtain the minimizing value of a is 1/(B + 1). Using the expression in part
(b), under normality the minimizing value of a is

1
B + 1

=
1

1
n

(
3− n−3

n−1

)
+ 1

=
n− 1
n + 1

.

d. There was a typo in early printings; the minimizing a is

a =
n− 1

(n + 1) + (κ−3)(n−1)
n

.

To obtain this simply calculate 1/(B + 1) with (from part (b))

B =
1
n

(
κ− n− 3

n− 1

)
.
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e. Using the expression for a in part (d), if κ = 3 the second term in the denominator is
zero and a = (n − 1)/(n + 1), the normal result from part (c). If κ < 3, the second term
in the denominator is negative. Because we are dividing by a smaller value, we have a >
(n− 1)/(n+1). Because Var(S2) = Bσ4, B > 0, and, hence, a = 1/(B +1) < 1. Similarly, if
κ > 3, the second term in the denominator is positive. Because we are dividing by a larger
value, we have a < (n− 1)/(n + 1).

7.46 a. For the uniform(θ, 2θ) distribution we have EX = (2θ + θ)/2 = 3θ/2. So we solve 3θ/2 = X̄
for θ to obtain the method of moments estimator θ̃ = 2X̄/3.

b. Let x(1), . . . , x(n) denote the observed order statistics. Then, the likelihood function is

L(θ|x) =
1
θn

I[x(n)/2,x(1)](θ).

Because 1/θn is decreasing, this is maximized at θ̂ = x(n)/2. So θ̂ = X(n)/2 is the MLE. Use
the pdf of X(n) to calculate EX(n) = 2n+1

n+1 θ. So E θ̂ = 2n+1
2n+2θ, and if k = (2n + 2)/(2n + 1),

E kθ̂ = θ.
c. From Exercise 6.23, a minimal sufficient statistic for θ is (X(1), X(n)). θ̃ is not a function

of this minimal sufficient statistic. So by the Rao-Blackwell Theorem, E(θ̃|X(1), X(n)) is an
unbiased estimator of θ (θ̃ is unbiased) with smaller variance than θ̃. The MLE is a function
of (X(1), X(n)), so it can not be improved with the Rao-Blackwell Theorem.

d. θ̃ = 2(1.16)/3 = .7733 and θ̂ = 1.33/2 = .6650.
7.47 Xi ∼ n(r, σ2), so X̄ ∼ n(r, σ2/n) and E X̄2 = r2 + σ2/n. Thus E [(πX̄2 − πσ2/n)] = πr2 is

best unbiased because X̄ is a complete sufficient statistic. If σ2 is unknown replace it with s2

and the conclusion still holds.
7.48 a. The Cramér-Rao Lower Bound for unbiased estimates of p is[

d
dpp
]2

−nE d2

dp2 logL(p|X)
=

1

−nE
{

d2

dp2 log[pX(1− p)1−X ]
} =

1

−nE
{
−X

p2− (1−X)

(1−p)2

} =
p(1− p)

n
,

because EX = p. The MLE of p is p̂ =
∑

i Xi/n, with E p̂ = p and Var p̂ = p(1−p)/n. Thus
p̂ attains the CRLB and is the best unbiased estimator of p.

b. By independence, E(X1X2X3X4) =
∏

i EXi = p4, so the estimator is unbiased. Because∑
i Xi is a complete sufficient statistic, Theorems 7.3.17 and 7.3.23 imply that E(X1X2X3X4|∑
i Xi) is the best unbiased estimator of p4. Evaluating this yields

E

(
X1X2X3X4

∣∣∣∣∣∑
i

Xi= t

)
=

P (X1= X2= X3= X4= 1,
∑n

i=5 Xi= t− 4)
P (
∑

i Xi= t)

=
p4
(
n−4
t−4

)
pt−4(1− p)n−t(

n
t

)
pt(1− p)n−t =

(
n− 4
t− 4

)/(n

t

)
,

for t ≥ 4. For t < 4 one of the Xis must be zero, so the estimator is E(X1X2X3X4|
∑

i Xi =
t) = 0.

7.49 a. From Theorem 5.5.9, Y = X(1) has pdf

fY (y) =
n!

(n− 1)!
1
λ

e−y/λ
[
1−(1− e

−y/λ)
]n−1

=
n

λ
e−ny/λ.

Thus Y ∼ exponential(λ/n) so EY = λ/n and nY is an unbiased estimator of λ.
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b. Because fX(x) is in the exponential family,
∑

i Xi is a complete sufficient statistic and
E (nX(1)|

∑
i Xi) is the best unbiased estimator of λ. Because E (

∑
i Xi) = nλ, we must

have E (nX(1)|
∑

i Xi) =
∑

i Xi/n by completeness. Of course, any function of
∑

i Xi that
is an unbiased estimator of λ is the best unbiased estimator of λ. Thus, we know directly
that because E(

∑
i Xi) = nλ,

∑
i Xi/n is the best unbiased estimator of λ.

c. From part (a), λ̂ = 601.2 and from part (b) λ̂ = 128.8. Maybe the exponential model is not
a good assumption.

7.50 a. E(aX̄ + (1 − a)cS) = aE X̄ + (1 − a)E(cS) = aθ + (1 − a)θ = θ. So aX̄ + (1 − a)cS is an
unbiased estimator of θ.

b. Because X̄ and S2 are independent for this normal model, Var(aX̄+(1−a)cS) = a2V1+(1−
a)2V2, where V1 = VarX̄ = θ2/n and V2 = Var(cS) = c2ES2 − θ2 = c2θ2 − θ2 = (c2 − 1)θ2.
Use calculus to show that this quadratic function of a is minimized at

a =
V2

V1+V 2
=

(c2−1)θ2

((1/n) + c
2−1)θ2

=
(c2−1)

((1/n) + c
2−1)

.

c. Use the factorization in Example 6.2.9, with the special values µ = θ and σ2 = θ2, to show
that (X̄, S2) is sufficient. E(X̄ − cS) = θ − θ = 0, for all θ. So X̄ − cS is a nonzero function
of (X̄, S2) whose expected value is always zero. Thus (X̄, S2) is not complete.

7.51 a. Straightforward calculation gives:

E
[
θ − (a1X̄ + a2cS)

]2 = a2
1Var X̄ + a2

2c
2VarS + θ2(a1 + a2 − 1)2.

Because Var X̄ = θ2/n and VarS = E S2 − (ES)2 = θ2
(

c2−1
c2

)
, we have

E
[
θ − (a1X̄ + a2cS)

]2 = θ2
[
a2
1

/
n + a2

2(c
2 − 1) + (a1 + a2 − 1)2

]
,

and we only need minimize the expression in square brackets, which is independent of θ.
Differentiating yields a2 =

[
(n + 1)c2 − n

]−1 and a1 = 1−
[
(n + 1)c2 − n

]−1.
b. The estimator T ∗ has minimum MSE over a class of estimators that contain those in Exercise

7.50.
c. Because θ > 0, restricting T ∗ ≥ 0 will improve the MSE.
d. No. It does not fit the definition of either one.

7.52 a. Because the Poisson family is an exponential family with t(x) = x,
∑

i Xi is a complete
sufficient statistic. Any function of

∑
i Xi that is an unbiased estimator of λ is the unique

best unbiased estimator of λ. Because X̄ is a function of
∑

i Xi and E X̄ = λ, X̄ is the best
unbiased estimator of λ.

b. S2 is an unbiased estimator of the population variance, that is, ES2 = λ. X̄ is a one-to-one
function of

∑
i Xi. So X̄ is also a complete sufficient statistic. Thus, E(S2|X̄) is an unbiased

estimator of λ and, by Theorem 7.3.23, it is also the unique best unbiased estimator of λ.
Therefore E(S2|X̄) = X̄. Then we have

VarS2 = Var
(
E(S2|X̄)

)
+ EVar(S2|X̄) = Var X̄ + EVar(S2|X̄),

so Var S2 > Var X̄.
c. We formulate a general theorem. Let T (X) be a complete sufficient statistic, and let T ′(X) be

any statistic other than T (X) such that ET (X) = ET ′(X). Then E[T ′(X)|T (X)] = T (X)
and VarT ′(X) > VarT (X).
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7.53 Let a be a constant and suppose Covθ0(W,U) > 0. Then

Varθ0(W + aU) = Varθ0W + a2Varθ0U + 2aCovθ0(W,U).

Choose a ∈
(
−2Covθ0(W,U)

/
Varθ0U, 0

)
. Then Varθ0(W + aU) < Varθ0W , so W cannot be

best unbiased.
7.55 All three parts can be solved by this general method. Suppose X ∼ f(x|θ) = c(θ)m(x), a < x <

θ. Then 1/c(θ) =
∫ θ

a
m(x) dx, and the cdf of X is F (x) = c(θ)/c(x), a < x < θ. Let Y = X(n) be

the largest order statistic. Arguing as in Example 6.2.23 we see that Y is a complete sufficient
statistic. Thus, any function T (Y ) that is an unbiased estimator of h(θ) is the best unbiased
estimator of h(θ). By Theorem 5.4.4 the pdf of Y is g(y|θ) = nm(y)c(θ)n/c(y)n−1, a < y < θ.
Consider the equations∫ θ

a

f(x|θ) dx = 1 and
∫ θ

a

T (y)g(y|θ) dy = h(θ),

which are equivalent to∫ θ

a

m(x) dx =
1

c(θ)
and

∫ θ

a

T (y)nm(y)
c(y)n−1

dy =
h(θ)
c(θ)n

.

Differentiating both sides of these two equations with respect to θ and using the Fundamental
Theorem of Calculus yields

m(θ) = − c′(θ)
c(θ)2

and
T (θ)nm(θ)

c(θ)n−1
=

c(θ)nh′(θ)− h(θ)nc(θ)n−1c′(θ)
c(θ)2n

.

Change θs to ys and solve these two equations for T (y) to get the best unbiased estimator of
h(θ) is

T (y) = h(y) +
h′(y)

nm(y)c(y)
.

For h(θ) = θr, h′(θ) = rθr−1.

a. For this pdf, m(x) = 1 and c(θ) = 1/θ. Hence

T (y) = yr +
ryr−1

n(1/y)
=

n + r

n
yr.

b. If θ is the lower endpoint of the support, the smallest order statistic Y = X(1) is a complete
sufficient statistic. Arguing as above yields the best unbiased estimator of h(θ) is

T (y) = h(y)− h′(y)
nm(y)c(y)

.

For this pdf, m(x) = e−x and c(θ) = eθ. Hence

T (y) = yr − ryr−1

ne−yey
= yr − ryr−1

n
.

c. For this pdf, m(x) = e−x and c(θ) = 1/(e−θ − e−b). Hence

T (y) = yr − ryr−1

ne−y
(e−y − e−b) = yr − ryr−1(1− e−(b−y))

n
.
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7.56 Because T is sufficient, φ(T ) = E[h(X1, . . . , Xn)|T ] is a function only of T . That is, φ(T ) is an
estimator. If E h(X1, . . . , Xn) = τ(θ), then

Eh(X1, · · · , Xn) = E [E (h(X1, . . . , Xn)|T )] = τ(θ),

so φ(T ) is an unbiased estimator of τ(θ). By Theorem 7.3.23, φ(T ) is the best unbiased estimator
of τ(θ).

7.57 a. T is a Bernoulli random variable. Hence,

EpT = Pp(T = 1) = Pp

(
n∑

i=1

Xi > Xn+1

)
= h(p).

b.
∑n+1

i=1 Xi is a complete sufficient statistic for θ, so E
(
T
∣∣∣∑n+1

i=1 Xi

)
is the best unbiased

estimator of h(p). We have

E

(
T

∣∣∣∣∣
n+1∑
i=1

Xi = y

)
= P

(
n∑

i=1

Xi > Xn+1

∣∣∣∣∣
n+1∑
i=1

Xi = y

)

= P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y

)/
P

(
n+1∑
i=1

Xi = y

)
.

The denominator equals
(
n+1

y

)
py(1− p)n+1−y. If y = 0 the numerator is

P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = 0

)
= 0.

If y > 0 the numerator is

P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y, Xn+1 = 0

)
+ P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y, Xn+1 = 1

)

which equals

P

(
n∑

i=1

Xi > 0,
n∑

i=1

Xi = y

)
P (Xn+1 = 0) + P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
P (Xn+1 = 1).

For all y > 0,

P

(
n∑

i=1

Xi > 0,
n∑

i=1

Xi = y

)
= P

(
n∑

i=1

Xi = y

)
=
(

n

y

)
py(1− p)n−y.

If y = 1 or 2, then

P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
= 0.

And if y > 2, then

P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
= P

(
n∑

i=1

Xi = y − 1

)
=
(

n

y − 1

)
py−1(1− p)n−y+1.
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Therefore, the UMVUE is

E

(
T

∣∣∣∣∣
n+1∑
i=1

Xi = y

)
=


0 if y = 0
(n

y)py(1−p)n−y(1−p)

(n+1
y )py(1−p)n−y+1 = (n

y)
(n+1

y ) = 1
(n+1)(n+1−y) if y = 1 or 2

((n
y)+( n

y−1))py(1−p)n−y+1

(n+1
y )py(1−p)n−y+1 = (n

y)+( n
y−1)

(n+1
y ) = 1 if y > 2.

7.59 We know T = (n− 1)S2/σ2 ∼ χ2
n−1. Then

ET p/2 =
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

t
p+n−1

2 −1e−
t
2 dt =

2
p
2 Γ
(

p+n−1
2

)
Γ
(

n−1
2

) = Cp,n.

Thus

E

(
(n− 1)S2

σ2

)p/2

= Cp,n,

so (n − 1)p/2Sp
/

Cp,n is an unbiased estimator of σp. From Theorem 6.2.25, (X̄, S2) is a

complete, sufficient statistic. The unbiased estimator (n−1)p/2Sp
/

Cp,n is a function of (X̄, S2).
Hence, it is the best unbiased estimator.

7.61 The pdf for Y ∼ χ2
ν is

f(y) =
1

Γ(ν/2)2ν/2
yν/2−1e−y/2.

Thus the pdf for S2 = σ2Y/ν is

g(s2) =
ν

σ2

1
Γ(ν/2)2ν/2

(
s2ν

σ2

)ν/2−1

e−s2ν/(2σ2).

Thus, the log-likelihood has the form (gathering together constants that do not depend on s2

or σ2)

log L(σ2|s2) = log
(

1
σ2

)
+ K log

(
s2

σ2

)
−K ′ s

2

σ2
+ K ′′,

where K > 0 and K ′ > 0.
The loss function in Example 7.3.27 is

L(σ2, a) =
a

σ2
− log

( a

σ2

)
− 1,

so the loss of an estimator is the negative of its likelihood.
7.63 Let a = τ2/(τ2 + 1), so the Bayes estimator is δπ(x) = ax. Then R(µ, δπ) = (a− 1)2µ2 + a2.

As τ2 increases, R(µ, δπ) becomes flatter.
7.65 a. Figure omitted.

b. The posterior expected loss is E (L(θ, a)|x) = ecaE e−cθ−cE(a−θ)−1, where the expectation
is with respect to π(θ|x). Then

d

da
E (L(θ, a)|x) = cecaE e−cθ − c

set= 0,

and a = − 1
c log E e−cθ is the solution. The second derivative is positive, so this is the mini-

mum.
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c. π(θ|x) = n(x̄, σ2/n). So, substituting into the formula for a normal mgf, we find E e−cθ =
e−cx̄+σ2c2/2n, and the LINEX posterior loss is

E (L(θ, a)|x) = ec(a−x̄)+σ2c2/2n − c(a− x̄)− 1.

Substitute E e−cθ = e−cx̄+σ2c2/2n into the formula in part (b) to find the Bayes rule is
x̄− cσ2/2n.

d. For an estimator X̄ + b, the LINEX posterior loss (from part (c)) is

E (L(θ, x̄ + b)|x) = ecbec2σ2/2n − cb− 1.

For X̄ the expected loss is ec2σ2/2n − 1, and for the Bayes estimator (b = −cσ2/2n) the
expected loss is c2σ2/2n. The marginal distribution of X̄ is m(x̄) = 1, so the Bayes risk is
infinite for any estimator of the form X̄ + b.

e. For X̄ + b, the squared error risk is E
[
(X̄ + b)− θ

]2 = σ2/n + b2, so X̄ is better than the
Bayes estimator. The Bayes risk is infinite for both estimators.

7.66 Let S =
∑

i Xi ∼ binomial(n, θ).

a. E θ̂2 = ES2

n2 = 1
n2 ES2 = 1

n2 (nθ(1− θ) + (nθ)2) = θ
n + n−1

n θ2.

b. T
(i)
n =

(∑
j 6=i Xj

)2/
(n − 1)2. For S values of i, T

(i)
n = (S − 1)2/(n − 1)2 because the Xi

that is dropped out equals 1. For the other n − S values of i, T
(i)
n = S2/(n − 1)2 because

the Xi that is dropped out equals 0. Thus we can write the estimator as

JK(Tn) = n
S2

n2
− n− 1

n

(
S

(S − 1)2

(n− 1)2
+ (n− S)

S2

(n− 1)2

)
=

S2−S

n(n− 1)
.

c. E JK(Tn) = 1
n(n−1) (nθ(1− θ) + (nθ)2 − nθ) = n2θ2−nθ2

n(n−1) = θ2.

d. For this binomial model, S is a complete sufficient statistic. Because JK(Tn) is a function of
S that is an unbiased estimator of θ2, it is the best unbiased estimator of θ2.


