Chapter 7

Point Estimation

7.1 For each value of , the MLE @ is the value of § that maximizes f(x|f). These values are in the
following table.

z 0 1 2 3 4
1

0 1 20r3 3 3

At x =2, f(z]2) = f(x|3) = 1/4 are both maxima, so both § = 2 or § = 3 are MLEs.
7.2 a.

a—1
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10 = e = e lnm] e

logL(Blz) = —logT'(a)"” —nalogf + (a—1)log [H a:z] - Zéxl
i=1
OlogL _na " DT
o B B

Set the partial derivative equal to 0 and solve for 3 to obtain § = > xi/(na). To check
that this is a maximum, calculate

0?logL no 2y

na (na)? a 2(na)? _ (na)32 <o.

2 T 32 T 3 T 2 2
08 lp—p B B pmp (i)™ (i) (22 wi)
Because B is the unique point where the derivative is 0 and it is a local maximum, it is a

global maximum. That is, B is the MLE.
b. Now the likelihood function is

n a—1
L(a, flz) = sz] e MiwlP,
i=1
the same as in part (a) except « and 3 are both variables. There is no analytic form for the
MLESs, The values & and 3 that maximize L. One approach to finding & and 8 would be to
numerically maximize the function of two arguments. But it is usually best to do as much
as possible analytically, first, and perhaps reduce the complexity of the numerical problem.
From part (a), for each fixed value of «, the value of § that maximizes L is ), z;/(na).
Substitute this into L. Then we just need to maximize the function of the one variable «
given by

_
F(a)nﬁna

a—1
1 - —Sms [ (Siwi ) (na))
- 4 o H xi e 1 1
L(a)™ (32, @i/ (na)) |J=1 ]

1 n a—1 o
= T o m/ma)™ lnx] o
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For the given data, n = 14 and ), x; = 323.6. Many computer programs can be used
to maximize this function. From PROC NLIN in SAS we obtain & = 514.219 and, hence,

8= 14(2%1319) = .0450.

7.3 The log function is a strictly monotone increasing function. Therefore, L(6|x) > L(6'|x) if and
only if log L(#|x) > log L(#'|x). So the value 6 that maximizes log L(f|x) is the same as the
value that maximizes L(6]x).

7.5 a. The value Z solves the equation

(1-p)"= H(l —xiz),

i

where 0 < 2 < (max; ;)" !. Let k= greatest integer less than or equal to 1/2. Then from

Example 7.2.9, k must satisfy

k(1 —p)]" > H(k —z;)  and  [(k+1)1-p]" < H(k +1-— ).

Because the right-hand side of the first equation is decreasing in 2, and because k < 1 /% (so
2<1/k) and k+1 > 1/%, k must satisfy the two inequalities. Thus & is the MLE.

b. For p = 1/2, we must solve (%)4 = (1 —202)(1 — 2)(1 — 19z), which can be reduced to the
cubic equation —3802% + 41922 — 40z + 15/16 = 0. The roots are .9998, .0646, and .0381,
leading to candidates of 1, 15, and 26 for k. The first two are less than max; x;. Thus k = 26.

7.6 a. f(x]0) =11, 01’;21[9,00)(xi) =(IL=z) 0" 119,00y (7(1)). Thus, X (1) is a sufficient statistic for
0 by the Factorization Theorem.

b. L(0]x) = 0™ (T[; 2; 2) Ijg,00)(z(1)). 0™ is increasing in §. The second term does not involve 6.
So to maximize L(6]x), we want to make 6 as large as possible. But because of the indicator
function, L(0|x) = 0 if @ > x(1y. Thus, 6 = x(y).

c. EX = fgoo Gz~ dz = 6 logz|,” = co. Thus the method of moments estimator of 6 does not
exist. (This is the Pareto distribution with o =6, 5 = 1.)

77 L(0x) = 1,0 < x; < 1, and L(1|x) = [[;1/(2y/x;), 0 < x; < 1. Thus, the MLE is 0 if

1>T1,1/(2/2;), and the MLE is 1 if 1 < [[, 1/(2/@:).

7.8 a. EX? = Var X + u? = 0%. Therefore X? is an unbiased estimator of o2.

b.

1 P
Lo|x) = ——e /7). logL(o|x) = log(2n)~'/2 —logo — 2%/(207).
V2mo
logL 1 2?
agf - *;+%’:'0:>&X2:&3 =6 =VX2=|X|.
0%logL —32%0% 1

= —, which is negative at 6 = |x|.
do? o6 + o2 & ]
Thus, & = |z| is a local maximum. Because it is the only place where the first derivative is
zero, it is also a global maximum.
c. Because EX = 0 is known, just equate EX? =02 = 1 5™ X2 = X? = 5 = [X].
7.9 This is a uniform(0, #) model. So EX = (0 + ¢)/2 = 0/2. The method of moments estimator
is the solution to the equation /2 = X, that is, § = 2X. Because 6 is a simple function of the
sample mean, its mean and variance are easy to calculate. We have

0?/12  6*

E§:2EX:2EX:2Q:9, and Varf =4Var X =4 .
2 n 3n
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The likelihood function is

1 1
L(0]x) = H 510 o)(z:) = = on —I10,01(% () ) 1[0,00) (% (1))
i=1

where 21y and x(,) are the smallest and largest order statistics. For § > z(,), L = 1/0", a
decreasing function. So for 6 > x(n), L is maximized at 6 = T(n).- L =0 for § < x(y,. So the

overall maximum, the MLE, is 6 = X(n)- The pdf of 6= X(n) is nz"~ Lo, 0 < § 0. This
can be used to calculate

. . 92
" 9 BR2=—"10 and Vard= "
n+1 2

Ef = S L —
n+ (n+2)(n+1)

6 is an unbiased estimator of 0; 0 is a biased estimator. If n is large, the bias is not large
because n/(n + 1) is close to one. But if n is small, the bias is quite large. On the other hand,
Var < Var for all 6. So, if n is large, 0 is probably preferable to 0.

7.10 a. f(x]0) =T, geaf ™ op(2i) = (;Ta) (ILi 20)™ ™" T(—oo 51 (@) Tj0,00) (1)) = L, Blx). B
the Factorization Theorem, (], X4, X(5)) are sufficient.

b. For any fixed a, L(a, B|x) = 0 if 3 < x(,), and L(«, #|x) a decreasing function of 3 if
B = x(ny. Thus, X(,) is the MLE of 3. For the MLE of « calculate

0 0 n
—logL = — |nl —nal 1)1 | =——nl 1 i
50108 %0 ln oga—nalogf+(a—1) ogl?[a:,] S og 8+ ogIZIxZ

Set the derivative equal to zero and use B = X(n) to obtain

-1
n 1

Y= = |[— log X, — logX; .

& nlog X o~ o8 T, X, lnzi:(og (n)— log )]

The second derivative is —n/a? < 0, so this is the MLE.
. X(ny =25.0, log[], X; = 3, log X; = 43.95 = 3 = 25.0, & = 12.59.

711 a.
0—1
fxlo)y = o=t = o (Hu) = L(0x)
i1L—119+911H = 243 loga
75 108 = o5 |nlog Nog | | z:i| = 7 i og ;.

Set the derivative equal to zero and solve for 6 to obtain § = (—+ >, logx;)~!. The second
derivative is —n/6? < 0, so this is the MLE. To calculate the variance of §, note that
Y; = —log X; ~ exponential(1/6), so — >, log X; ~ gamma(n,1/6). Thus 0 = n/T, where
T ~ gamma(n, 1/0). We can either calculate the first and second moments directly, or use
the fact that 6 is inverted gamma (page 51). We have

1 o (1, 4 _ 0" T'(n—1) 0
E* — —4n—1 ot — — .
T I'(n) /0 tt ¢ dt I(n) 61 n—1
n o] n _ 2
Ei _ 0 / 1 L L0t gy 0" T'(n—2) _ 0 7
T2 L'(n) Jo L(n) 672 (n—1)(n-2)
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and thus )

i 0 and Varé:+
n—1 (n—1)°(n—2)

b. Because X ~ beta(6,1), EX = 0/(6 + 1) and the method of moments estimator is the
solution to

6% = 0 as n — .

Ed =

7.12 X, ~ iid Bernoulli(d), 0 < § < 1/2.

a. method of moments:

MLE: In Example 7.2.7, we showed that L(f|x) is increasing for § < T and is decreasing
for 6 > z. Remember that 0 < 6 < 1/2 in this exercise. Therefore, when X < 1/2, X is
the MLE of 6, because X is the overall maximum of L(f|x). When X > 1/2, L(f|x) is an
increasing function of 6 on [0, 1/2] and obtains its maximum at the upper bound of § which
is 1/2. So the MLE is § = min {X,1/2}.

b. The MSE of 6 is MSE() = Var 6 + bias(8)? = (6(1 — 0)/n) + 0> = (1 — 0)/n. There is no
simple formula for MSE(é), but an expression is

MSE(d) = E(@-6)° = Y .(6-0) (Z) 9v(1 — 6)"v

y=0
in/2] , n 2
- y_ ™Yoyl — gyn—v 1_ ™Yoyl — gyn—v
a Z<n ) (y)e (a-orr+ > (2 9) (y)e (=0
y=0 y=[n/2]+1
where Y = Y. X; ~ binomial(n, §) and [n/2] = n/2, if n is even, and [n/2] = (n —1)/2, if

n is odd.

c. Using the notation used in (b), we have
~ _ b (Y 2(n -
MSE(0) = E(X - 0)> =Y (f —9) D)oo

n
y=0

Therefore,

MSE(f) — MSE(f)

Il
S\
~
5]

+
—
| — |
/
S i<
I
N—
|
N

-] oo
)(z-3) Q-

The facts that y/n > 1/2 in the sum and 6 < 1/2 imply that every term in the sum is positive.

Therefore MSE(#) < MSE(6) for every 8 in 0 < 6 < 1/2. (Note: MSE(#) = MSE(f) = 0 at

Il
[
7N
S <

+
DN | =

\

]

>

0=0.)
— 1,—3lei—6] — L1 ,—3%ilzi—0| inimi _ — L
7.13 L(0|x) = [[; se 2 = e 2 , so the MLE minimizes ), [z; — 0] = >, |y — 0],
where (1), ..., Ty, are the order statistics. For z(;) <0 < x(j11),
n J n J

Dolew 0= (0 -2up)+ Y (@@ —0)=2j-n)0 =Y zum+ Y za

i=1 i=1 i=j+1 i=1 i—j+1
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This is a linear function of 6 that decreases for j < n/2 and increases for j > n/2. If n is even,
2j —n = 0 if j = n/2. So the likelihood is constant between x(,, 2y and z((,/2)41), and any
value in this interval is the MLE. Usually the midpoint of this interval is taken as the MLE. If
n is odd, the likelihood is minimized at 6= T((n+1)/2)-

7.15 a. The likelihood is

n/2 T — 2

For fixed A, maximizing with respect to p is equivalent to minimizing the sum in the expo-
nential.

A @-p)? A (/) =) 2@/ =)
dp Z 2, B dp Z x; B Z x; u2’

% % i

Setting this equal to zero is equivalent to setting

R

O\ M
and solving for p yields fi,, = Z. Plugging in this fi,, and maximizing with respect to A
amounts to maximizing an expression of the form A*/2e=*?. Simple calculus yields
(z; — 7)°
2@2.’Ei

« n
)\n—% where b—zi:

Finally,

; 1 1 1 11
DI N R )]

b. This is the same as Exercise 6.27b.
c. This involved algebra can be found in Schwarz and Samanta (1991).

7.17 a. This is a special case of the computation in Exercise 7.2a.
b. Make the transformation

z= (e —1)/z1,w=21 = x1=w,x9=wz+1.
The Jacobean is |w|, and
1
fZ(Z) = /le(w)fX2<wz+ 1)wdw — ﬁe—lm/we—w(l—O—z)/Odw7

where the range of integration is 0 < w < —1/zif 2 < 0, 0 < w < oo if z > 0. Thus,

o) = e [ e 0 it <o
02 fooo we~w1+2)/0 gy, if2>0

Using the fact that [we™"/%dw = —e~"/?(aw + a?), we have

o e(1+z)/29 y—z .
f — 10 o 9z(1+,§)12+ 2 iz <0
Z(z) =€ 1 if >0
(== if z >
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From part (a) we get 6 = 1. From part (b), X5 = 1 implies Z = 0 which, if we use the second
density, gives us 6 = oco.

The posterior distributions are just the normalized likelihood times prior, so of course they
are different.

The usual first two moment equations for X and Y are

_ 1
1
i = EY = - 2 = EY? = 42 2.
y Ky n % Yi oy + Hy
We also need an equation involving p.
1
- E 2y = EXY =Cov(X,Y)+ (EX)(EY) = poxoy + uxpy.

Solving these five equations yields the estimators given. Facts such as

1 2 _ -2 22— ()’ /n i(wi — 2)?
Ly o D= Gl _ Bie=o

n n

are used.

. Two answers are provided. First, use the Miscellanea: For

k
L(0]x) = h(x)c(6) exp (Z wiw)ti(x)) ,

the solutions to the k equations > ", t;(x;) = Eqg (Z?:1 ti(Xj)> =nEgt;(X1),i=1,...,k,
provide the unique MLE for 8. Multiplying out the exponent in the bivariate normal pdf
shows it has this exponential family form with & = 5 and ¢1(z,y) = =, ta(x,y) =y, ts(z,y) =

22, t4(z,y) = y? and t5(r,y) = zy. Setting up the method of moment equations, we have

o= omux, St = (i +0%),
i i
Zyi

inyi = Z[COV(X7Y)+MXMY] = n(poxoy + puxpy).

npy, Yy =l + o),

K2

These are the same equations as in part (a) if you divide each one by n. So the MLEs are
the same as the method of moment estimators in part (a).
For the second answer, use the hint in the book to write

LOx,y) = L(0]x)L(0,x]y)

= (2m0%) Zexp {—%‘12 Z (@, — ,u,X)Z}
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We know that z and 6% = ,(2; — #)?/n maximizes A; the question is whether given oy,
py, and p, does Z, 6% maximize B? Let us first fix 0% and look for jix, that maximizes B.
We have

OlogB poy POY et
o <§ [(yz py) o (z; ux)D 0

- ox
i

poy .
= Y (i—py) = ;E(xi*ux)-

Similarly do the same procedure for L(6|y)L (6, y|x) This implies ) . (z;—pux) = 2% 3. (yi—

Ty

fry ). The solutions fix and fiy therefore must satisfy both equations. If » (y; — ) # O
Yoi(zi — fix) # 0, we will get p=1/p, so we need ), (y; — fty) = 0 and Zl(ffz fx) =

Q@

This implies iix =z and iy = §. (M < 0. Therefore it is maximum). To get 63 take
810 B g A o set
2 S i [ ) | 2 o
ox

= Z<xi—ﬂx><yi—ﬂy> = BN (i i)

Similarly, >, (zi — fix)(yi — fiy) = 5 Z (yi — fiy)?. Thus 6% and 6% must satisfy the
above two equations with fix = X, jiy = Y. This implies

o g »x—;fz Ay — )2
48 DERIIELS PUREPS Ll i B e 1

Therefore, 6% = az (z; — )2, 6% = a)_,(yi — y)* where a is a constant. Combining the
knowledge that (z,1 Y. (z;, — #)?) = (fix, 6% ) maximizes A, we conclude that a = 1/n.
Lastly, we find p, the MLE of p. Write

log L(Z,7,6%, 6%, p|%,y)
1 Z (‘Tz - 5)2 _ 20(% - :f)(yl —7) " (yi - ?j)Q
2(1-p?) = 0% Gx,0y 62

- X0y
A
because 6% = 2 3. (z; — z)? and 6% = 1 3" .(y; — ¥)?. Now
n p
log L = —= log(1 — p?) —
Og 2 Og( p ) 17p2 + 1 p2
and
Olog L n np A(1—p?) 4+ 24p% . 0
O  1—p2 (1-p?)? (1-p?)? '
This implies
At Ap—np—np® )
=0 = A =np(l+p
=) (1+ %) =np(1 +p*)
A I (5 -0y —0)
- P= n o n ; 5’ngy
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7.19 a.

1
L(Aly) H W“D( 55, — Bxi) )
= (2n0%) "2 exp <_%i2 Z (y: —2Bz5y; + 52%2)>

n B2y, x? 1 B
= (2m0?) /2e><p<—2§2z exp —@ny—kﬁ ZmzyL :

By Theorem 6.1.2, (3, Y%, >, 2;Y;) is a sufficient statistic for (8,0?).
b.

n n 1 3 32
logL(B,0%|y) = —5108(2@ - §log02 T 952 ny + 52 Zﬂciyi - ﬁzxf

For a fixed value of o2,

OlogL se A i Tili
Og _0—22 TilYi — 2237: B:Zx:;/

Also,

OlogL 1 9
so it is a maximum. Because /3 does not depend on ¢?, it is the MLE. And B is unbiased

because
_ > BY; _ > i T BT _5

c. B= > aiYi, where a; = z;/ 3, % are constants. By Corollary 4.6.10, £ is normally dis-
tributed with mean (3, and

2
A z; > a7 o?
Vaﬂ:Z“””FZ(;g) ST S
1 i i

=
@

7.20 a.

Sy N
TR PN EP

3

3. Y 1 o no? o
V 2 = V Y7-, = ? = = —.
" (Zi w) T e 2V S T e
Because Y, 27 —nz? =Y, (z; — 2)> > 0, Y, 27 > nz?. Hence,

R 2 2 Y
Var § = 7 §U—Var(21 l).

(In fact, 3 is BLUE (Best Linear Unbiased Estimator of 3), as discussed in Section 11.3.2.)
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7.21 a.

1Y 1 EY;, 1 ~fa

Zg

1 Y; 1 Vary;, o2 1
D
Using Example 4.7.8 with a; = 1/2? we obtain
PR s

Thus,

2 2
A o o 1 1 Y:
Var 8 = < — — = Var— —.
h lef_nzzzzx? nzi:xi
Because g(u) = 1/u? is convex, using Jensen’s Inequality we have
1 1 1
<z =
2" n ; z?

Thus

)

.Y o?  o? 1 1 Y;
Var (&) = T < 2N - S
ar(Zixi nz? — n? Zz:m? arnzi:xi
7.22 a.

— _ \/ﬁ _ (*_92 2 1 _(O_1\2 2
,0) = 0w(0) = n(Z—0)°/(20%) _—_ ,—(0—p)7/27"
£(2.60) = faloyr(0) = L =t

b. Factor the exponent in part (a) as

1
272

(6 1) = — (0 — 6(x))°

202

1
B 724+ 02/n

-n ,_

2 - 2
ﬁ(ﬂf —0) (@ — )7,
where §(x) = (7224 (02 /n)pu) /(7 + 0% /n) and v = (0272/n)/(7+02/n). Let n(a,b) denote
the pdf of a normal distribution with mean a and variance b. The above factorization shows
that
f(x,0) =n(0,%/n) x n(p, 7?) = n(5(x),v?) x n(u, 7> + o2 /n),
where the marginal distribution of X is n(u, 72 +¢2/n) and the posterior distribution of 6|x
is n(d(x), v?). This also completes part (c).
7.23 Let t = s? and 6 = o2, Because (n — 1)5%/0? ~ x2_,, we have

[(n—1)/2]-1
f(t|9> — 1 n- 1t e—(n—l)t/29n — 1.
T(n=1)/2)20 D72 \ @ g

With 7(6) as given, we have (ignoring terms that do not depend on 6)

1 (== 1)t/20 1 1 1/66

N 1 ((n—=1)/2)+a+1 . 71 (TL _ 1)t N l
0 R BN 3lf




7-10 Solutions Manual for Statistical Inference

which we recognize as the kernel of an inverted gamma pdf, IG(a,b), with

—1 -t 177t
a:n2 + and b{(n2)+ﬁ} .

Direct calculation shows that the mean of an IG(a,b) is 1/((a — 1)b), so

—1 1 —1.2 1
SR I

E(0|t) = .
1) lpa-1 2l 4a-1

This is a Bayes estimator of o2.
7.24 For n observations, Y = . X; ~ Poisson(n\).

a. The marginal pmf of Y is

— * (nA)Ye ™ 1 a=1,-X/p
m(y) = /O v TR
ny o D S nY 6 yte
_ v Avto)-1lo~5mmdy, = — T ( ) .
y!F(a)ﬂo‘/o ‘ Jr@pe @ g
Thus,

(y+e)—1,~ 575D
T(Aly) = FlN)7(Y) = A ‘ + ~ gamima <y+04, ’ ) .

m(y) I(y+a) (%)Ha np+1
b.
B = G+a)tr = oyt —(ad)
2
Var(Ay) = (y—&—oz)(n;_H)Z.

7.25 a. We will use the results and notation from part (b) to do this special case. From part (b),
the X;s are independent and each X; has marginal pdf
(oo}
1

o0
mwm&#h/‘ﬂwm%mmﬁw:/ L 020 0= /27 g,
—o0

oo 2TWOT

Complete the square in 8 to write the sum of the two exponents as

272 po? 2
O-[F=#]) e
- 9 o272 o 2(02 +72)°

02472

Only the first term involves 6; call it —A(8). Also, e=4(%) is the kernel of a normal pdf. Thus,

T —A®) do = Vo7
(& ™
—00 \/0'2“!‘7'27

and the marginal pdf is

1 oT (v — p)?
2 2 /o

= 2 —

m(zlp, %) 2ror " o2 + 72 P { 2(02 4+ 12)

an(p, 0?4+ 72) pdf.
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b. For one observation of X and € the joint pdf is
h(z,0|T) = f(x|0)m(0]7),
and the marginal pdf of X is

m(x|T) = /jo h(z,0|7)do

Thus, the joint pdf of X = (X3,...,X,,) and 8 = (01,...,0,) is

h(x,0|7) = Hh x;, 0;]7),

and the marginal pdf of X is

mx|r) = / / Hh(xi,ﬁ,;h) déy ...do
_ / {/ h(xr, 01 |7) dﬁl}Hhx“MT)ng . df.
> =2
The df; integral is just m(z1|7), and this is not a function of 05, ..., 0,. So, m(z1|7) can be

pulled out of the integrals. Doing each integral in turn yields the marginal pdf
m(x|r) = H m(x;|7).

Because this marginal pdf factors, this shows that marginally Xi,..., X,, are independent,
and they each have the same marginal distribution, m(z|7).
7.26 First write o
Fla1, .. x0]0)7(0) o e~ 2oz @) 10/a
where the exponent can be written

O 20— 5200) + 5 (32— 82.)

with 01 (x) =2+ Z—z, where we use the “4” if § > 0 and the “—” if § < 0. Thus, the posterior
mean is

n

- 2
22 @O ==

ffooo fe~ 2oz (0—0x (x))? do
[ T g

E(0]x) =

Now use the facts that for constants a and b,

0 0
/ e 50 g = / e 50 gy — 1/ 1,
0 o 2a
/ te= 5= g = / (t —b)e 500" gy +/ pe-3=07 g — Lo—ger g [T
0 0 0 a 2a
0
/ tem 800 g = —le_%b2 + b4/ 1,
oo a 2a

to get
Y % (0—(x) +d04+(x)) + o (6 70 (0 _pmgir st (x))

o2
2\ 5

E(0]x) =
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7.27 a. The log likelihood is

b.

7.29 a.

log L =Y —f7; +y; log(B7:) — 7; + x: log(7;) — logy;! — log ;!
i=1

and differentiation gives

a n le Zn y
—logl = T+ = p==E=l=
op ; b B Dy Ti
9 ;3 z+y
—~ logl, = — e S R = 1)
or, g ﬂ+ﬁTj +Tj =Y s
— 1+ '
j=1
cos . . A N ity
Combining these expressions yields 3 = 3_7_, y;/ > i_, x; and 7; = wiﬂ? )

The stationary point of the EM algorithm will satisfy

Z:‘L:l Yi

b= LY iy T
. 71+
T = =
B+1
o= LW
B+1

The second equation yields 71 = y; /3, and substituting this into the first equation yields
8 = 2?22 yj/Z?:z xj. Summing over j in the third equation, and substituting § =
> i—0Yi/ i shows us that 377 o 75 = 37, x;, and plugging this into the first equa-
tion gives the desired expression for §. The other two equations in (7.2.16) are obviously
satisfied.

. The expression for B was derived in part (b), as were the expressions for 7;.

The joint density is the product of the individual densities.

. The log likelihood is

log L = Z —mpBt; + y; log(mpBr;) + z; log(;) + logm! — log y;! — log ;!

i=1
and
9 D i1 Vi
—loglL = 0 = g i=1
85 & 21:1 mT;
0 x;+y
—loglL = 0 = = 9
or; 8 T mp

Since o5 =1, 8= Y7, ya/m = Y00, yi/ Siy @i Also, 355 = 32 (y; + ;) = 1, which
implies that mB = . (y; + ;) and 75 = (z; +y;)/ >, (yi + T4).

. In the likelihood function we can ignore the factorial terms, and the expected complete-data

likelihood is obtained by on the r*" iteration by replacing z; with E(Xl\%l(r)) = mﬂ(r).

Substituting this into the MLEs of part (b) gives the EM sequence.
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The MLEs from the full data set are B = 0.0008413892 and

7 = (0.06337310,0.06374873,0.06689681,0.04981487,0.04604075, 0.04883109,
0.07072460, 0.01776164, 0.03416388, 0.01695673, 0.02098127,0.01878119,
0.05621836,0.09818091, 0.09945087, 0.05267677, 0.08896918, 0.08642925).

The MLEs for the incomplete data were computed using R, where we take m = > x;. The
R code is

#mles on the incomplete data#
xdatam<-c(3560,3739,2784,2571,2729,3952,993,1908,948,1172,
1047,3138,5485,5554,2943,4969,4828)
ydata<-c(3,4,1,1,3,1,2,0,2,0,1,3,5,4,6,2,5,4)
xdata<-c(mean(xdatam) ,xdatam); for (j in 1:500) {
xdata<-c(sum(xdata)*tau[l] ,xdatam) beta<-sum(ydata)/sum(xdata)
tau<-c((xdatatydata)/(sum(xdata)+sum(ydata))) } beta tau

The MLEs from the incomplete data set are ,3 = 0.0008415534 and

7 = (0.06319044,0.06376116,0.06690986, 0.04982459, 0.04604973, 0.04884062,
0.07073839, 0.01776510, 0.03417054, 0.01696004, 0.02098536, 0.01878485,
0.05622933,0.09820005, 0.09947027, 0.05268704, 0.08898653, 0.08644610).

7.31 a. By direct substitution we can write
log L(6ly) = E [log L(6ly, X) 6, y| — E [log k(X[6, )| 0, y] .

The next iterate, 6(r+1) is obtained by maximizing the expected complete-data log likelihood,
so for any 0, E {log L(QA(”l)y, X)‘ é(r),y} >E [log L0y, X)| é(r),y}

b. Write
EmwmmeM=/®u@mwmwwmwws/bw@mwmw@mww

from the hint. Hence E [log k(X[ y)‘ o), y} <E [log k(X0 y)’ o), y}, and so the

entire right hand side in part (a) is decreasing.

2
7.33 Substitute o = 8 = /n/4 into MSE(pp) = “2U=p)_ ( ok ) and simplify to obtain

(atBin) at+Btn P
MSE(pp) = 4(\/ﬁn_|_ n)2’
independent of p, as desired.
7.35 a.
9 (9(x)) = d(zi+a,...,zn+a)
St f e ta—tdt [T (y+a) I fz —y)dy (=t—a)
T TG ra—nd T -y dy T

= a+0,(x) =g (p(x)).
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b.
1 —1%(x,—1)? _ 1 —In(@—t)? _—1(n—1)s>
Hf(xi—t):we 1Si(e,—)? _ G ) g3 (n=1)s*
SO
o —Ln(z—t)2 _
5 (x) = (Vn/V2r) [7 te 2@ dr T_
U V) [Z e a1
c.
1 1 1 1
Hf(xi_t):HI(t—2§$iSt+2) ZI(x(n)—QSth(1)+2),
SO
{L’(l)Jrl/Q
Op(x) = Joiys1o Lt _ Tt Tm
P fz(1)+1/2ldt 9 :
JL’(,L)—&-l/Q

7.37 To find a best unbiased estimator of , first find a complete sufficient statistic. The joint pdf is

0= (55) THomted = (35) Tommasie

By the Factorization Theorem, max; | X;| is a sufficient statistic. To check that it is a complete
sufficient statistic, let Y = max;|X;|. Note that the pdf of Y is fy(y) = ny"~1/6", 0 < y < 6.
Suppose g(y) is a function such that

6 nyn—l
Eg(Y)= / o g(y)dy =0, for all 6.
0

Taking derivatives shows that 6" ~1g(0) = 0, for all . So g(0) = 0, for all §, and Y = max;|X;|
is a complete sufficient statistic. Now

6 n—1
ny n n—+1
EY = dy = 0 = E Y ) =0.
/Oy on Y n+1 < n )

Therefore ”Tﬂmaxi|Xi| is a best unbiased estimator for € because it is a function of a complete
sufficient statistic. (Note that (X(l), X (n)) is not a minimal sufficient statistic (recall Exercise
5.36). It is for 0 < X; < 20, —20 < X; < 0, 40 < X; < 60, etc., but not when the range is

symmetric about zero. Then max;|X;| is minimal sufficient.)

7.38 Use Corollary 7.3.15.

a.

9 _ 9 o1 _ 9 _ |
%bgL(H\x) = aglOgHQxi = agzi:[logﬁ—&-(ﬁ 1) logz;)

Z [; + logxi] = -n l— Z loixi—;] .

%

Thus, — )", log X;/n is the UMVUE of 1/6 and attains the Cramér-Rao bound.
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7] logf .,
FTR ¥

1 n nx
= Z(Glog@ - 1) ez = eloge “o-1 e

- 5wl

Thus, X is the UMVUE of 991 ﬁ and attains the Cramér-Rao lower bound.

Note: We claim that if 8 7 log L(0|X) = a(0)[W(X) — 7(0)], then EW(X) = 7(6), because
under the condition of the Cramér-Rao Theorem, E % log L(A|x) = 0. To be rigorous, we
need to check the “interchange differentiation and integration“ condition. Both (a) and (b)
are exponential families, and this condition is satisfied for all exponential families.

0 —logL(0|x)

13}
50 = 3 Z [loglogf — log(8—1) + z;logf]

7.39
Eo {592 logf(X|9)} = E [59 (;elogf(Xf))ﬂ

o (HIxO\] _ L (Efxe) (&0
90\ f(X]0) ) F(X[0) '

Now consider the first term:

92 2
2 rXe] /i B i/f) .
Ey e | 892f(x|0) dx = 7 | 20 f(x|0) dx (assumption)
= dEa[a logf<X|9>} = 0, (7.3.8)
00
and the identity is proved.
7.40
L LOx) = 94 [[rra-pt— = me-lo + (1 — z;) log(1 — p)
80% _3pgip p —apizgp i) 108 p
B Z{xl_(lzl)] _ nZ n—-nt _ n - p)
p o 1-p p 1-p pi—p) "

i

By Corollary 7.3.15, X is the UMVUE of p and attains the Cramér-Rao lower bound. Alter-
natively, we could calculate

—nEy (;02 10gf(X9)>

= e (Dotos[p - Y]) = (o Dxlom (1 - X) g1 - )

- () - ()
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Then using 7(0) = p and 7/(0) = 1,

™' (0) __ v _p(-p) _ox

—nEg (Zslogf(X|0))  n/p(1—p) n

We know that EX = p. Thus, X attains the Cramér-Rao bound.
741 a. E()C, a0 X) =, aEX; =), aip = ,uz‘ a; = j. Hence the estimator is unbiased.

b. Var (3", a,X;) = > ,aiVar X; = >, a?0? = 6% ), a?. Therefore, we need to minimize ), a?,
subject to the constraint ) . a; = 1. Add and subtract the mean of the a;, 1/n, to get

2=l K‘i) +H2=2(ai_;)2+i,

%

because the cross-term is zero. Hence, >, a? is minimized by choosing a; = 1/n for all i.

Thus, >, (1/n)X; = X has the minimum variance among all linear unbiased estimators.
7.43 a. This one is real hard - it was taken from an American Statistician article, but the proof is

not there. A cryptic version of the proof is in Tukey (Approximate Weights, Ann. Math.

Statist. 1948, 91-92); here is a more detailed version.

Let ¢; = ¢f (1 + At;) with 0 < A < 1 and [t;] < 1. Recall that ¢f = (1/07)/3;(1/0%) and

VarW* =1/37,(1/07). Then

aW; o 1 52
(Z %) ; (quj)gz(h ’

?

1 *2
— YIESTS) 22(] (1+ Xt;)%0

1
D25 a5 (1 + Aty)]?
using the definition of ¢;. Now write
D oar(L+x)" = 1420 ity + XY q5t) = [L+ A g5t ]+ 3 Z%tz O ait)?);
i J J J J
where we used the fact that > ;4 = 1. Now since

qu (14 Atj) 1+/\qu ,

1+

/\2[23‘ Qj@ - (Zj thj)2]
[1 + )\Z] qjtj]2
N[ = (35 4it5)°]
[1 +A le qjtj]2 ’

qiWi _ 1
Var(zjqj) )
< 1
= 5,0/

since ) ¢;t7 < 1. Now let T' = )~ ¢;t;, and

aiWi 1 A1 —T7]
(z qg) =5,/ [” L+ XTT? ]

1+
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and the right hand side is maximized at T = —\, with maximizing value

@ Vs ! A ESp\v ) VAR
Var(Ej%) = Zj(l/af-) [1+ [1— 222 } = VarW e

Bloch and Moses (1988) define A as the solution to

1+ A
bm X bmin = T
ax/ 11—
where b;/b; are the ratio of the normalized weights which, in the present notation, is
bi/bj = (14 M) /(1 + Xt;).

The right hand side is maximized by taking ¢; as large as possible and t; as small as possible,
and setting ¢; = 1 and ¢t; = —1 (the extremes) yields the Bloch and Moses (1988) solution.

b.
1/k 2
T AT R R )
(1/0?) /(3,1/5?) i
Thus,

012nax 2 U?nin 2
bmaX:T 1/0]- and brnin = ? 1/O'j

J J

and B = bmax/bmin = 02y /0, Solving B = (14 A)/(1 — A) yields A = (B —1)/(B + 1).
Substituting this into Tukey’s inequality yields
VarW < (B + 1)2 _ ((O-IQHax/UIZnin) + 1)2

VarW* — 4B 4(020/020)

7.44 Y, X; is a complete sufficient statistic for § when X; ~ n(0,1). X* — 1/n is a function of
>, X;. Therefore, by Theorem 7.3.23, X? — 1/n is the unique best unbiased estimator of its
expectation.

—o 1 S - 1 1 1
E <X2—> =Var X + (EX)> -~ =~ + 0% - — =062
n n o n n
Therefore, X2 — 1/n is the UMVUE of §2. We will calculate
Var (X?—1/n) = Var(X?) = E(X*) — [E(X?)]?, where X ~n(,1/n),

but first we derive some general formulas that will also be useful in later exercises. Let Y ~
n(6,0?). Then here are formulas for EY* and Var Y?2.

EY* = EY3(Y -60+0)] = EY3Y -0)+EY?0 = EY3Y —0)+60EY>.
EY?(Y-0) = o’E(3Y?) = 0%3(c°+0%) = 30t 4 360202 (Stein’s Lemma)
OEY® = 0(300°+06%) = 30%°0%+6 (Example 3.6.6)
VarY? = 30 +660%02+6* - (62 +6%)? = 20 +46%%
Thus,
Var (X2 — 1> = Var X% = 2% Jr4192l > iﬁ
n n n n
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To calculate the Cramér-Rao lower bound, we have

&*logf(X10) _ 0 L (x-0)2)2
E@(ae) - EG(aezlogme )
= 5 (2 fogem 12— Lix—o2]) = m(Zx-0) = -1
A G 2 - 7\ o -

and 7(0) = 62, [7'(0))? = (20)% = 462 so the Cramér-Rao Lower Bound for estimating 6? is

0
—nEy (éd—;zlogf(XW)) n

Thus, the UMVUE of 62 does not attain the Cramér-Rao bound. (However, the ratio of the
variance and the lower bound — 1 as n — c0.)

7.45 a. Because E S? = 02, bias(aS?) = E(aS?) — 02 = (a — 1)02. Hence,
MSE(aS?) = Var(aS?) 4 bias(aS?)? = a*Var(S?) + (a — 1)%c*.

b. There were two typos in early printings; k = E[X — u]*/o* and

Var(S?) = % </<; - 3) ol

n—1

See Exercise 5.8b for the proof.

c. There was a typo in early printings; under normality x = 3. Under normality we have

R =

E[X —yJ* [X—u
1 =E
g g

4
] =EZ4,

where Z ~ 1(0,1). Now, using Lemma 3.6.5 with g(z) = 2% we have
k=EZ*=Eg(2)Z =1E(32%) = 3E Z* = 3.

To minimize MSE(S?) in general, write Var(S?) = Bo?. Then minimizing MSE(S?) is
equivalent to minimizing a?B + (a — 1)?. Set the derivative of this equal to 0 (B is not a
function of a) to obtain the minimizing value of a is 1/(B + 1). Using the expression in part
(b), under normality the minimizing value of a is

1 1 n—1

B+1:;<3_L7;13)+17n+1'

d. There was a typo in early printings; the minimizing a is

n—1
(7’L+ 1) + (k—3)(n—1) °

a =

To obtain this simply calculate 1/(B + 1) with (from part (b))

B:1<n—n3>.
n n—1
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Using the expression for a in part (d), if x = 3 the second term in the denominator is
zero and a = (n — 1)/(n + 1), the normal result from part (c). If x < 3, the second term
in the denominator is negative. Because we are dividing by a smaller value, we have a >
(n—1)/(n+1). Because Var(S?) = Bo*, B > 0, and, hence, a = 1/(B +1) < 1. Similarly, if
k > 3, the second term in the denominator is positive. Because we are dividing by a larger
value, we have a < (n —1)/(n + 1).

For the uniform(#, 26) distribution we have E X = (204 6)/2 = 36/2. So we solve 30/2 = X
for 0 to obtain the method of moments estimator § = 2X /3.

. Let @(q),...,x(,) denote the observed order statistics. Then, the likelihood function is

1
L(0]x) = 971[%")/2@(1)](0)'

Because 1/0" is decreasing, this is maximized at § = T(y)/2. So 0= X(n)/2 is the MLE. Use
the pdf of X, to calculate E X,y = Q:lel@. SoEf = 321%9, and if k= (2n+2)/(2n + 1),
Ekd = 0.

. From Exercise 6.23, a minimal sufficient statistic for 6 is (X(1y, X(5))- 6 is not a function

of this minimal sufficient statistic. So by the Rao-Blackwell Theorem, E(é\X (1) X(n)) is an
unbiased estimator of @ (6 is unbiased) with smaller variance than 6. The MLE is a function
of (X(1), X(n)), s0 it can not be improved with the Rao-Blackwell Theorem.

6 =2(1.16)/3 = .7733 and 6 = 1.33/2 = .6650.

747 X; ~n(r,0%), so X ~n(r,0?/n) and EX? = 7% 4+ 062 /n. Thus E[(7X? — 70?/n)] = 7r? is
best unbiased because X is a complete sufficient statistic. If o2 is unknown replace it with s
and the conclusion still holds.

7.48 a.

7.49 a.

The Cramér-Rao Lower Bound for unbiased estimates of p is

[%P]Q 1 1 p(1—p)

_pREd2 X X\ — B ’
nE4ylogL(p| X) —nE{%log[p (1-p)* ]} _nE{_p%_g_;g} n

because EX = p. The MLE of pis p = ), X;/n, with Ep = p and Varp = p(1 — p)/n. Thus
p attains the CRLB and is the best unbiased estimator of p.

. By independence, E(X1X>X3X4) = [[, EX; = p?, so the estimator is unbiased. Because

>-; Xiis a complete sufficient statistic, Theorems 7.3.17 and 7.3.23 imply that E(X; X, X35X,|
>, X;) is the best unbiased estimator of p*. Evaluating this yields

E <X1X2X3X4

ZX’_ " P(X,=Xo= X3= Xu4= 1’2?:5 Xi=t—4)
i l P(>, Xi=1)

Pt -p" <n - 4> /<n)
(?)pt(l _ p)n—t t—4 ¢ )
for t > 4. For t < 4 one of the X;s must be zero, so the estimator is E(X1 X X3X4| >, X; =

t) =0.
From Theorem 5.5.9, Y = X1y has pdf

! 1 _ n—1
Friy) = ——<e v 11— y/*)} = %efny/x_

Thus Y ~ exponential(A/n) so EY = A\/n and nY is an unbiased estimator of A.
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7.50

7.51

7.52
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. Because fx(z) is in the exponential family, >, X; is a complete sufficient statistic and

E (nX )|, Xi) is the best unbiased estimator of \. Because E(}_; X;) = n\, we must
have E (nX(1)| >, Xi) = >, Xi/n by completeness. Of course, any function of ), X; that
is an unbiased estimator of A is the best unbiased estimator of A. Thus, we know directly
that because E(} ", X;) = n\, >, X;/n is the best unbiased estimator of A.

. From part (a), A = 601.2 and from part (b) A = 128.8. Maybe the exponential model is not

a good assumption.

. E(@X +(1—a)eS) =aEX + (1 —a)E(cS) = af + (1 —a)d = 6. So aX + (1 — a)cS is an

unbiased estimator of 6.

. Because X and S? are independent for this normal model, Var(aX +(1—a)cS) = a?V; +(1—

a)?Vy, where Vi = VarX = 0%/n and Vo = Var(cS) = 2E S? — 62 = 262 — 6% = (¢? — 1)§%.
Use calculus to show that this quadratic function of ¢ is minimized at
Ve (e ()

Vi+Ve  ((A/n)+ =102 ((1/n) +—1)

a

. Use the factorization in Example 6.2.9, with the special values u = 6 and 02 = 62, to show

that (X, 5?) is sufficient. E(X —¢S) =6 — 60 = 0, for all §. So X — ¢S is a nonzero function
of (X, S?) whose expected value is always zero. Thus (X, S?) is not complete.

. Straightforward calculation gives:

E[0—(a; X + ach)]2 = ajVar X + a3c*Var S + 0*(a; + az — 1)

Because Var X = 0%/n and Var S = E $? — (E 5)% = 62 (62*1), we have

E[0— (0, X + anSﬂ2 = 0? [a%/n +a3(® —1)+ (ay +az — 1)2] )

and we only need minimize the expression in square brackets, which is independent of 6.
Differentiating yields as = [(n + 1)c? — n] “landa =1-— [(n+1)c? —n] -

. The estimator T* has minimum MSE over a class of estimators that contain those in Exercise

7.50.

. Because 6 > 0, restricting 7" > 0 will improve the MSE.
d. No. It does not fit the definition of either one.

. Because the Poisson family is an exponential family with t(z) = z, >, X; is a complete

sufficient statistic. Any function of ), X; that is an unbiased estimator of A is the unique
best unbiased estimator of A. Because X is a function of ), X; and EX = A, X is the best
unbiased estimator of A.

. 52 is an unbiased estimator of the population variance, that is, E.S? = X. X is a one-to-one

function of 3°, X;. So X is also a complete sufficient statistic. Thus, E(S?|X) is an unbiased
estimator of A and, by Theorem 7.3.23, it is also the unique best unbiased estimator of .
Therefore E(S%|X) = X. Then we have

Var 5% = Var (E(5%| X)) + E Var(S?/X) = Var X + E Var(5%X),

so Var $2 > Var X.

. We formulate a general theorem. Let T'(X') be a complete sufficient statistic, and let 7(X) be

any statistic other than T'(X) such that ET(X) = ET'(X). Then E[T"(X)|T(X)] =T(X)
and VarT'(X) > VarT(X).
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Let a be a constant and suppose Covy, (W, U) > 0. Then

Varg, (W + aU) = Varg, W + a*Varg,U + 2aCovg, (W, U).

Choose a € (—QCOVQO (W, U)/VargoU, 0). Then Varg, (W + aU) < Varg, W, so W cannot be
best unbiased.

All three parts can be solved by this general method. Suppose X ~ f(z|0) = c¢(0)m(z), a < x <
6. Then 1/¢(8) = ff m(z) dr, and the cdf of X is F(z) = ¢(0)/c(x),a < x < 0. Let Y = X(,,) be
the largest order statistic. Arguing as in Example 6.2.23 we see that Y is a complete sufficient
statistic. Thus, any function T(Y") that is an unbiased estimator of h(#) is the best unbiased
estimator of h(#). By Theorem 5.4.4 the pdf of Y is g(y|0) = nm(y)c(6)"/c(y)" ™1, a < y < 6.
Consider the equations

0 0
/ fzl6)dr=1  and / T(y)g(410) dy = h(6),

which are equivalent to
0 0
1 T(y)nm(y) h(0)
m(x)der = — and / dy = .

[ mtaras = . et YT o
Differentiating both sides of these two equations with respect to 6 and using the Fundamental
Theorem of Calculus yields

() T(O)nm(0)  c(0)"h'(0) — h(0)nc(0)" 1 ()
m() = 0 and O o) )

Change 6s to ys and solve these two equations for T'(y) to get the best unbiased estimator of
h() is
W (y)
T(y) = hly) + ————.
W= i )ety)
For h() = 67, h'(0) = ro™— 1.
a. For this pdf, m(z) =1 and ¢(8) = 1/6. Hence

r—1
r Ty n+r .
Ty)=y" + = Y
) n(f) ~

b. If 6 is the lower endpoint of the support, the smallest order statistic Y = X() is a complete
sufficient statistic. Arguing as above yields the best unbiased estimator of h(8) is

' (y)
T(y) = h(y) — ————.
W =R ony)ety)
For this pdf, m(z) = e~ and ¢(#) = ¢’. Hence
r—1 r—1
Ty Ty
Ty) = ne-Ye¥ n
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7.56 Because T is sufficient, ¢(T") = E[h(X7, ..., X,)|T] is a function only of T. That is, ¢(T") is an
estimator. If Eh(X4,...,X,) = 7(0), then

En(Xy, -+, X,) =E[E(h(X,,....X,)|T)] =7(0),

so ¢(T) is an unbiased estimator of 7(#). By Theorem 7.3.23, ¢(T) is the best unbiased estimator
of 7(6).

7.57 a. T is a Bernoulli random variable. Hence,

EpT = Pp(T = 1) = Pp (Zn: X > Xn+1> = h(p)

i=1

i=1
estimator of h(p). We have

oo

n+1
> -]
=1

b. 27.”1 X, is a complete sufficient statistic for 8, so E (T ‘Z::rll XZ-> is the best unbiased

n n+1
P(ZXi>Xn+1 ZXz:y>
lzl 7:—&:-11 n+1
P (ZX > Xopn, Y X = y> /P <ZX =y> .
=1 =1 =1

The denominator equals (";1)1)?/(1 — p)"" 1Y If y = 0 the numerator is

n n+1
P <2Xi > Xpi1, in = o) =0.
=1 =1

If y > 0 the numerator is

n n+1 n n+1
P (ZXl > Xn+1,ZXi = y,Xn+1 = 0) +P <ZX1 > Xn—i—lyZXi = ann—i-l = 1)

=1 =1 =1 =1

which equals

P <in >0,iXi=y> P(Xn+1 :O)+P (in > 17iXZ :y—1> P(Xn+1 = 1)
=1 =1

i=1 i=1

For all y > 0,

n n n
P (in >0, X, = y) =P (ZXi = y) = (Z)pya —p)" Y
i=1 1=1 =1
If y=1 or 2, then
n n
P <ZX > 1,ZXZ» :y—1> =0.
=1 =1

And if y > 2, then

n n n
n _ ne
p<§ Xi>17§ Xi:y_1>zp<§ Xi:y_1>:(y_l>py 1(1_p) y+1
i=1 i=1 i
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Therefore, the UMVUE is

0 ify=20
n+1 (pra-pva-p) _ (3 _ 1 .
E (T ZXi = y) = ("pra-prvtt T () T (nAD(ndl-y) ify=1or2
= (el rrao " @) e
(73 e =y &P o
7.59 We know T = (n — 1)5%/0? ~ x2_,. Then
%) 2 +n—1
ETP/2 — %/ S S Vit T T w =Cpn-
L(*3) 277 Jo (%)
Thus P
P
(n—1)8>
’ (02 = Con

so (n — 1)1’/251’/017_,” is an unbiased estimator of o?. From Theorem 6.2.25, (X,S?) is a

complete, sufficient statistic. The unbiased estimator (n—l)p/QSp/Cp,n is a function of (X, S?).
Hence, it is the best unbiased estimator.

7.61 The pdf for Y ~ x?2 is
1

Thus the pdf for % = o2Y /v is

2 v/2—-1
gsy=L 1 (v o v/(20%)
a2 T (v/2)2v/2 \ o2

I//Q—Ie—y/Q.

Thus, the log-likelihood has the form (gathering together constants that do not depend on s2

or o2)
2

1 s s2
log L(0?|s?) = log (02) + K log (02> - Klﬁ + K",

where K > (0 and K’ > 0.

The loss function in Example 7.3.27 is
L(o% a) = % — log (%) -1,
o o

so the loss of an estimator is the negative of its likelihood.

7.63 Let a = 72/(72 + 1), so the Bayes estimator is 6™ (x) = az. Then R(u,6™) = (a — 1)°u2 + a2.
As 72 increases, R(p,0™) becomes flatter.

7.65 a. Figure omitted.

b. The posterior expected loss is E (L(6, a)|z) = e““E e~ —cE(a—0)—1, where the expectation
is with respect to m(6|z). Then

d set
—E(L(0,a)|z) = ce““Ee % —c =0,
da
and a = —% log E e~ is the solution. The second derivative is positive, so this is the mini-

mum.
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c. m(0]x) = n(z,0?/n). So, substituting into the formula for a normal mgf, we find Ee=¢ =

e—c@+0°¢®/2n and the LINEX posterior loss is
E(L(8,a)lx) = ecla—a)to’c?/am _ cla—1z)—1.

Substitute Ee~ = e¢=¢#+0°¢*/2n jnto the formula in part (b) to find the Bayes rule is
T —co?/2n.

. For an estimator X + b, the LINEX posterior loss (from part (c)) is

E(L(0,z 4 b)|z) = ebec /2 _ o 1,

For X the expected loss is g0 /2n _ 1, and for the Bayes estimator (b = —co?/2n) the
expected loss is ¢*0?/2n. The marginal distribution of X is m(z) = 1, so the Bayes risk is
infinite for any estimator of the form X + b.

. For X + b, the squared error risk is E [()_( +b) — 9}2 = 02/n +b?, so X is better than the

Bayes estimator. The Bayes risk is infinite for both estimators.

7.66 Let S =), X; ~ binomial(n, §).

CBf =ES = LES? = L(n0(1-0) + (n)?) = £ + 2162,

n

. 2 .
T = (Zj;éi Xj) /(n ~1)2. For S values of i, T = (S — 1)2/(n — 1)? because the X;

that is dropped out equals 1. For the other n — .S values of ¢, T = S?/(n — 1)? because
the X; that is dropped out equals 0. Thus we can write the estimator as

JK(Tn)nSQn_1<S(S_1)2+(nS) S ) S5

n? n (n—1)> (n—1)> n(n—1)°

CEIK(T,) = —L—(n0(1 — 0) + (nf)? — np) = L=n0> _ g2

n(n—1) n(n—1)

. For this binomial model, S is a complete sufficient statistic. Because JK(T},) is a function of

S that is an unbiased estimator of #2, it is the best unbiased estimator of 62.



