Chapter 8

Hypothesis Testing

8.1 Let X = # of heads out of 1000. If the coin is fair, then $X \sim \text{binomial}(1000, 1/2)$. So

$$P(X \ge 560) = \sum_{x=560}^{1000} {1000 \choose x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{n-x} \approx .0000825,$$

where a computer was used to do the calculation. For this binomial, E X = 1000p = 500 and Var X = 1000p(1-p) = 250. A normal approximation is also very good for this calculation.

$$P\left\{X \ge 560\right\} = P\left\{\frac{X - 500}{\sqrt{250}} \ge \frac{559.5 - 500}{\sqrt{250}}\right\} \approx P\left\{Z \ge 3.763\right\} \approx .0000839.$$

Thus, if the coin is fair, the probability of observing 560 or more heads out of 1000 is very small. We might tend to believe that the coin is not fair, and p > 1/2.

8.2 Let $X \sim \text{Poisson}(\lambda)$, and we observed X = 10. To assess if the accident rate has dropped, we could calculate

$$P(X \le 10 | \lambda = 15) = \sum_{i=0}^{10} \frac{e^{-15} \, 15^i}{i!} = e^{-15} \left[1 + 15 + \frac{15^2}{2!} + \dots + \frac{15^{10}}{10!} \right] \approx .11846.$$

This is a fairly large value, not overwhelming evidence that the accident rate has dropped. (A normal approximation with continuity correction gives a value of .12264.)

8.3 The LRT statistic is

$$\lambda(y) = \frac{\sup_{\theta \le \theta_0} L(\theta | y_1, \dots, y_m)}{\sup_{\Theta} L(\theta | y_1, \dots, y_m)}$$

Let $y = \sum_{i=1}^{m} y_i$, and note that the MLE in the numerator is min $\{y/m, \theta_0\}$ (see Exercise 7.12) while the denominator has y/m as the MLE (see Example 7.2.7). Thus

$$\lambda(y) = \begin{cases} 1 & \text{if } y/m \le \theta_0 \\ \frac{(\theta_0)^y (1-\theta_0)^{m-y}}{(y/m)^y (1-y/m)^{m-y}} & \text{if } y/m > \theta_0, \end{cases}$$

and we reject H_0 if

$$\frac{(\theta_0)^y (1-\theta_0)^{m-y}}{(y/m)^y (1-y/m)^{m-y}} < c.$$

To show that this is equivalent to rejecting if y > b, we could show $\lambda(y)$ is decreasing in y so that $\lambda(y) < c$ occurs for $y > b > m\theta_0$. It is easier to work with $\log \lambda(y)$, and we have

$$\log \lambda(y) = y \log \theta_0 + (m-y) \log (1-\theta_0) - y \log \left(\frac{y}{m}\right) - (m-y) \log \left(\frac{m-y}{m}\right),$$

and

$$\frac{d}{dy}\log\lambda(y) = \log\theta_0 - \log(1-\theta_0) - \log\left(\frac{y}{m}\right) - y\frac{1}{y} + \log\left(\frac{m-y}{m}\right) + (m-y)\frac{1}{m-y}$$
$$= \log\left(\frac{\theta_0}{y/m}\frac{\left(\frac{m-y}{m}\right)}{1-\theta_0}\right).$$

For $y/m > \theta_0$, $1 - y/m = (m - y)/m < 1 - \theta_0$, so each fraction above is less than 1, and the log is less than 0. Thus $\frac{d}{dy} \log \lambda < 0$ which shows that λ is decreasing in y and $\lambda(y) < c$ if and only if y > b.

- 8.4 For discrete random variables, $L(\theta | \mathbf{x}) = f(\mathbf{x} | \theta) = P(\mathbf{X} = \mathbf{x} | \theta)$. So the numerator and denominator of $\lambda(\mathbf{x})$ are the supremum of this probability over the indicated sets.
- 8.5 a. The log-likelihood is

$$\log L(\theta, \nu | \mathbf{x}) = n \log \theta + n\theta \log \nu - (\theta + 1) \log \left(\prod_{i} x_{i}\right), \quad \nu \le x_{(1)},$$

where $x_{(1)} = \min_i x_i$. For any value of θ , this is an increasing function of ν for $\nu \leq x_{(1)}$. So both the restricted and unrestricted MLEs of ν are $\hat{\nu} = x_{(1)}$. To find the MLE of θ , set

$$\frac{\partial}{\partial \theta} \log L(\theta, x_{(1)} | \mathbf{x}) = \frac{n}{\theta} + n \log x_{(1)} - \log \left(\prod_{i} x_{i}\right) = 0,$$

and solve for θ yielding

$$\hat{\theta} = \frac{n}{\log(\prod_i x_i / x_{(1)}^n)} = \frac{n}{T}.$$

 $(\partial^2/\partial\theta^2)\log L(\theta, x_{(1)}|\mathbf{x}) = -n/\theta^2 < 0$, for all θ . So $\hat{\theta}$ is a maximum.

b. Under H_0 , the MLE of θ is $\hat{\theta}_0 = 1$, and the MLE of ν is still $\hat{\nu} = x_{(1)}$. So the likelihood ratio statistic is

$$\lambda(\mathbf{x}) = \frac{x_{(1)}^n / (\prod_i x_i)^2}{(n/T)^n x_{(1)}^{n/T/T} / (\prod_i x_i)^{n/T+1}} = \left(\frac{T}{n}\right)^n \frac{e^{-T}}{(e^{-T})^{n/T}} = \left(\frac{T}{n}\right)^n e^{-T+n}$$

 $(\partial/\partial T)\log \lambda(\mathbf{x}) = (n/T) - 1$. Hence, $\lambda(\mathbf{x})$ is increasing if $T \leq n$ and decreasing if $T \geq n$. Thus, $T \leq c$ is equivalent to $T \leq c_1$ or $T \geq c_2$, for appropriately chosen constants c_1 and c_2 .

c. We will not use the hint, although the problem can be solved that way. Instead, make the following three transformations. First, let $Y_i = \log X_i$, $i = 1, \ldots, n$. Next, make the *n*-to-1 transformation that sets $Z_1 = \min_i Y_i$ and sets Z_2, \ldots, Z_n equal to the remaining Y_i s, with their order unchanged. Finally, let $W_1 = Z_1$ and $W_i = Z_i - Z_1$, $i = 2, \ldots, n$. Then you find that the W_i s are independent with $W_1 \sim f_{W_1}(w) = n\nu^n e^{-nw}$, $w > \log \nu$, and $W_i \sim \text{exponential}(1)$, $i = 2, \ldots, n$. Now $T = \sum_{i=2}^n W_i \sim \text{gamma}(n-1,1)$, and, hence, $2T \sim \text{gamma}(n-1,2) = \chi^2_{2(n-1)}$.

8.6 a.

$$\begin{split} \lambda(\mathbf{x}, \mathbf{y}) &= \frac{\sup_{\Theta_0} L(\theta | \mathbf{x}, \mathbf{y})}{\sup_{\Theta} L(\theta | \mathbf{x}, \mathbf{y})} &= \frac{\sup_{\theta} \prod_{i=1}^n \frac{1}{\theta} e^{-x_i/\theta} \prod_{j=1}^m \frac{1}{\theta} e^{-y_j/\theta}}{\sup_{\theta, \mu} \prod_{i=1}^n \frac{1}{\theta} e^{-x_i/\theta} \prod_{j=1}^m \frac{1}{\mu} e^{-y_j/\mu}} \\ &= \frac{\sup_{\theta} \frac{1}{\theta^{m+n}} \exp\left\{-\left(\sum_{i=1}^n x_i + \sum_{j=1}^m y_j\right)/\theta\right\}}{\sup_{\theta, \mu} \frac{1}{\theta^n} \exp\left\{-\sum_{i=1}^n x_i/\theta\right\} \frac{1}{\mu^m} \exp\left\{-\sum_{j=1}^m y_j/\mu\right\}}. \end{split}$$

Differentiation will show that in the numerator $\hat{\theta}_0 = (\sum_i x_i + \sum_j y_j)/(n+m)$, while in the denominator $\hat{\theta} = \bar{x}$ and $\hat{\mu} = \bar{y}$. Therefore,

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{\left(\frac{n+m}{\sum_{i} x_{i} + \sum_{j} y_{j}}\right)^{n+m} \exp\left\{-\left(\frac{n+m}{\sum_{i} x_{i} + \sum_{j} y_{j}}\right)\left(\sum_{i} x_{i} + \sum_{j} y_{j}\right)\right\}}{\left(\frac{n}{\sum_{i} x_{i}}\right)^{n} \exp\left\{-\left(\frac{n}{\sum_{i} x_{i}}\right)\sum_{i} x_{i}\right\}\left(\frac{m}{\sum_{j} y_{j}}\right)^{m} \exp\left\{-\left(\frac{m}{\sum_{j} y_{j}}\right)\sum_{j} y_{j}\right\}}$$
$$= \frac{(n+m)^{n+m}}{n^{n}m^{m}} \frac{\left(\sum_{i} x_{i}\right)^{n} \left(\sum_{j} y_{j}\right)^{m}}{\left(\sum_{i} x_{i} + \sum_{j} y_{j}\right)^{n+m}}.$$

And the LRT is to reject H_0 if $\lambda(\mathbf{x}, \mathbf{y}) \leq c$.

$$\lambda = \frac{(n+m)^{n+m}}{n^n m^m} \left(\frac{\sum_i x_i}{\sum_i x_i + \sum_j y_j}\right)^n \left(\frac{\sum_j y_j}{\sum_i x_i + \sum_j y_j}\right)^m = \frac{(n+m)^{n+m}}{n^n m^m} T^n (1-T)^m.$$

Therefore λ is a function of T. λ is a unimodal function of T which is maximized when $T = \frac{n}{m+n}$. Rejection for $\lambda \leq c$ is equivalent to rejection for $T \leq a$ or $T \geq b$, where a and b are constants that satisfy $a^n(1-a)^m = b^n(1-b)^m$.

c. When H_0 is true, $\sum_i X_i \sim \text{gamma}(n, \theta)$ and $\sum_j Y_j \sim \text{gamma}(m, \theta)$ and they are independent. So by an extension of Exercise 4.19b, $T \sim \text{beta}(n, m)$.

b.

$$L(\theta,\lambda|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\lambda} e^{-(x_i-\theta)/\lambda} I_{[\theta,\infty)}(x_i) = \left(\frac{1}{\lambda}\right)^n e^{-(\Sigma_i x_i - n\theta)/\lambda} I_{[\theta,\infty)}(x_{(1)}),$$

which is increasing in θ if $x_{(1)} \ge \theta$ (regardless of λ). So the MLE of θ is $\hat{\theta} = x_{(1)}$. Then

$$\frac{\partial \log L}{\partial \lambda} = -\frac{n}{\lambda} + \frac{\sum_i x_i - n\hat{\theta}}{\lambda^2} \quad \stackrel{\text{set}}{=} 0 \quad \Rightarrow \quad n\hat{\lambda} = \sum_i x_i - n\hat{\theta} \quad \Rightarrow \quad \hat{\lambda} = \bar{x} - x_{(1)}.$$

Because

$$\frac{\partial^2 \log L}{\partial \lambda^2} = \frac{n}{\lambda^2} - 2 \left. \frac{\sum_i x_i - n\hat{\theta}}{\lambda^3} \right|_{\bar{x} - x_{(1)}} = \frac{n}{\left(\bar{x} - x_{(1)}\right)^2} - \frac{2n(\bar{x} - x_{(1)})}{\left(\bar{x} - x_{(1)}\right)^3} = \left. \frac{-n}{\left(\bar{x} - x_{(1)}\right)^2} < 0,$$

we have $\hat{\theta} = x_{(1)}$ and $\hat{\lambda} = \bar{x} - x_{(1)}$ as the unrestricted MLEs of θ and λ . Under the restriction $\theta \leq 0$, the MLE of θ (regardless of λ) is

$$\hat{\theta}_0 = \begin{cases} 0 & \text{if } x_{(1)} > 0 \\ x_{(1)} & \text{if } x_{(1)} \le 0. \end{cases}$$

For $x_{(1)} > 0$, substituting $\hat{\theta}_0 = 0$ and maximizing with respect to λ , as above, yields $\hat{\lambda}_0 = \bar{x}$. Therefore,

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta, \lambda \mid \mathbf{x})}{\sup_{\Theta} L(\theta, \lambda \mid \mathbf{x})} = \frac{\sup_{\{(\lambda, \theta): \theta \le 0\}} L(\lambda, \theta \mid \mathbf{x})}{L(\hat{\theta}, \hat{\lambda} \mid \mathbf{x})} = \begin{cases} 1 & \text{if } x_{(1)} \le 0\\ \frac{L(\bar{x}, 0 \mid \mathbf{x})}{L(\hat{\lambda}, \hat{\theta} \mid \mathbf{x})} & \text{if } x_{(1)} > 0, \end{cases}$$

where

$$\frac{L(\bar{x},0 \mid \mathbf{x})}{L(\hat{\lambda},\hat{\theta} \mid \mathbf{x})} = \frac{(1/\bar{x})^n e^{-n\bar{x}/\bar{x}}}{\left(1/\hat{\lambda}\right)^n e^{-n(\bar{x}-x_{(1)})/(\bar{x}-x_{(1)})}} = \left(\frac{\hat{\lambda}}{\bar{x}}\right)^n = \left(\frac{\bar{x}-x_{(1)}}{\bar{x}}\right)^n = \left(1 - \frac{x_{(1)}}{\bar{x}}\right)^n.$$

So rejecting if $\lambda(\mathbf{x}) \leq c$ is equivalent to rejecting if $x_{(1)}/\bar{x} \geq c^*$, where c^* is some constant.

b. The LRT statistic is

$$\lambda(\mathbf{x}) = \frac{\sup_{\beta} (1/\beta^n) e^{-\Sigma_i x_i/\beta}}{\sup_{\beta,\gamma} (\gamma^n/\beta^n) (\prod_i x_i)^{\gamma-1} e^{-\Sigma_i x_i^{\gamma}/\beta}}$$

The numerator is maximized at $\hat{\beta}_0 = \bar{x}$. For fixed γ , the denominator is maximized at $\hat{\beta}_{\gamma} = \sum_i x_i^{\gamma}/n$. Thus

$$\lambda(\mathbf{x}) = \frac{\bar{x}^{-n} e^{-n}}{\sup_{\gamma} (\gamma^n / \hat{\boldsymbol{\beta}}_{\gamma}^n) (\prod_i x_i)^{\gamma - 1} e^{-\Sigma_i x_i^{\gamma} / \hat{\boldsymbol{\beta}}_{\gamma}}} = \frac{\bar{x}^{-n}}{\sup_{\gamma} (\gamma^n / \hat{\boldsymbol{\beta}}_{\gamma}^n) (\prod_i x_i)^{\gamma - 1}}$$

The denominator cannot be maximized in closed form. Numeric maximization could be used to compute the statistic for observed data \mathbf{x} .

8.8 a. We will first find the MLEs of a and $\theta.$ We have

$$L(a,\theta \mid \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi a\theta}} e^{-(x_i-\theta)^2/(2a\theta)},$$
$$\log L(a,\theta \mid \mathbf{x}) = \sum_{i=1}^{n} -\frac{1}{2}\log(2\pi a\theta) - \frac{1}{2a\theta}(x_i-\theta)^2.$$

Thus

$$\begin{split} \frac{\partial \log L}{\partial a} &= \sum_{i=1}^n \left(-\frac{1}{2a} + \frac{1}{2\theta a^2} (x_i - \theta)^2 \right) &= -\frac{n}{2a} + \frac{1}{2\theta a^2} \sum_{i=1}^n (x_i - \theta)^2 \quad \stackrel{\text{set}}{=} 0\\ \frac{\partial \log L}{\partial \theta} &= \sum_{i=1}^n \left[-\frac{1}{2\theta} + \frac{1}{2a\theta^2} (x_i - \theta)^2 + \frac{1}{a\theta} (x_i - \theta) \right]\\ &= -\frac{n}{2\theta} + \frac{1}{2a\theta^2} \sum_{i=1}^n (x_i - \theta)^2 + \frac{n\bar{x} - n\theta}{a\theta} \quad \stackrel{\text{set}}{=} 0. \end{split}$$

We have to solve these two equations simultaneously to get MLEs of a and θ , say \hat{a} and $\hat{\theta}$. Solve the first equation for a in terms of θ to get

$$a = \frac{1}{n\theta} \sum_{i=1}^{n} (x_i - \theta)^2.$$

Substitute this into the second equation to get

$$-\frac{n}{2\theta} + \frac{n}{2\theta} + \frac{n(\bar{x}-\theta)}{a\theta} = 0.$$

So we get $\hat{\theta} = \bar{x}$, and

$$\hat{a} = \frac{1}{n\bar{x}} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{\hat{\sigma}^2}{\bar{x}},$$

the ratio of the usual MLEs of the mean and variance. (Verification that this is a maximum is lengthy. We omit it.) For a = 1, we just solve the second equation, which gives a quadratic in θ that leads to the restricted MLE

$$\hat{\theta}_R = \frac{-1 + \sqrt{1 + 4(\hat{\sigma}^2 + \bar{x}^2)}}{2}.$$

Noting that $\hat{a}\hat{\theta} = \hat{\sigma}^2$, we obtain

$$\begin{split} \lambda(\mathbf{x}) &= \frac{L(\hat{\theta}_R \mid \mathbf{x})}{L(\hat{a}, \hat{\theta} \mid \mathbf{x})} &= \frac{\prod_{i=1}^n \frac{1}{\sqrt{2\pi\hat{\theta}_R}} e^{-(x_i - \hat{\theta}_R)^2 / (2\hat{\theta}_R)}}{\prod_{i=1}^n \frac{1}{\sqrt{2\pi\hat{a}\hat{\theta}}} e^{-(x_i - \hat{\theta}_R)^2 / (2\hat{a}\hat{\theta})}} \\ &= \frac{\left(1/(2\pi\hat{\theta}_R)\right)^{n/2} e^{-\Sigma_i (x_i - \hat{\theta}_R)^2 / (2\hat{\theta}_R)}}{(1/(2\pi\hat{\sigma}^2))^{n/2} e^{-\Sigma_i (x_i - \hat{x})^2 / (2\hat{\sigma}^2)}} \\ &= \left(\hat{\sigma}^2/\hat{\theta}_R\right)^{n/2} e^{(n/2) - \Sigma_i (x_i - \hat{\theta}_R)^2 / (2\hat{\theta}_R)}. \end{split}$$

b. In this case we have

$$\log L(a,\theta \mid \mathbf{x}) = \sum_{i=1}^{n} \left[-\frac{1}{2} \log(2\pi a\theta^2) - \frac{1}{2a\theta^2} (x_i - \theta)^2 \right].$$

Thus

$$\frac{\partial \log L}{\partial a} = \sum_{i=1}^{n} \left(-\frac{1}{2a} + \frac{1}{2a^2\theta^2} (x_i - \theta)^2 \right) = -\frac{n}{2a} + \frac{1}{2a^2\theta^2} \sum_{i=1}^{n} (x_i - \theta)^2 \stackrel{\text{set}}{=} 0.$$

$$\frac{\partial \log L}{\partial \theta} = \sum_{i=1}^{n} \left[-\frac{1}{\theta} + \frac{1}{a\theta^3} (x_i - \theta)^2 + \frac{1}{a\theta^2} (x_i - \theta) \right]$$

$$= -\frac{n}{\theta} + \frac{1}{a\theta^3} \sum_{i=1}^{n} (x_i - \theta)^2 + \frac{1}{a\theta^2} \sum_{i=1}^{n} (x_i - \theta) \stackrel{\text{set}}{=} 0.$$

Solving the first equation for a in terms of θ yields

$$a = \frac{1}{n\theta^2} \sum_{i=1}^n (x_i - \theta)^2.$$

Substituting this into the second equation, we get

$$-\frac{n}{\theta} + \frac{n}{\theta} + n \frac{\sum_{i} (x_i - \theta)}{\sum_{i} (x_i - \theta)^2} = 0.$$

So again, $\hat{\theta} = \bar{x}$ and

$$\hat{a} = \frac{1}{n\bar{x}^2} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{\hat{\sigma}^2}{\bar{x}^2}$$

in the unrestricted case. In the restricted case, set a = 1 in the second equation to obtain

$$\frac{\partial \log L}{\partial \theta} = -\frac{n}{\theta} + \frac{1}{\theta^3} \sum_{i=1}^n (x_i - \theta)^2 + \frac{1}{\theta^2} \sum_{i=1}^n (x_i - \theta) \stackrel{\text{set}}{=} 0.$$

Multiply through by θ^3/n to get

$$-\theta^{2} + \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \theta)^{2} - \frac{\theta}{n} \sum_{i=1}^{n} (x_{i} - \theta) = 0.$$

Add $\pm \bar{x}$ inside the square and complete all sums to get the equation

$$-\theta^2 + \hat{\sigma}^2 + (\bar{x} - \theta)^2 + \theta(\bar{x} - \theta) = 0.$$

This is a quadratic in θ with solution for the MLE

$$\hat{\theta}_R = \bar{x} + \sqrt{\bar{x} + 4(\hat{\sigma}^2 + \bar{x}^2)} / 2.$$

which yields the LRT statistic

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_R \mid \mathbf{x})}{L(\hat{a}, \hat{\theta} \mid \mathbf{x})} = \frac{\prod_{i=1}^n \frac{1}{\sqrt{2\pi\hat{\theta}_R^2}} e^{-(x_i - \hat{\theta}_R)^2 / (2\hat{\theta}_R^2)}}{\prod_{i=1}^n \frac{1}{\sqrt{2\pi\hat{a}\hat{\theta}^2}} e^{-(x_i - \hat{\theta})^2 / (2\hat{a}\hat{\theta}^2)}} = \left(\frac{\hat{\sigma}}{\hat{\theta}_R}\right)^n e^{(n/2) - \sum_i (x_i - \hat{\theta}_R)^2 / (2\hat{\theta}_R)}.$$

8.9 a. The MLE of λ under H_0 is $\hat{\lambda}_0 = (\bar{Y})^{-1}$, and the MLE of λ_i under H_1 is $\hat{\lambda}_i = Y_i^{-1}$. The LRT statistic is bounded above by 1 and is given by

$$1 \ge \frac{\left(\bar{Y}\right)^{-n} e^{-n}}{\left(\prod_{i} Y_{i}\right)^{-1} e^{-n}}.$$

Rearrangement of this inequality yields $\bar{Y} \geq (\prod_i Y_i)^{1/n}$, the arithmetic-geometric mean inequality.

b. The pdf of X_i is $f(x_i|\lambda_i) = (\lambda_i/x_i^2)e^{-\lambda_i/x_i}$, $x_i > 0$. The MLE of λ under H_0 is $\hat{\lambda}_0 = n/[\sum_i (1/X_i)]$, and the MLE of λ_i under H_1 is $\hat{\lambda}_i = X_i$. Now, the argument proceeds as in part (a).

8.10 Let $Y = \sum_{i} X_{i}$. The posterior distribution of $\lambda | y$ is gamma $(y + \alpha, \beta/(\beta + 1))$. a.

$$P(\lambda \le \lambda_0 | y) = \frac{(\beta + 1)^{y + \alpha}}{\Gamma(y + \alpha)\beta^{y + \alpha}} \int_0^{\lambda_0} t^{y + \alpha - 1} e^{-t(\beta + 1)/\beta} dt.$$

 $P(\lambda > \lambda_0 | y) = 1 - P(\lambda \le \lambda_0 | y).$

b. Because $\beta/(\beta + 1)$ is a scale parameter in the posterior distribution, $(2(\beta + 1)\lambda/\beta)|y$ has a gamma $(y + \alpha, 2)$ distribution. If 2α is an integer, this is a $\chi^2_{2y+2\alpha}$ distribution. So, for $\alpha = 5/2$ and $\beta = 2$,

$$P(\lambda \le \lambda_0 | y) = P\left(\frac{2(\beta+1)\lambda}{\beta} \le \frac{2(\beta+1)\lambda_0}{\beta} \middle| y\right) = P(\chi^2_{2y+5} \le 3\lambda_0)$$

8.11 a. From Exercise 7.23, the posterior distribution of σ^2 given S^2 is $IG(\gamma, \delta)$, where $\gamma = \alpha + (n - 1)/2$ and $\delta = [(n - 1)S^2/2 + 1/\beta]^{-1}$. Let $Y = 2/(\sigma^2 \delta)$. Then $Y|S^2 \sim \text{gamma}(\gamma, 2)$. (Note: If 2α is an integer, this is a $\chi^2_{2\gamma}$ distribution.) Let M denote the median of a gamma $(\gamma, 2)$ distribution. Note that M depends on only α and n, not on S^2 or β . Then we have $P(Y \ge 2/\delta|S^2) = P(\sigma^2 \le 1|S^2) > 1/2$ if and only if

$$M > \frac{2}{\delta} = (n-1)S^2 + \frac{2}{\beta}$$
, that is, $S^2 < \frac{M - 2/\beta}{n-1}$

b. From Example 7.2.11, the unrestricted MLEs are $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = (n-1)S^2/n$. Under H_0 , $\hat{\mu}$ is still \bar{X} , because this was the maximizing value of μ , regardless of σ^2 . Then because $L(\bar{x}, \sigma^2 | \mathbf{x})$ is a unimodal function of σ^2 , the restricted MLE of σ^2 is $\hat{\sigma}^2$, if $\hat{\sigma}^2 \leq 1$, and is 1, if $\hat{\sigma}^2 > 1$. So the LRT statistic is

$$\lambda(\mathbf{x}) = \begin{cases} 1 & \text{if } \hat{\sigma}^2 \le 1\\ (\hat{\sigma}^2)^{n/2} e^{-n(\hat{\sigma}^2 - 1)/2} & \text{if } \hat{\sigma}^2 > 1. \end{cases}$$

We have that, for $\hat{\sigma}^2 > 1$,

$$\frac{\partial}{\partial(\hat{\sigma}^2)}\log\lambda(\mathbf{x}) = \frac{n}{2}\left(\frac{1}{\hat{\sigma}^2} - 1\right) < 0.$$

So $\lambda(\mathbf{x})$ is decreasing in $\hat{\sigma}^2$, and rejecting H_0 for small values of $\lambda(\mathbf{x})$ is equivalent to rejecting for large values of $\hat{\sigma}^2$, that is, large values of S^2 . The LRT accepts H_0 if and only if $S^2 < k$, where k is a constant. We can pick the prior parameters so that the acceptance regions match in this way. First, pick α large enough that M/(n-1) > k. Then, as β varies between 0 and ∞ , $(M - 2/\beta)/(n-1)$ varies between $-\infty$ and M/(n-1). So, for some choice of β , $(M - 2/\beta)/(n-1) = k$ and the acceptance regions match.

8.12 a. For $H_0: \mu \leq 0$ vs. $H_1: \mu > 0$ the LRT is to reject H_0 if $\bar{x} > c\sigma/\sqrt{n}$ (Example 8.3.3). For $\alpha = .05$ take c = 1.645. The power function is

$$\beta(\mu) = P\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} > 1.645 - \frac{\mu}{\sigma/\sqrt{n}}\right) = P\left(Z > 1.645 - \frac{\sqrt{n}\mu}{\sigma}\right)$$

Note that the power will equal .5 when $\mu = 1.645\sigma/\sqrt{n}$.

b. For $H_0: \mu = 0$ vs. $H_A: \mu \neq 0$ the LRT is to reject H_0 if $|\bar{x}| > c\sigma/\sqrt{n}$ (Example 8.2.2). For $\alpha = .05$ take c = 1.96. The power function is

$$\beta(\mu) = P\left(-1.96 - \sqrt{n\mu}/\sigma \le Z \le 1.96 + \sqrt{n\mu}/\sigma\right)$$

In this case, $\mu = \pm 1.96\sigma/\sqrt{n}$ gives power of approximately .5.

8.13 a. The size of ϕ_1 is $\alpha_1 = P(X_1 > .95 | \theta = 0) = .05$. The size of ϕ_2 is $\alpha_2 = P(X_1 + X_2 > C | \theta = 0)$. If $1 \le C \le 2$, this is

$$\alpha_2 = P(X_1 + X_2 > C | \theta = 0) = \int_{1-C}^1 \int_{C-x_1}^1 1 \, dx_2 \, dx_1 = \frac{(2-C)^2}{2}.$$

Setting this equal to α and solving for C gives $C = 2 - \sqrt{2\alpha}$, and for $\alpha = .05$, we get $C = 2 - \sqrt{.1} \approx 1.68$.

b. For the first test we have the power function

$$\beta_1(\theta) = P_{\theta}(X_1 > .95) = \begin{cases} 0 & \text{if } \theta \le -.05\\ \theta + .05 & \text{if } -.05 < \theta \le .95\\ 1 & \text{if } .95 < \theta. \end{cases}$$

Using the distribution of $Y = X_1 + X_2$, given by

$$f_Y(y|\theta) = \begin{cases} y - 2\theta & \text{if } 2\theta \le y < 2\theta + 1\\ 2\theta + 2 - y & \text{if } 2\theta + 1 \le y < 2\theta + 2\\ 0 & \text{otherwise,} \end{cases}$$

we obtain the power function for the second test as

$$\beta_2(\theta) = P_{\theta}(Y > C) = \begin{cases} 0 & \text{if } \theta \le (C/2) - 1\\ (2\theta + 2 - C)^2/2 & \text{if } (C/2) - 1 < \theta \le (C - 1)/2\\ 1 - (C - 2\theta)^2/2 & \text{if } (C - 1)/2 < \theta \le C/2\\ 1 & \text{if } C/2 < \theta. \end{cases}$$

c. From the graph it is clear that ϕ_1 is more powerful for θ near 0, but ϕ_2 is more powerful for larger θ_s . ϕ_2 is not uniformly more powerful than ϕ_1 .

d. If either $X_1 \ge 1$ or $X_2 \ge 1$, we should reject H_0 , because if $\theta = 0$, $P(X_i < 1) = 1$. Thus, consider the rejection region given by

$$\{(x_1, x_2) \colon x_1 + x_2 > C\} \bigcup \{(x_1, x_2) \colon x_1 > 1\} \bigcup \{(x_1, x_2) \colon x_2 > 1\}.$$

The first set is the rejection region for ϕ_2 . The test with this rejection region has the same size as ϕ_2 because the last two sets both have probability 0 if $\theta = 0$. But for $0 < \theta < C - 1$, The power function of this test is strictly larger than $\beta_2(\theta)$. If $C - 1 \leq \theta$, this test and ϕ_2 have the same power.

8.14 The CLT tells us that $Z = (\sum_i X_i - np)/\sqrt{np(1-p)}$ is approximately n(0,1). For a test that rejects H_0 when $\sum_i X_i > c$, we need to find c and n to satisfy

$$P\left(Z > \frac{c - n(.49)}{\sqrt{n(.49)(.51)}}\right) = .01 \text{ and } P\left(Z > \frac{c - n(.51)}{\sqrt{n(.51)(.49)}}\right) = .99.$$

We thus want

$$\frac{c-n(.49)}{\sqrt{n(.49)(.51)}} = 2.33$$
 and $\frac{c-n(.51)}{\sqrt{n(.51)(.49)}} = -2.33$

Solving these equations gives n = 13,567 and c = 6,783.5.

8.15 From the Neyman-Pearson lemma the UMP test rejects ${\cal H}_0$ if

$$\frac{f(x \mid \sigma_1)}{f(x \mid \sigma_0)} = \frac{(2\pi\sigma_1^2)^{-n/2} e^{-\sum_i x_i^2/(2\sigma_1^2)}}{(2\pi\sigma_0^2)^{-n/2} e^{-\sum_i x_i^2/(2\sigma_0^2)}} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2}\sum_i x_i^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\} > k$$

for some $k \ge 0$. After some algebra, this is equivalent to rejecting if

$$\sum_{i} x_i^2 > \frac{2 \log\left(k \left(\sigma_1 / \sigma_0\right)^n\right)}{\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} = c \quad \left(\text{because } \frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} > 0\right)$$

This is the UMP test of size α , where $\alpha = P_{\sigma_0}(\sum_i X_i^2 > c)$. To determine c to obtain a specified α , use the fact that $\sum_i X_i^2/\sigma_0^2 \sim \chi_n^2$. Thus

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 / \sigma_0^2 > c / \sigma_0^2 \right) = P \left(\chi_n^2 > c / \sigma_0^2 \right),$$

so we must have $c/\sigma_0^2=\chi_{n,\alpha}^2,$ which means $c=\sigma_0^2\chi_{n,\alpha}^2.$ 8.16 a.

Size =
$$P(\text{reject } H_0 \mid H_0 \text{ is true}) = 1 \Rightarrow \text{Type I error} = 1.$$

Power = $P(\text{reject } H_0 \mid H_A \text{ is true}) = 1 \Rightarrow \text{Type II error} = 0.$

 $\mathbf{b}.$

Size =
$$P(\text{reject } H_0 \mid H_0 \text{ is true}) = 0 \Rightarrow \text{Type I error} = 0.$$

Power = $P(\text{reject } H_0 \mid H_A \text{ is true}) = 0 \Rightarrow \text{Type II error} = 1.$

8.17 a. The likelihood function is

$$L(\mu, \theta | \mathbf{x}, \mathbf{y}) = \mu^n \left(\prod_i x_i\right)^{\mu-1} \theta^n \left(\prod_j y_j\right)^{\theta-1}$$

Maximizing, by differentiating the log-likelihood, yields the MLEs

$$\hat{\mu} = -\frac{n}{\sum_i \log x_i}$$
 and $\hat{\theta} = -\frac{m}{\sum_j \log y_j}$

Under H_0 , the likelihood is

$$L(\theta|\mathbf{x},\mathbf{y}) = \theta^{n+m} \left(\prod_{i} x_i \prod_{j} y_j\right)^{\theta-1},$$

and maximizing as above yields the restricted MLE,

$$\hat{\theta}_0 = -\frac{n+m}{\sum_i \log x_i + \sum_j \log y_j}.$$

The LRT statistic is

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{\hat{\theta}_0^{m+n}}{\hat{\mu}^n \hat{\theta}^m} \left(\prod_i x_i\right)^{\hat{\theta}_0 - \hat{\mu}} \left(\prod_j y_j\right)^{\hat{\theta}_0 - \hat{\theta}}$$

b. Substituting in the formulas for $\hat{\theta}$, $\hat{\mu}$ and $\hat{\theta}_0$ yields $(\prod_i x_i)^{\hat{\theta}_0 - \hat{\mu}} \left(\prod_j y_j\right)^{\hat{\theta}_0 - \hat{\theta}} = 1$ and

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{\hat{\theta}_0^{m+n}}{\hat{\mu}^n \hat{\theta}^m} = \frac{\hat{\theta}_0^n}{\hat{\mu}^n} \frac{\hat{\theta}_0^m}{\hat{\theta}^m} = \left(\frac{m+n}{m}\right)^m \left(\frac{m+n}{n}\right)^n (1-T)^m T^n.$$

This is a unimodal function of T. So rejecting if $\lambda(\mathbf{x}, \mathbf{y}) \leq c$ is equivalent to rejecting if $T \leq c_1$ or $T \geq c_2$, where c_1 and c_2 are appropriately chosen constants.

c. Simple transformations yield $-\log X_i \sim \text{exponential}(1/\mu)$ and $-\log Y_i \sim \text{exponential}(1/\theta)$. Therefore, T = W/(W + V) where W and V are independent, $W \sim \text{gamma}(n, 1/\mu)$ and $V \sim \text{gamma}(m, 1/\theta)$. Under H_0 , the scale parameters of W and V are equal. Then, a simple generalization of Exercise 4.19b yields $T \sim \text{beta}(n, m)$. The constants c_1 and c_2 are determined by the two equations

$$P(T \le c_1) + P(T \ge c_2) = \alpha$$
 and $(1 - c_1)^m c_1^n = (1 - c_2)^m c_2^n$.

8.18 a.

$$\begin{split} \beta(\theta) &= P_{\theta} \left(\frac{|\bar{X} - \theta_{0}|}{\sigma/\sqrt{n}} > c \right) = 1 - P_{\theta} \left(\frac{|\bar{X} - \theta_{0}|}{\sigma/\sqrt{n}} \le c \right) \\ &= 1 - P_{\theta} \left(-\frac{c\sigma}{\sqrt{n}} \le \bar{X} - \theta_{0} \le \frac{c\sigma}{\sqrt{n}} \right) \\ &= 1 - P_{\theta} \left(\frac{-c\sigma/\sqrt{n} + \theta_{0} - \theta}{\sigma/\sqrt{n}} \le \frac{\bar{X} - \theta}{\sigma/\sqrt{n}} \le \frac{c\sigma/\sqrt{n} + \theta_{0} - \theta}{\sigma/\sqrt{n}} \right) \\ &= 1 - P \left(-c + \frac{\theta_{0} - \theta}{\sigma/\sqrt{n}} \le Z \le c + \frac{\theta_{0} - \theta}{\sigma/\sqrt{n}} \right) \\ &= 1 + \Phi \left(-c + \frac{\theta_{0} - \theta}{\sigma/\sqrt{n}} \right) - \Phi \left(c + \frac{\theta_{0} - \theta}{\sigma/\sqrt{n}} \right), \end{split}$$

where $Z \sim n(0, 1)$ and Φ is the standard normal cdf.

b. The size is $.05 = \beta(\theta_0) = 1 + \Phi(-c) - \Phi(c)$ which implies c = 1.96. The power (1 - type II error) is

$$75 \le \beta(\theta_0 + \sigma) = 1 + \Phi(-c - \sqrt{n}) - \Phi(c - \sqrt{n}) = 1 + \underbrace{\Phi(-1.96 - \sqrt{n})}_{\approx 0} - \Phi(1.96 - \sqrt{n})$$

 $\Phi(-.675)\approx .25 \text{ implies } 1.96 - \sqrt{n} = -.675 \text{ implies } n = 6.943 \approx 7.$ 8.19 The pdf of Y is

$$f(y|\theta) = \frac{1}{\theta} y^{(1/\theta)-1} e^{-y^{1/\theta}}, \quad y > 0.$$

By the Neyman-Pearson Lemma, the UMP test will reject if

$$\frac{1}{2}y^{-1/2}e^{y-y^{1/2}} = \frac{f(y|2)}{f(y|1)} > k.$$

To see the form of this rejection region, we compute

$$\frac{d}{dy}\left(\frac{1}{2}y^{-1/2}e^{y-y^{1/2}}\right) = \frac{1}{2}y^{-3/2}e^{y-y^{1/2}}\left(y-\frac{y^{1/2}}{2}-\frac{1}{2}\right)$$

which is negative for y < 1 and positive for y > 1. Thus f(y|2)/f(y|1) is decreasing for $y \le 1$ and increasing for $y \ge 1$. Hence, rejecting for f(y|2)/f(y|1) > k is equivalent to rejecting for $y \le c_0$ or $y \ge c_1$. To obtain a size α test, the constants c_0 and c_1 must satisfy

$$\alpha = P(Y \le c_0 | \theta = 1) + P(Y \ge c_1 | \theta = 1) = 1 - e^{-c_0} + e^{-c_1} \quad \text{and} \quad \frac{f(c_0 | 2)}{f(c_0 | 1)} = \frac{f(c_1 | 2)}{f(c_1 | 1)}.$$

Solving these two equations numerically, for $\alpha = .10$, yields $c_0 = .076546$ and $c_1 = 3.637798$. The Type II error probability is

$$P(c_0 < Y < c_1 | \theta = 2) = \int_{c_0}^{c_1} \frac{1}{2} y^{-1/2} e^{-y^{1/2}} \, dy = -e^{-y^{1/2}} \Big|_{c_0}^{c_1} = .609824.$$

8.20 By the Neyman-Pearson Lemma, the UMP test rejects for large values of $f(x|H_1)/f(x|H_0)$. Computing this ratio we obtain

The ratio is decreasing in x. So rejecting for large values of $f(x|H_1)/f(x|H_0)$ corresponds to rejecting for small values of x. To get a size α test, we need to choose c so that $P(X \leq c|H_0) = \alpha$. The value c = 4 gives the UMP size $\alpha = .04$ test. The Type II error probability is $P(X = 5, 6, 7|H_1) = .82$.

- 8.21 The proof is the same with integrals replaced by sums.
- 8.22 a. From Corollary 8.3.13 we can base the test on $\sum_i X_i$, the sufficient statistic. Let $Y = \sum_i X_i \sim \text{binomial}(10, p)$ and let f(y|p) denote the pmf of Y. By Corollary 8.3.13, a test that rejects if f(y|1/4)/f(y|1/2) > k is UMP of its size. By Exercise 8.25c, the ratio f(y|1/2)/f(y|1/4) is increasing in y. So the ratio f(y|1/4)/f(y|1/2) is decreasing in y, and rejecting for large value of the ratio is equivalent to rejecting for small values of y. To get $\alpha = .0547$, we must find c such that $P(Y \le c|p = 1/2) = .0547$. Trying values $c = 0, 1, \ldots$, we find that for c = 2, $P(Y \le 2|p = 1/2) = .0547$. So the test that rejects if $Y \le 2$ is the UMP size $\alpha = .0547$ test. The power of the test is $P(Y \le 2|p = 1/4) \approx .526$.

- b. The size of the test is $P(Y \ge 6|p = 1/2) = \sum_{k=6}^{10} {\binom{10}{k}} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{10-k} \approx .377$. The power function is $\beta(\theta) = \sum_{k=6}^{10} {\binom{10}{k}} \theta^k (1-\theta)^{10-k}$
- c. There is a nonrandomized UMP test for all α levels corresponding to the probabilities $P(Y \leq i | p = 1/2)$, where *i* is an integer. For n = 10, α can have any of the values 0, $\frac{1}{1024}, \frac{11}{1024}, \frac{56}{1024}, \frac{176}{1024}, \frac{386}{1024}, \frac{638}{1024}, \frac{848}{1024}, \frac{968}{1024}, \frac{1013}{1024}, \frac{1023}{1024}$, and 1.
- 8.23 a. The test is Reject H_0 if X > 1/2. So the power function is

$$\beta(\theta) = P_{\theta}(X > 1/2) = \int_{1/2}^{1} \frac{\Gamma(\theta+1)}{\Gamma(\theta)\Gamma(1)} x^{\theta-1} (1-x)^{1-1} \, dx = \theta \left. \frac{1}{\theta} x^{\theta} \right|_{1/2}^{1} = 1 - \frac{1}{2^{\theta}}$$

The size is $\sup_{\theta \in H_0} \beta(\theta) = \sup_{\theta \le 1} (1 - 1/2^{\theta}) = 1 - 1/2 = 1/2.$

b. By the Neyman-Pearson Lemma, the most powerful test of $H_0: \theta = 1$ vs. $H_1: \theta = 2$ is given by Reject H_0 if $f(x \mid 2)/f(x \mid 1) > k$ for some $k \ge 0$. Substituting the beta pdf gives

$$\frac{f(x|2)}{f(x|1)} = \frac{\frac{1}{\beta(2,1)}x^{2-1}(1-x)^{1-1}}{\frac{1}{\beta(1,1)}x^{1-1}(1-x)^{1-1}} = \frac{\Gamma(3)}{\Gamma(2)\Gamma(1)}x = 2x$$

Thus, the MP test is Reject H_0 if X > k/2. We now use the α level to determine k. We have

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta) = \beta(1) = \int_{k/2}^1 f_X(x|1) \, dx = \int_{k/2}^1 \frac{1}{\beta(1,1)} x^{1-1} (1-x)^{1-1} \, dx = 1 - \frac{k}{2}.$$

Thus $1 - k/2 = \alpha$, so the most powerful α level test is reject H_0 if $X > 1 - \alpha$.

c. For $\theta_2 > \theta_1$, $f(x|\theta_2)/f(x|\theta_1) = (\theta_2/\theta_1)x^{\theta_2-\theta_1}$, an increasing function of x because $\theta_2 > \theta_1$. So this family has MLR. By the Karlin-Rubin Theorem, the test that rejects H_0 if X > t is the UMP test of its size. By the argument in part (b), use $t = 1 - \alpha$ to get size α .

8.24 For $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, the LRT statistic is

$$\lambda(\mathbf{x}) = \frac{L(\theta_0|\mathbf{x})}{\max\{L(\theta_0|\mathbf{x}), L(\theta_1|\mathbf{x})\}} = \begin{cases} 1 & \text{if } L(\theta_0|\mathbf{x}) \ge L(\theta_1|\mathbf{x})\\ L(\theta_0|\mathbf{x})/L(\theta_1|\mathbf{x}) & \text{if } L(\theta_0|\mathbf{x}) < L(\theta_1|\mathbf{x}). \end{cases}$$

The LRT rejects H_0 if $\lambda(\mathbf{x}) < c$. The Neyman-Pearson test rejects H_0 if $f(\mathbf{x}|\theta_1)/f(\mathbf{x}|\theta_0) = L(\theta_1|\mathbf{x})/L(\theta_0|\mathbf{x}) > k$. If k = 1/c > 1, this is equivalent to $L(\theta_0|\mathbf{x})/L(\theta_1|\mathbf{x}) < c$, the LRT. But if $c \ge 1$ or $k \le 1$, the tests will not be the same. Because c is usually chosen to be small (k large) to get a small size α , in practice the two tests are often the same.

8.25 a. For $\theta_2 > \theta_1$,

$$\frac{g(x \mid \theta_2)}{g(x \mid \theta_1)} = \frac{e^{-(x-\theta_2)^2/2\sigma^2}}{e^{-(x-\theta_1)^2/2\sigma^2}} = e^{x(\theta_2-\theta_1)/\sigma^2} e^{(\theta_1^2-\theta_2^2)/2\sigma^2}$$

Because $\theta_2 - \theta_1 > 0$, the ratio is increasing in x. So the families of $n(\theta, \sigma^2)$ have MLR. b. For $\theta_2 > \theta_1$,

$$\frac{g(x \mid \theta_2)}{g(x \mid \theta_1)} = \frac{e^{-\theta_2} \theta_2^x / x!}{e^{-\theta_1} \theta_1^x / x!} = \left(\frac{\theta_2}{\theta_1}\right)^x e^{\theta_1 - \theta_2}$$

which is increasing in x because $\theta_2/\theta_1 > 1$. Thus the Poisson(θ) family has an MLR. c. For $\theta_2 > \theta_1$,

$$\frac{g(x \mid \theta_2)}{g(x \mid \theta_1)} = \frac{\binom{n}{x} \theta_2^x (1 - \theta_2)^{n-x}}{\binom{n}{x} \theta_1^x (1 - \theta_1)^{n-x}} = \left(\frac{\theta_2(1 - \theta_1)}{\theta_1(1 - \theta_2)}\right)^x \left(\frac{1 - \theta_2}{1 - \theta_1}\right)^n$$

Both $\theta_2/\theta_1 > 1$ and $(1 - \theta_1)/(1 - \theta_2) > 1$. Thus the ratio is increasing in x, and the family has MLR.

(Note: You can also use the fact that an exponential family $h(x)c(\theta) \exp(w(\theta)x)$ has MLR if $w(\theta)$ is increasing in θ (Exercise 8.27). For example, the Poisson (θ) pmf is $e^{-\theta} \exp(x \log \theta)/x!$, and the family has MLR because $\log \theta$ is increasing in θ .)

8.26 a. We will prove the result for continuous distributions. But it is also true for discrete MLR families. For $\theta_1 > \theta_2$, we must show $F(x|\theta_1) \leq F(x|\theta_2)$. Now

$$\frac{d}{dx}\left[F(x|\theta_1) - F(x|\theta_2)\right] = f(x|\theta_1) - f(x|\theta_2) = f(x|\theta_2)\left(\frac{f(x|\theta_1)}{f(x|\theta_2)} - 1\right).$$

Because f has MLR, the ratio on the right-hand side is increasing, so the derivative can only change sign from negative to positive showing that any interior extremum is a minimum. Thus the function in square brackets is maximized by its value at ∞ or $-\infty$, which is zero.

b. From Exercise 3.42, location families are stochastically increasing in their location parameter, so the location Cauchy family with pdf $f(x|\theta) = (\pi [1+(x-\theta)^2])^{-1}$ is stochastically increasing. The family does not have MLR.

8.27 For $\theta_2 > \theta_1$,

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{c(\theta_2)}{c(\theta_1)} e^{[w(\theta_2) - w(\theta_1)]t}$$

which is increasing in t because $w(\theta_2) - w(\theta_1) > 0$. Examples include $n(\theta, 1)$, $beta(\theta, 1)$, and Bernoulli (θ) .

8.28 a. For $\theta_2 > \theta_1$, the likelihood ratio is

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = e^{\theta_1 - \theta_2} \left[\frac{1 + e^{x - \theta_1}}{1 + e^{x - \theta_2}} \right]^2.$$

The derivative of the quantity in brackets is

$$\frac{d}{dx}\frac{1+e^{x-\theta_1}}{1+e^{x-\theta_2}} = \frac{e^{x-\theta_1}-e^{x-\theta_2}}{(1+e^{x-\theta_2})^2}.$$

Because $\theta_2 > \theta_1$, $e^{x-\theta_1} > e^{x-\theta_2}$, and, hence, the ratio is increasing. This family has MLR.

b. The best test is to reject H_0 if f(x|1)/f(x|0) > k. From part (a), this ratio is increasing in x. Thus this inequality is equivalent to rejecting if x > k'. The cdf of this logistic is $F(x|\theta) = e^{x-\theta} / (1+e^{x-\theta})$. Thus

$$\alpha = 1 - F(k'|0) = \frac{1}{1 + e^{k'}}$$
 and $\beta = F(k'|1) = \frac{e^{k'-1}}{1 + e^{k'-1}}.$

For a specified α , $k' = \log(1 - \alpha)/\alpha$. So for $\alpha = .2$, $k' \approx 1.386$ and $\beta \approx .595$.

c. The Karlin-Rubin Theorem is satisfied, so the test is UMP of its size.

8.29 a. Let $\theta_2 > \theta_1$. Then

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{1 + (x - \theta_1)^2}{1 + (x - \theta_2)^2} = \frac{1 + (1 + \theta_1)^2 / x^2 - 2\theta_1 / x}{1 + (1 + \theta_2)^2 / x^2 - 2\theta_2 / x}.$$

The limit of this ratio as $x \to \infty$ or as $x \to -\infty$ is 1. So the ratio cannot be monotone increasing (or decreasing) between $-\infty$ and ∞ . Thus, the family does not have MLR.

b. By the Neyman-Pearson Lemma, a test will be UMP if it rejects when f(x|1)/f(x|0) > k, for some constant k. Examination of the derivative shows that f(x|1)/f(x|0) is decreasing for $x \le (1 - \sqrt{5})/2 = -.618$, is increasing for $(1 - \sqrt{5})/2 \le x \le (1 + \sqrt{5})/2 = 1.618$, and is decreasing for $(1 + \sqrt{5})/2 \le x$. Furthermore, f(1|1)/f(1|0) = f(3|1)/f(3|0) = 2. So rejecting if f(x|1)/f(x|0) > 2 is equivalent to rejecting if 1 < x < 3. Thus, the given test is UMP of its size. The size of the test is

$$P(1 < X < 3|\theta = 0) = \int_{1}^{3} \frac{1}{\pi} \frac{1}{1+x^{2}} dx = \frac{1}{\pi} \arctan x \Big|_{1}^{3} \approx .1476.$$

The Type II error probability is

$$1 - P(1 < X < 3|\theta = 1) = 1 - \int_{1}^{3} \frac{1}{\pi} \frac{1}{1 + (x - 1)^{2}} dx = 1 - \frac{1}{\pi} \arctan(x - 1) \Big|_{1}^{3} \approx .6476.$$

- c. We will not have $f(1|\theta)/f(1|0) = f(3|\theta)/f(3|0)$ for any other value of $\theta \neq 1$. Try $\theta = 2$, for example. So the rejection region 1 < x < 3 will not be most powerful at any other value of θ . The test is not UMP for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.
- 8.30 a. For $\theta_2 > \theta_1 > 0$, the likelihood ratio and its derivative are

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\theta_2}{\theta_1} \frac{\theta_1^2 + x^2}{\theta_2^2 + x^2} \quad \text{and} \quad \frac{d}{dx} \frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\theta_2}{\theta_1} \frac{\theta_2^2 - \theta_1^2}{(\theta_2^2 + x^2)^2} x.$$

The sign of the derivative is the same as the sign of x (recall, $\theta_2^2 - \theta_1^2 > 0$), which changes sign. Hence the ratio is not monotone.

b. Because $f(x|\theta) = (\theta/\pi)(\theta^2 + |x|^2)^{-1}$, Y = |X| is sufficient. Its pdf is

$$f(y|\theta) = \frac{2\theta}{\pi} \frac{1}{\theta^2 + y^2}, \quad y > 0$$

Differentiating as above, the sign of the derivative is the same as the sign of y, which is positive. Hence the family has MLR.

8.31 a. By the Karlin-Rubin Theorem, the UMP test is to reject H_0 if $\sum_i X_i > k$, because $\sum_i X_i$ is sufficient and $\sum_i X_i \sim \text{Poisson}(n\lambda)$ which has MLR. Choose the constant k to satisfy $P(\sum_i X_i > k | \lambda = \lambda_0) = \alpha$.

$$P\left(\sum_{i} X_{i} > k \middle| \lambda = 1\right) \approx P\left(Z > (k-n)/\sqrt{n}\right) \stackrel{\text{set}}{=} .05,$$
$$P\left(\sum_{i} X_{i} > k \middle| \lambda = 2\right) \approx P\left(Z > (k-2n)/\sqrt{2n}\right) \stackrel{\text{set}}{=} .90.$$

Thus, solve for k and n in

$$\frac{k-n}{\sqrt{n}} = 1.645$$
 and $\frac{k-2n}{\sqrt{2n}} = -1.28$,

yielding n = 12 and k = 17.70.

- $8.32\,$ a. This is Example 8.3.15.
 - b. This is Example 8.3.19.
- 8.33 a. From Theorems 5.4.4 and 5.4.6, the marginal pdf of Y_1 and the joint pdf of (Y_1, Y_n) are

$$f(y_1|\theta) = n(1 - (y_1 - \theta))^{n-1}, \quad \theta < y_1 < \theta + 1,$$

$$f(y_1, y_n|\theta) = n(n-1)(y_n - y_1)^{n-2}, \quad \theta < y_1 < y_n < \theta + 1$$

Under $H_0, P(Y_n \ge 1) = 0$. So

$$\alpha = P(Y_1 \ge k|0) = \int_k^1 n(1-y_1)^{n-1} \, dy_1 = (1-k)^n.$$

Thus, use $k = 1 - \alpha^{1/n}$ to have a size α test.

b. For $\theta \leq k - 1$, $\beta(\theta) = 0$. For $k - 1 < \theta \leq 0$,

$$\beta(\theta) = \int_{k}^{\theta+1} n(1 - (y_1 - \theta))^{n-1} \, dy_1 = (1 - k + \theta)^n.$$

For $0 < \theta \leq k$,

$$\beta(\theta) = \int_{k}^{\theta+1} n(1-(y_{1}-\theta))^{n-1} dy_{1} + \int_{\theta}^{k} \int_{1}^{\theta+1} n(n-1)(y_{n}-y_{1})^{n-2} dy_{n} dy_{1}$$

= $\alpha + 1 - (1-\theta)^{n}$.

And for $k < \theta$, $\beta(\theta) = 1$.

c. (Y_1, Y_n) are sufficient statistics. So we can attempt to find a UMP test using Corollary 8.3.13 and the joint pdf $f(y_1, y_n | \theta)$ in part (a). For $0 < \theta < 1$, the ratio of pdfs is

$$\frac{f(y_1, y_n | \theta)}{f(y_1, y_n | 0)} = \begin{cases} 0 & \text{if } 0 < y_1 \le \theta, \, y_1 < y_n < 1\\ 1 & \text{if } \theta < y_1 < y_n < 1\\ \infty & \text{if } 1 \le y_n < \theta + 1, \theta < y_1 < y_n. \end{cases}$$

For $1 \leq \theta$, the ratio of pdfs is

$$\frac{f(y_1, y_n | \theta)}{f(y_1, y_n | 0)} = \begin{cases} 0 & \text{if } y_1 < y_n < 1\\ \infty & \text{if } \theta < y_1 < y_n < \theta + 1 \end{cases}$$

For $0 < \theta < k$, use k' = 1. The given test always rejects if $f(y_1, y_n | \theta) / f(y_1, y_n | \theta) > 1$ and always accepts if $f(y_1, y_n | \theta) / f(y_1, y_n | \theta) < 1$. For $\theta \ge k$, use k' = 0. The given test always rejects if $f(y_1, y_n | \theta) / f(y_1, y_n | \theta) > 0$ and always accepts if $f(y_1, y_n | \theta) / f(y_1, y_n | \theta) > 0$. Thus the given test is UMP by Corollary 8.3.13.

- d. According to the power function in part (b), $\beta(\theta) = 1$ for all $\theta \ge k = 1 \alpha^{1/n}$. So these conditions are satisfied for any n.
- $8.34\,$ a. This is Exercise 3.42a.
 - b. This is Exercise 8.26a.
- 8.35 a. We will use the equality in Exercise 3.17 which remains true so long as $\nu > -\alpha$. Recall that $Y \sim \chi^2_{\nu} = \text{gamma}(\nu/2, 2)$. Thus, using the independence of X and Y we have

$$E T' = E \frac{X}{\sqrt{Y/\nu}} = (E X) \sqrt{\nu} E Y^{-1/2} = \mu \sqrt{\nu} \frac{\Gamma((\nu - 1)/2)}{\Gamma(\nu/2)\sqrt{2}}$$

if $\nu > 1$. To calculate the variance, compute

$$E(T')^{2} = E\frac{X^{2}}{Y/\nu} = (E X^{2})\nu E Y^{-1} = (\mu^{2} + 1)\nu \frac{\Gamma((\nu - 2)/2)}{\Gamma(\nu/2)^{2}} = \frac{(\mu^{2} + 1)\nu}{\nu - 2}$$

if $\nu > 2$. Thus, if $\nu > 2$,

$$\operatorname{Var} T' = \frac{(\mu^2 + 1)\nu}{\nu - 2} - \left(\mu\sqrt{\nu}\frac{\Gamma((\nu - 1)/2)}{\Gamma(\nu/2)\sqrt{2}}\right)^2$$

- b. If $\delta = 0$, all the terms in the sum for k = 1, 2, ... are zero because of the δ^k term. The expression with just the k = 0 term and $\delta = 0$ simplifies to the central t pdf.
- c. The argument that the noncentral t has an MLR is fairly involved. It may be found in Lehmann (1986, p. 295).

8.37 a. $P(\bar{X} > \theta_0 + z_\alpha \sigma / \sqrt{n} | \theta_0) = P((\bar{X} - \theta_0) / (\sigma / \sqrt{n}) > z_\alpha | \theta_0) = P(Z > z_\alpha) = \alpha$, where $Z \sim n(0, 1)$. Because \bar{x} is the unrestricted MLE, and the restricted MLE is θ_0 if $\bar{x} > \theta_0$, the LRT statistic is, for $\bar{x} \ge \theta_0$

$$\lambda(\mathbf{x}) = \frac{(2\pi\sigma^2)^{-n/2} e^{-\sum_i (x_i - \theta_0)^2 / 2\sigma^2}}{(2\pi\sigma^2)^{-n/2} e^{-\sum_i (x_i - \bar{x})^2 / 2\sigma^2}} = \frac{e^{-\left[n(\bar{x} - \theta_0)^2 + (n-1)s^2\right]} / 2\sigma^2}{e^{-(n-1)s^2 / 2\sigma^2}} = e^{-n(\bar{x} - \theta_0)^2 / 2\sigma^2}.$$

and the LRT statistic is 1 for $\bar{x} < \theta_0$. Thus, rejecting if $\lambda < c$ is equivalent to rejecting if $(\bar{x} - \theta_0)/(\sigma/\sqrt{n}) > c'$ (as long as c < 1 – see Exercise 8.24).

- b. The test is UMP by the Karlin-Rubin Theorem.
- c. $P(\bar{X} > \theta_0 + t_{n-1,\alpha}S/\sqrt{n}|\theta = \theta_0) = P(T_{n-1} > t_{n-1,\alpha}) = \alpha$, when T_{n-1} is a Student's t random variable with n-1 degrees of freedom. If we define $\hat{\sigma}^2 = \frac{1}{n}\sum(x_i \bar{x})^2$ and $\hat{\sigma}_0^2 = \frac{1}{n}\sum(x_i \theta_0)^2$, then for $\bar{x} \ge \theta_0$ the LRT statistic is $\lambda = (\hat{\sigma}^2/\hat{\sigma}_0^2)^{n/2}$, and for $\bar{x} < \theta_0$ the LRT statistic is $\lambda = 1$. Writing $\hat{\sigma}^2 = \frac{n-1}{n}s^2$ and $\hat{\sigma}_0^2 = (\bar{x} \theta_0)^2 + \frac{n-1}{n}s^2$, it is clear that the LRT is equivalent to the t-test because $\lambda < c$ when

$$\frac{\frac{n-1}{n}s^2}{(\bar{x}-\theta_0)^2 + \frac{n-1}{n}s^2} = \frac{(n-1)/n}{(\bar{x}-\theta_0)^2/s^2 + (n-1)/n} < c' \quad \text{and} \quad \bar{x} \ge \theta_0,$$

which is the same as rejecting when $(\bar{x} - \theta_0)/(s/\sqrt{n})$ is large.

d. The proof that the one-sided t test is UMP unbiased is rather involved, using the bounded completeness of the normal distribution and other facts. See Chapter 5 of Lehmann (1986) for a complete treatment.

Size =
$$P_{\theta_0} \left\{ | \bar{X} - \theta_0 | > t_{n-1,\alpha/2} \sqrt{S^2/n} \right\}$$

= $1 - P_{\theta_0} \left\{ -t_{n-1,\alpha/2} \sqrt{S^2/n} \le \bar{X} - \theta_0 \le t_{n-1,\alpha/2} \sqrt{S^2/n} \right\}$
= $1 - P_{\theta_0} \left\{ -t_{n-1,\alpha/2} \le \frac{\bar{X} - \theta_0}{\sqrt{S^2/n}} \le t_{n-1,\alpha/2} \right\} \left(\frac{\bar{X} - \theta_0}{\sqrt{S^2/n}} \sim t_{n-1} \text{ under } H_0 \right)$
= $1 - (1 - \alpha) = \alpha.$

b. The unrestricted MLEs are $\hat{\theta} = \bar{X}$ and $\hat{\sigma}^2 = \sum_i (X_i - \bar{X})^2/n$. The restricted MLEs are $\hat{\theta}_0 = \theta_0$ and $\hat{\sigma}_0^2 = \sum_i (X_i - \theta_0)^2/n$. So the LRT statistic is

$$\begin{aligned} \lambda(\mathbf{x}) &= \frac{(2\pi\hat{\sigma}_0)^{-n/2} \exp\{-n\hat{\sigma}_0^2/(2\hat{\sigma}_0^2)\}}{(2\pi\hat{\sigma})^{-n/2} \exp\{-n\hat{\sigma}^2/(2\hat{\sigma}^2)\}} \\ &= \left[\frac{\sum_i (x_i - \bar{x})^2}{\sum_i (x_i - \theta_0)^2}\right]^{n/2} = \left[\frac{\sum_i (x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2}\right]^{n/2}. \end{aligned}$$

For a constant c, the LRT is

reject
$$H_0$$
 if $\left[\frac{\sum_i (x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2}\right] = \frac{1}{1 + n(\bar{x} - \theta_0)^2 / \sum_i (x_i - \bar{x})^2} < c^{2/n}.$

After some algebra we can write the test as

reject
$$H_0$$
 if $|\bar{x} - \theta_0| > \left[\left(c^{-2/n} - 1 \right) (n-1) \frac{s^2}{n} \right]^{1/2}$.

We now choose the constant c to achieve size α , and we

reject if
$$|\bar{x} - \theta_0| > t_{n-1,\alpha/2} \sqrt{s^2/n}$$
.

c. Again, see Chapter 5 of Lehmann (1986).

- 8.39 a. From Exercise 4.45c, $W_i = X_i Y_i \sim n(\mu_W, \sigma_W^2)$, where $\mu_X \mu_Y = \mu_W$ and $\sigma_X^2 + \sigma_Y^2 \rho\sigma_X\sigma_Y = \sigma_W^2$. The W_i s are independent because the pairs (X_i, Y_i) are.
 - b. The hypotheses are equivalent to $H_0: \mu_W = 0$ vs $H_1: \mu_W \neq 0$, and, from Exercise 8.38, if we reject H_0 when $|\bar{W}| > t_{n-1,\alpha/2}\sqrt{S_W^2/n}$, this is the LRT (based on W_1, \ldots, W_n) of size α . (Note that if $\rho > 0$, Var W_i can be small and the test will have good power.)

8.41 a.

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{\sup_{H_0} L(\mu_X, \mu_Y, \sigma^2 \mid \mathbf{x}, \mathbf{y})}{\sup L(\mu_X, \mu_Y, \sigma^2 \mid \mathbf{x}, \mathbf{y})} = \frac{L(\hat{\mu}, \hat{\sigma}_0^2 \mid \mathbf{x}, \mathbf{y})}{L(\hat{\mu}_X, \hat{\mu}_Y, \hat{\sigma}_1^2 \mid \mathbf{x}, \mathbf{y})}$$

Under H_0 , the X_i s and Y_i s are one sample of size m + n from a $n(\mu, \sigma^2)$ population, where $\mu = \mu_X = \mu_Y$. So the restricted MLEs are

$$\hat{\mu} = \frac{\sum_{i} X_{i} + \sum_{i} Y_{i}}{n+m} = \frac{n\bar{x} + n\bar{y}}{n+m} \quad \text{and} \quad \hat{\sigma}_{0}^{2} = \frac{\sum_{i} (X_{i} - \hat{\mu})^{2} + \sum_{i} (Y_{i} - \hat{\mu})^{2}}{n+m}.$$

To obtain the unrestricted MLEs, $\hat{\mu}_x$, $\hat{\mu}_y$, $\hat{\sigma}^2$, use

$$L(\mu_X, \mu_Y, \sigma^2 | x, y) = (2\pi\sigma^2)^{-(n+m)/2} e^{-[\sum_i (x_i - \mu_X)^2 + \sum_i (y_i - \mu_Y)^2]/2\sigma^2}$$

Firstly, note that $\hat{\mu}_X = \bar{x}$ and $\hat{\mu}_Y = \bar{y}$, because maximizing over μ_X does not involve μ_Y and vice versa. Then

$$\frac{\partial \log L}{\partial \sigma^2} = -\frac{n+m}{2}\frac{1}{\sigma^2} + \frac{1}{2}\left[\sum_i \left(x_i - \hat{\mu}_X\right)^2 + \sum_i \left(y_i - \hat{\mu}_Y\right)^2\right]\frac{1}{\left(\sigma^2\right)^2} \stackrel{\text{set}}{=} 0$$

implies

$$\hat{\sigma}^2 = \left[\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2\right] \frac{1}{n+m}$$

To check that this is a maximum,

$$\begin{aligned} \frac{\partial^2 \log L}{\partial (\sigma^2)^2} \bigg|_{\hat{\sigma}^2} &= \left. \frac{n+m}{2} \frac{1}{(\sigma^2)^2} - \left[\sum_i \left(x_i - \hat{\mu}_X \right)^2 + \sum_i \left(y_i - \hat{\mu}_Y \right)^2 \right] \frac{1}{(\sigma^2)^3} \bigg|_{\hat{\sigma}^2} \\ &= \left. \frac{n+m}{2} \frac{1}{(\hat{\sigma}^2)^2} - (n+m) \frac{1}{(\hat{\sigma}^2)^2} \right|_{\hat{\sigma}^2} = \left. - \frac{n+m}{2} \frac{1}{(\hat{\sigma}^2)^2} \right|_{\hat{\sigma}^2} < 0. \end{aligned}$$

Thus, it is a maximum. We then have

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{\left(2\pi\hat{\sigma}_{0}^{2}\right)^{-\frac{n+m}{2}} \exp\left\{-\frac{1}{2\hat{\sigma}_{0}^{2}} \left[\sum_{i=1}^{n} \left(x_{i} - \hat{\mu}\right)^{2} + \sum_{i=1}^{m} \left(y_{i} - \hat{\mu}\right)^{2}\right]\right\}}{\left(2\pi\hat{\sigma}^{2}\right)^{-\frac{n+m}{2}} \exp\left\{-\frac{1}{2\hat{\sigma}^{2}} \left[\sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} + \sum_{i=1}^{m} \left(y_{i} - \bar{y}\right)^{2}\right]\right\}} = \left(\frac{\hat{\sigma}_{0}^{2}}{\hat{\sigma}_{1}^{2}}\right)^{-\frac{n+m}{2}}$$

and the LRT is rejects H_0 if $\hat{\sigma}_0^2/\hat{\sigma}^2 > k$. In the numerator, first substitute $\hat{\mu} = (n\bar{x} + m\bar{y})/(n+m)$ and write

$$\sum_{i=1}^{n} \left(x_i - \frac{n\bar{x} + m\bar{y}}{n+m} \right)^2 = \sum_{i=1}^{n} \left((x_i - \bar{x}) + \left(\bar{x} - \frac{n\bar{x} + m\bar{y}}{n+m} \right) \right)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{nm^2}{(n+m)^2} (\bar{x} - \bar{y})^2,$$

because the cross term is zero. Performing a similar operation on the Y sum yields

$$\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} = \frac{\sum (x_i - \bar{x})^2 + \sum (y_i - \bar{y})^2 + \frac{nm}{n+m}(\bar{x} - \bar{y})^2}{\hat{\sigma}^2} = n + m + \frac{nm}{n+m}\frac{(\bar{x} - \bar{y})^2}{\hat{\sigma}^2}.$$

Because $\hat{\sigma}^2 = \frac{n+m-2}{n+m}S_p^2$, large values of $\hat{\sigma}_0^2/\hat{\sigma}^2$ are equivalent to large values of $(\bar{x}-\bar{y})^2/S_p^2$ and large values of |T|. Hence, the LRT is the two-sample *t*-test. b.

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2(1/n + 1/m)}} = \frac{(\bar{X} - \bar{Y}) / \sqrt{\sigma^2(1/n + 1/m)}}{\sqrt{[(n + m - 2)S_p^2/\sigma^2]/(n + m - 2)}}.$$

Under H_0 , $(\bar{X} - \bar{Y}) \sim n(0, \sigma^2(1/n+1/m))$. Under the model, $(n-1)S_X^2/\sigma^2$ and $(m-1)S_Y^2/\sigma^2$ are independent χ^2 random variables with (n-1) and (m-1) degrees of freedom. Thus, $(n+m-2)S_p^2/\sigma^2 = (n-1)S_X^2/\sigma^2 + (m-1)S_Y^2/\sigma^2 \sim \chi^2_{n+m-2}$. Furthermore, $\bar{X} - \bar{Y}$ is independent of S_X^2 and S_Y^2 , and, hence, S_p^2 . So $T \sim t_{n+m-2}$.

- c. The two-sample t test is UMP unbiased, but the proof is rather involved. See Chapter 5 of Lehmann (1986).
- d. For these data we have n = 14, $\bar{X} = 1249.86$, $S_X^2 = 591.36$, m = 9, $\bar{Y} = 1261.33$, $S_Y^2 = 176.00$ and $S_p^2 = 433.13$. Therefore, T = -1.29 and comparing this to a t_{21} distribution gives a p-value of .21. So there is no evidence that the mean age differs between the core and periphery.
- 8.42 a. The Satterthwaite approximation states that if $Y_i \sim \chi^2_{r_i}$, where the Y_i 's are independent, then

$$\sum_{i} a_{i} Y_{i} \stackrel{\text{approx}}{\sim} \frac{\chi_{\hat{\nu}}^{2}}{\hat{\nu}} \quad \text{where} \quad \hat{\nu} = \frac{\left(\sum_{i} a_{i} Y_{i}\right)^{2}}{\sum_{i} a_{i}^{2} Y_{i}^{2} / r_{i}}.$$
We have $Y_{1} = (n-1) S_{X}^{2} / \sigma_{X}^{2} \sim \chi_{n-1}^{2}$ and $Y_{2} = (m-1) S_{Y}^{2} / \sigma_{Y}^{2} \sim \chi_{m-1}^{2}.$ Now define
$$a_{1} = \frac{\sigma_{X}^{2}}{n(n-1) \left[(\sigma_{X}^{2} / n) + (\sigma_{Y}^{2} / m)\right]} \quad \text{and} \quad a_{2} = \frac{\sigma_{Y}^{2}}{m(m-1) \left[(\sigma_{X}^{2} / n) + (\sigma_{Y}^{2} / m)\right]}.$$

Then,

$$\begin{split} \sum a_i Y_i &= \frac{\sigma_X^2}{n(n-1) \left[(\sigma_X^2/n) + (\sigma_Y^2/m) \right]} \frac{(n-1)S_X^2}{\sigma_X^2} \\ &+ \frac{\sigma_Y^2}{m(m-1) \left[(\sigma_X^2/n) + (\sigma_Y^2/m) \right]} \frac{(m-1)S_Y^2}{\sigma_Y^2} \\ &= \frac{S_X^2/n + S_Y^2/m}{\sigma_X^2/n + \sigma_Y^2/m} \sim \frac{\chi_{\hat{\nu}}^2}{\hat{\nu}} \end{split}$$

where

$$\hat{\nu} = \frac{\left(\frac{S_X^2/n + S_Y^2/m}{\sigma_X^2/n + \sigma_Y^2/m}\right)^2}{\frac{1}{(n-1)}\frac{S_X^4}{n^2(\sigma_X^2/n + \sigma_Y^2/m)^2} + \frac{1}{(m-1)}\frac{S_Y^4}{m^2(\sigma_X^2/n + \sigma_Y^2/m)^2}} = \frac{\left(\frac{S_X^2/n + S_Y^2/m}{S_Y^4}\right)^2}{\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}}.$$

b. Because $\bar{X} - \bar{Y} \sim n\left(\mu_X - \mu_Y, \sigma_X^2/n + \sigma_Y^2/m\right)$ and $\frac{S_X^2/n + S_Y^2/m}{\sigma_X^2/n + \sigma_Y^2/m} \sim \chi_{\hat{\nu}}^2/\hat{\nu}$, under $H_0: \mu_X - \mu_Y = 0$ we have

$$T' = \frac{\bar{X} - \bar{Y}}{\sqrt{S_X^2/n + S_Y^2/m}} = \frac{(\bar{X} - \bar{Y}) / \sqrt{\sigma_X^2/n + \sigma_Y^2/m}}{\sqrt{\frac{(S_X^2/n + S_Y^2/m)}{(\sigma_X^2/n + \sigma_Y^2/m)}}} \stackrel{\text{approx}}{\sim} t_{\hat{\nu}}$$

- c. Using the values in Exercise 8.41d, we obtain T' = -1.46 and $\hat{\nu} = 20.64$. So the p-value is .16. There is no evidence that the mean age differs between the core and periphery.
- d. $F = S_X^2/S_Y^2 = 3.36$. Comparing this with an $F_{13,8}$ distribution yields a p-value of $2P(F \ge 3.36) = .09$. So there is some slight evidence that the variance differs between the core and periphery.
- 8.43 There were typos in early printings. The t statistic should be

$$\frac{(X-Y) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n_1} + \frac{\rho^2}{n_2}}\sqrt{\frac{(n_1-1)s_X^2 + (n_2-1)s_Y^2/\rho^2}{n_1+n_2-2}}},$$

and the F statistic should be $s_Y^2/(\rho^2 s_X^2)$. Multiply and divide the denominator of the t statistic by σ to express it as

$$\frac{(X-Y) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\rho^2 \sigma^2}{n_2}}}$$

divided by

$$\sqrt{\frac{(n_1-1)s_X^2/\sigma^2 + (n_2-1)s_Y^2/(\rho^2\sigma^2)}{n_1+n_2-2}}.$$

The numerator has a n(0, 1) distribution. In the denominator, $(n_1 - 1)s_X^2/\sigma^2 \sim \chi_{n_1-1}^2$ and $(n_2-1)s_Y^2/(\rho^2\sigma^2) \sim \chi_{n_2-1}^2$ and they are independent, so their sum has a $\chi_{n_1+n_2-2}^2$ distribution. Thus, the statistic has the form of $n(0,1)/\sqrt{\chi_{\nu}^2/\nu}$ where $\nu = n_1 + n_2 - 2$, and the numerator and denominator are independent because of the independence of sample means and variances in normal sampling. Thus the statistic has a $t_{n_1+n_2-2}$ distribution. The *F* statistic can be written as

$$\frac{s_Y^2}{\rho^2 s_X^2} = \frac{s_Y^2/(\rho^2 \sigma^2)}{s_X^2/\sigma^2} = \frac{[(n_2 - 1)s_Y^2/(\rho^2 \sigma^2)]/(n_2 - 1)}{[(n_1 - 1)s_X^2/(\sigma^2)]/(n_1 - 1)}$$

which has the form $[\chi^2_{n_2-1}/(n_2-1)]/[\chi^2_{n_1-1}/(n_1-1)]$ which has an F_{n_2-1,n_1-1} distribution. (Note, early printings had a typo with the numerator and denominator degrees of freedom switched.)

8.44 Test 3 rejects $H_0: \theta = \theta_0$ in favor of $H_1: \theta \neq \theta_0$ if $\bar{X} > \theta_0 + z_{\alpha/2}\sigma/\sqrt{n}$ or $\bar{X} < \theta_0 - z_{\alpha/2}\sigma/\sqrt{n}$. Let Φ and ϕ denote the standard normal cdf and pdf, respectively. Because $\bar{X} \sim n(\theta, \sigma^2/n)$, the power function of Test 3 is

$$\begin{aligned} \beta(\theta) &= P_{\theta}(\bar{X} < \theta_0 - z_{\alpha/2}\sigma/\sqrt{n}) + P_{\theta}(\bar{X} > \theta_0 + z_{\alpha/2}\sigma/\sqrt{n}) \\ &= \Phi\left(\frac{\theta_0 - \theta}{\sigma/\sqrt{n}} - z_{\alpha/2}\right) + 1 - \Phi\left(\frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + z_{\alpha/2}\right), \end{aligned}$$

and its derivative is

$$\frac{d\beta(\theta)}{d\theta} = -\frac{\sqrt{n}}{\sigma}\phi\left(\frac{\theta_0 - \theta}{\sigma/\sqrt{n}} - z_{\alpha/2}\right) + \frac{\sqrt{n}}{\sigma}\phi\left(\frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + z_{\alpha/2}\right).$$

Because ϕ is symmetric and unimodal about zero, this derivative will be zero only if

$$-\left(\frac{\theta_0-\theta}{\sigma/\sqrt{n}}-z_{\alpha/2}\right)=\frac{\theta_0-\theta}{\sigma/\sqrt{n}}+z_{\alpha/2},$$

that is, only if $\theta = \theta_0$. So, $\theta = \theta_0$ is the only possible local maximum or minimum of the power function. $\beta(\theta_0) = \alpha$ and $\lim_{\theta \to \pm \infty} \beta(\theta) = 1$. Thus, $\theta = \theta_0$ is the global minimum of $\beta(\theta)$, and, for any $\theta' \neq \theta_0$, $\beta(\theta') > \beta(\theta_0)$. That is, Test 3 is unbiased.

- 8.45 The verification of size α is the same computation as in Exercise 8.37a. Example 8.3.3 shows that the power function $\beta_m(\theta)$ for each of these tests is an increasing function. So for $\theta > \theta_0$, $\beta_m(\theta) > \beta_m(\theta_0) = \alpha$. Hence, the tests are all unbiased.
- 8.47 a. This is very similar to the argument for Exercise 8.41.
 - b. By an argument similar to part (a), this LRT rejects H_0^+ if

$$T^{+} = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \le -t_{n+m-2,\alpha}$$

- c. Because H_0 is the union of H_0^+ and H_0^- , by the IUT method of Theorem 8.3.23 the test that rejects H_0 if the tests in parts (a) and (b) both reject is a level α test of H_0 . That is, the test rejects H_0 if $T^+ \leq -t_{n+m-2,\alpha}$ and $T^- \geq t_{n+m-2,\alpha}$.
- d. Use Theorem 8.3.24. Consider parameter points with $\mu_X \mu_Y = \delta$ and $\sigma \to 0$. For any σ , $P(T^+ \leq -t_{n+m-2,\alpha}) = \alpha$. The power of the T^- test is computed from the noncentral t distribution with noncentrality parameter $|\mu_x \mu_Y (-\delta)|/[\sigma(1/n + 1/m)] = 2\delta/[\sigma(1/n + 1/m)]$ which converges to ∞ as $\sigma \to 0$. Thus, $P(T^- \geq t_{n+m-2,\alpha}) \to 1$ as $\sigma \to 0$. By Theorem 8.3.24, this IUT is a size α test of H_0 .
- 8.49 a. The p-value is

$$P\left\{ \begin{pmatrix} 7 \text{ or more successes} \\ \text{out of 10 Bernoulli trials} \end{pmatrix} \middle| \theta = \frac{1}{2} \right\}$$

= $\begin{pmatrix} 10 \\ 7 \end{pmatrix} \left(\frac{1}{2}\right)^7 \left(\frac{1}{2}\right)^3 + \begin{pmatrix} 10 \\ 8 \end{pmatrix} \left(\frac{1}{2}\right)^8 \left(\frac{1}{2}\right)^2 + \begin{pmatrix} 10 \\ 9 \end{pmatrix} \left(\frac{1}{2}\right)^9 \left(\frac{1}{2}\right)^1 + \begin{pmatrix} 10 \\ 10 \end{pmatrix} \left(\frac{1}{2}\right)^{10} \left(\frac{1}{2}\right)^0$
= .171875.

b.

P-value =
$$P\{X \ge 3 \mid \lambda = 1\} = 1 - P(X < 3 \mid \lambda = 1)$$

= $1 - \left[\frac{e^{-1}1^2}{2!} + \frac{e^{-1}1^1}{1!} + \frac{e^{-1}1^0}{0!}\right] \approx .0803.$

c.

P-value =
$$P\{\sum_{i} X_i \ge 9 \mid 3\lambda = 3\}$$
 = $1 - P(Y < 9 \mid 3\lambda = 3)$
= $1 - e^{-3} \left[\frac{3^8}{8!} + \frac{3^7}{7!} + \frac{3^6}{6!} + \frac{3^5}{5!} + \dots + \frac{3^1}{1!} + \frac{3^0}{0!}\right] \approx .0038,$

where $Y = \sum_{i=1}^{3} X_i \sim \text{Poisson}(3\lambda)$. 8.50 From Exercise 7.26,

$$\pi(\theta|\mathbf{x}) = \sqrt{\frac{n}{2\pi\sigma^2}} e^{-n(\theta - \delta_{\pm}(\mathbf{x}))^2/(2\sigma^2)}$$

where $\delta_{\pm}(\mathbf{x}) = \bar{x} \pm \frac{\sigma^2}{na}$ and we use the "+" if $\theta > 0$ and the "-" if $\theta < 0$. a. For K > 0,

$$P(\theta > K | \mathbf{x}, a) = \sqrt{\frac{n}{2\pi\sigma^2}} \int_K^\infty e^{-n(\theta - \delta_+(\mathbf{x}))^2/(2\sigma^2)} d\theta = P\left(Z > \frac{\sqrt{n}}{\sigma} [K - \delta_+(\mathbf{x})]\right),$$

where $Z \sim n(0, 1)$.

Solutions Manual for Statistical Inference

b. As $a \to \infty$, $\delta_+(\mathbf{x}) \to \bar{x}$ so $P(\theta > K) \to P\left(Z > \frac{\sqrt{n}}{\sigma}(K - \bar{x})\right)$.

c. For K = 0, the answer in part (b) is 1 - (p-value) for $H_0: \theta \le 0$.

8.51 If $\alpha < p(\mathbf{x})$,

$$\sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge c_{\alpha}) = \alpha < p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge W(\mathbf{x})).$$

Thus $W(\mathbf{x}) < c_{\alpha}$ and we could not reject H_0 at level α having observed \mathbf{x} . On the other hand, if $\alpha \geq p(\mathbf{x})$,

$$\sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge c_{\alpha}) = \alpha \ge p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge W(\mathbf{x})).$$

Either $W(\mathbf{x}) \geq c_{\alpha}$ in which case we could reject H_0 at level α having observed \mathbf{x} or $W(\mathbf{x}) < c_{\alpha}$. But, in the latter case we could use $c'_{\alpha} = W(\mathbf{x})$ and have $\{\mathbf{x}' : W(\mathbf{x}') \geq c'_{\alpha}\}$ define a size α rejection region. Then we could reject H_0 at level α having observed \mathbf{x} .

8.53 a.

$$P(-\infty < \theta < \infty) = \frac{1}{2} + \frac{1}{2} \frac{1}{\sqrt{2\pi\tau^2}} \int_{-\infty}^{\infty} e^{-\theta^2/(2\tau^2)} d\theta = \frac{1}{2} + \frac{1}{2} = 1.$$

b. First calculate the posterior density. Because

$$f(\bar{x}|\theta) = \frac{\sqrt{n}}{\sqrt{2\pi\sigma}} e^{-n(\bar{x}-\theta)^2/(2\sigma^2)},$$

we can calculate the marginal density as

$$m_{\pi}(\bar{x}) = \frac{1}{2}f(\bar{x}|0) + \frac{1}{2}\int_{-\infty}^{\infty} f(\bar{x}|\theta) \frac{1}{\sqrt{2\pi\tau}} e^{-\theta^2/(2\tau^2)} d\theta$$
$$= \frac{1}{2}\frac{\sqrt{n}}{\sqrt{2\pi\sigma}} e^{-n\bar{x}^2/(2\sigma^2)} + \frac{1}{2}\frac{1}{\sqrt{2\pi}\sqrt{(\sigma^2/n) + \tau^2}} e^{-\bar{x}^2/[2((\sigma^2/n) + \tau^2)]}$$

(see Exercise 7.22). Then $P(\theta = 0|\bar{x}) = \frac{1}{2}f(\bar{x}|0)/m_{\pi}(\bar{x}).$ c.

$$\begin{split} P\left(\left|\bar{X}\right| > \bar{x}\right|\theta = 0\right) &= 1 - P\left(\left|\bar{X}\right| \le \bar{x}\right|\theta = 0\right) \\ &= 1 - P\left(-\bar{x} \le \bar{X} \le \bar{x}\right|\theta = 0\right) = 2\left[1 - \Phi\left(\bar{x}/(\sigma/\sqrt{n})\right)\right], \end{split}$$

where Φ is the standard normal cdf.

d. For $\sigma^2 = \tau^2 = 1$ and n = 9 we have a p-value of $2(1 - \Phi(3\bar{x}))$ and

$$P(\theta = 0|\bar{x}) = \left(1 + \sqrt{\frac{1}{10}}e^{81\bar{x}^2/20}\right)^{-1}.$$

The p-value of \bar{x} is usually smaller than the Bayes posterior probability except when \bar{x} is very close to the θ value specified by H_0 . The following table illustrates this.

Some p-values and posterior probabilities (n = 9)

	\mathcal{X}								
	0	$\pm .1$	$\pm .15$	$\pm .2$	$\pm .5$	$\pm .6533$	$\pm .7$	± 1	± 2
p-value of \bar{x}	1	.7642	.6528	.5486	.1336	.05	.0358	.0026	≈ 0
$\begin{array}{c} \text{posterior} \\ P(\theta = 0 \bar{x}) \end{array}$.7597	.7523	.7427	.7290	.5347	.3595	.3030	.0522	≈ 0

8.54 a. From Exercise 7.22, the posterior distribution of $\theta | \mathbf{x}$ is normal with mean $[\tau^2/(\tau^2 + \sigma^2/n)]\bar{x}$ and variance $\tau^2/(1 + n\tau^2/\sigma^2)$. So

$$\begin{aligned} P(\theta \le 0|\mathbf{x}) &= P\left(Z \le \frac{0 - [\tau^2/(\tau^2 + \sigma^2/n)]\bar{x}}{\sqrt{\tau^2/(1 + n\tau^2/\sigma^2)}}\right) \\ &= P\left(Z \le -\frac{\tau}{\sqrt{(\sigma^2/n)(\tau^2 + \sigma^2/n)}}\bar{x}\right) &= P\left(Z \ge \frac{\tau}{\sqrt{(\sigma^2/n)(\tau^2 + \sigma^2/n)}}\bar{x}\right). \end{aligned}$$

b. Using the fact that if $\theta = 0$, $\bar{X} \sim n(0, \sigma^2/n)$, the p-value is

$$P(\bar{X} \ge \bar{x}) = P\left(Z \ge \frac{\bar{x} - 0}{\sigma/\sqrt{n}}\right) = P\left(Z \ge \frac{1}{\sigma/\sqrt{n}}\bar{x}\right)$$

c. For $\sigma^2 = \tau^2 = 1$,

$$P(\theta \le 0|x) = P\left(Z \ge \frac{1}{\sqrt{(1/n)(1+1/n)}}\bar{x}\right) \quad \text{and} \quad P(\bar{X} \ge \bar{x}) = P\left(Z \ge \frac{1}{\sqrt{1/n}}\bar{x}\right).$$

Because

$$\frac{1}{\sqrt{(1/n)(1+1/n)}} < \frac{1}{\sqrt{1/n}},$$

the Bayes probability is larger than the p-value if $\bar{x} \ge 0$. (Note: The inequality is in the opposite direction for $\bar{x} < 0$, but the primary interest would be in large values of \bar{x} .)

d. As $\tau^2 \to \infty,$ the constant in the Bayes probability,

$$\frac{\tau}{\sqrt{(\sigma^2/n)(\tau^2 + \sigma^2/n)}} = \frac{1}{\sqrt{(\sigma^2/n)(1 + \sigma^2/(\tau^2 n))}} \to \frac{1}{\sigma/\sqrt{n}}$$

the constant in the p-value. So the indicated equality is true.

- 8.55 The formulas for the risk functions are obtained from (8.3.14) using the power function $\beta(\theta) = \Phi(-z_{\alpha} + \theta_0 \theta)$, where Φ is the standard normal cdf.
- 8.57 For 0–1 loss by (8.3.12) the risk function for any test is the power function $\beta(\mu)$ for $\mu \leq 0$ and $1 \beta(\mu)$ for $\mu > 0$. Let $\alpha = P(1 < Z < 2)$, the size of test δ . By the Karlin-Rubin Theorem, the test $\delta_{z_{\alpha}}$ that rejects if $X > z_{\alpha}$ is also size α and is uniformly more powerful than δ , that is, $\beta_{\delta_{z_{\alpha}}}(\mu) > \beta_{\delta}(\mu)$ for all $\mu > 0$. Hence,

$$R(\mu, \delta_{z_{\alpha}}) = 1 - \beta_{\delta_{z_{\alpha}}}(\mu) < 1 - \beta_{\delta}(\mu) = R(\mu, \delta), \text{ for all } \mu > 0.$$

Now reverse the roles of H_0 and H_1 and consider testing $H_0^*: \mu > 0$ versus $H_1^*: \mu \leq 0$. Consider the test δ^* that rejects H_0^* if $X \leq 1$ or $X \geq 2$, and the test $\delta_{z_{\alpha}}^*$ that rejects H_0^* if $X \leq z_{\alpha}$. It is easily verified that for 0–1 loss δ and δ^* have the same risk functions, and $\delta_{z_{\alpha}}^*$ and $\delta_{z_{\alpha}}$ have the same risk functions. Furthermore, using the Karlin-Rubin Theorem as before, we can conclude that $\delta_{z_{\alpha}}^*$ is uniformly more powerful than δ^* . Thus we have

$$R(\mu, \delta) = R(\mu, \delta^*) \ge R(\mu, \delta^*_{z_{\alpha}}) = R(\mu, \delta_{z_{\alpha}}), \text{ for all } \mu \le 0,$$

with strict inequality if $\mu < 0$. Thus, $\delta_{z_{\alpha}}$ is better than δ .