
Chapter 8

Hypothesis Testing

8.1 Let X = # of heads out of 1000. If the coin is fair, then X ∼ binomial(1000, 1/2). So

P (X ≥ 560) =
1000∑

x=560

(
1000

x

)(
1
2

)x(1
2

)n−x

≈ .0000825,

where a computer was used to do the calculation. For this binomial, EX = 1000p = 500 and
VarX = 1000p(1− p) = 250. A normal approximation is also very good for this calculation.

P {X ≥ 560} = P

{
X − 500√

250
≥ 559.5−500√

250

}
≈ P {Z ≥ 3.763} ≈ .0000839.

Thus, if the coin is fair, the probability of observing 560 or more heads out of 1000 is very
small. We might tend to believe that the coin is not fair, and p > 1/2.

8.2 Let X ∼ Poisson(λ), and we observed X = 10. To assess if the accident rate has dropped, we
could calculate

P (X ≤ 10|λ = 15) =
10∑

i=0

e−15 15i

i!
= e−15

[
1+15+

152

2!
+ · · ·+1510

10!

]
≈ .11846.

This is a fairly large value, not overwhelming evidence that the accident rate has dropped. (A
normal approximation with continuity correction gives a value of .12264.)

8.3 The LRT statistic is

λ(y) =
supθ≤θ0

L(θ|y1, . . . , ym)
supΘL(θ|y1, . . . , ym)

.

Let y =
∑m

i=1 yi, and note that the MLE in the numerator is min {y/m,θ0} (see Exercise 7.12)
while the denominator has y/m as the MLE (see Example 7.2.7). Thus

λ(y) =

{
1 if y/m ≤ θ0

(θ0)
y(1−θ0)

m−y

(y/m)y(1−y/m)m−y if y/m > θ0,

and we reject H0 if
(θ0)

y(1−θ0)
m−y

(y/m)y(1− y/m)m−y < c.

To show that this is equivalent to rejecting if y > b, we could show λ(y) is decreasing in y so
that λ(y) < c occurs for y > b > mθ0. It is easier to work with log λ(y), and we have

log λ(y) = y log θ0 + (m− y) log (1− θ0)− y log
( y

m

)
− (m− y) log

(
m− y

m

)
,
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and

d

dy
logλ(y) = log θ0 − log(1− θ0)− log

( y

m

)
− y

1
y

+ log
(

m− y

m

)
+ (m− y)

1
m− y

= log

(
θ0

y/m

(
m−y

m

)
1−θ0

)
.

For y/m > θ0, 1 − y/m = (m − y)/m < 1 − θ0, so each fraction above is less than 1, and the
log is less than 0. Thus d

dy log λ < 0 which shows that λ is decreasing in y and λ(y) < c if and
only if y > b.

8.4 For discrete random variables, L(θ|x) = f(x|θ) = P (X = x|θ). So the numerator and denomi-
nator of λ(x) are the supremum of this probability over the indicated sets.

8.5 a. The log-likelihood is

log L(θ, ν|x) = n log θ + nθ log ν − (θ + 1) log

(∏
i

xi

)
, ν ≤ x(1),

where x(1) = mini xi. For any value of θ, this is an increasing function of ν for ν ≤ x(1). So
both the restricted and unrestricted MLEs of ν are ν̂ = x(1). To find the MLE of θ, set

∂

∂θ
log L(θ, x(1)|x) =

n

θ
+ n log x(1) − log

(∏
i

xi

)
= 0,

and solve for θ yielding
θ̂ =

n

log(
∏

i xi/x
n
(1))

=
n

T
.

(∂2/∂θ2) log L(θ, x(1)|x) = −n/θ2 < 0, for all θ. So θ̂ is a maximum.

b. Under H0, the MLE of θ is θ̂0 = 1, and the MLE of ν is still ν̂ = x(1). So the likelihood ratio
statistic is

λ(x) =
xn

(1)/(
∏

i xi)
2

(n/T )n
x

n2/T
(1)

/
(
∏

i xi)
n/T+1

=
(

T

n

)n
e−T

(e−T )n/T
=
(

T

n

)n

e−T+n.

(∂/∂T ) log λ(x) = (n/T ) − 1. Hence, λ(x) is increasing if T ≤ n and decreasing if T ≥ n.
Thus, T ≤ c is equivalent to T ≤ c1 or T ≥ c2, for appropriately chosen constants c1 and c2.

c. We will not use the hint, although the problem can be solved that way. Instead, make
the following three transformations. First, let Yi = log Xi, i = 1, . . . , n. Next, make the
n-to-1 transformation that sets Z1 = mini Yi and sets Z2, . . . , Zn equal to the remaining
Yis, with their order unchanged. Finally, let W1 = Z1 and Wi = Zi − Z1, i = 2, . . . , n.
Then you find that the Wis are independent with W1 ∼ fW1(w) = nνne−nw, w > log ν,
and Wi ∼ exponential(1), i = 2, . . . , n. Now T =

∑n
i=2 Wi ∼ gamma(n − 1, 1), and, hence,

2T ∼ gamma(n− 1, 2) = χ2
2(n−1).

8.6 a.

λ(x,y) =
supΘ0

L(θ|x,y)
supΘL(θ|x,y)

=
supθ

∏n
i=1

1
θ e−xi/θ

∏m
j=1

1
θ e−yj/θ

supθ,µ

∏n
i=1

1
θ e−xi/θ

∏m
j=1

1
µe−yj/µ

=
supθ

1
θm+n exp

{
−
(∑n

i=1 xi +
∑m

j=1 yj

)/
θ
}

supθ,µ
1

θn exp {−
∑n

i=1 xi/θ} 1
µm exp

{
−
∑m

j=1 yj/µ
} .
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Differentiation will show that in the numerator θ̂0 = (
∑

i xi +
∑

j yj)/(n + m), while in the
denominator θ̂ = x̄ and µ̂ = ȳ. Therefore,

λ(x,y) =

(
n+m∑

i
xi+
∑

j
yj

)n+m

exp
{
−
(

n+m∑
i
xi+
∑

j
yj

)(∑
i xi+

∑
j yj

)}
(

n∑
i
xi

)n

exp
{
−
(

n∑
i
xi

)∑
i xi

}(
m∑
j

yj

)m

exp
{
−
(

m∑
j

yj

)∑
j yj

}

=
(n + m)n+m

nnmm

(
∑

i xi)
n
(∑

j yj

)m

(∑
i xi +

∑
j yj

)n+m .

And the LRT is to reject H0 if λ(x,y) ≤ c.
b.

λ =
(n + m)n+m

nnmm

( ∑
i xi∑

i xi +
∑

j yj

)n( ∑
j yj∑

i xi +
∑

j yj

)m

=
(n + m)n+m

nnmm
Tn(1− T )m.

Therefore λ is a function of T . λ is a unimodal function of T which is maximized when
T = n

m+n . Rejection for λ ≤ c is equivalent to rejection for T ≤ a or T ≥ b, where a and b
are constants that satisfy an(1− a)m = bn(1− b)m.

c. When H0 is true,
∑

i Xi ∼ gamma(n, θ) and
∑

j Yj ∼ gamma(m, θ) and they are indepen-
dent. So by an extension of Exercise 4.19b, T ∼ beta(n, m).

8.7 a.

L(θ, λ|x) =
n∏

i=1

1
λ

e−(xi−θ)/λI[θ,∞)(xi) =
(

1
λ

)n

e−(Σixi−nθ)/λI[θ,∞)(x(1)),

which is increasing in θ if x(1) ≥ θ (regardless of λ). So the MLE of θ is θ̂ = x(1). Then

∂log L

∂λ
= −n

λ
+
∑

i xi − nθ̂

λ2

set= 0 ⇒ nλ̂ =
∑

i

xi − nθ̂ ⇒ λ̂ = x̄− x(1).

Because

∂2log L

∂λ2
=

n

λ2
− 2

∑
i xi − nθ̂

λ3

∣∣∣∣∣
x̄−x(1)

=
n

(x̄− x(1))
2 −

2n(x̄− x(1))

(x̄− x(1))
3 =

−n

(x̄− x(1))
2 < 0,

we have θ̂ = x(1) and λ̂ = x̄−x(1) as the unrestricted MLEs of θ and λ. Under the restriction
θ ≤ 0, the MLE of θ (regardless of λ) is

θ̂0 =
{

0 if x(1) > 0
x(1) if x(1) ≤ 0.

For x(1) > 0, substituting θ̂0 = 0 and maximizing with respect to λ, as above, yields λ̂0 = x̄.
Therefore,

λ(x) =
supΘ0

L(θ,λ | x)
supΘL(θ,λ | x)

=
sup{(λ,θ):θ≤0}L(λ,θ | x)

L(θ̂, λ̂ | x)
=

{
1 if x(1) ≤ 0
L(x̄,0|x)

L(λ̂,θ̂|x)
if x(1) > 0,

where

L(x̄, 0 | x)

L(λ̂, θ̂ | x)
=

(1/x̄)n
e−nx̄/x̄(

1/λ̂
)n

e−n(x̄−x(1))/(x̄−x(1))
=

(
λ̂

x̄

)n

=
(

x̄−x(1)

x̄

)n

=
(
1−

x(1)

x̄

)n

.

So rejecting if λ(x) ≤ c is equivalent to rejecting if x(1)/x̄ ≥ c∗, where c∗ is some constant.
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b. The LRT statistic is

λ(x) =
supβ(1/βn)e−Σixi/β

supβ,γ(γn/βn)(
∏

i xi)
γ−1

e−Σix
γ
i
/β

.

The numerator is maximized at β̂0 = x̄. For fixed γ, the denominator is maximized at
β̂γ =

∑
i xγ

i /n. Thus

λ(x) =
x̄−ne−n

supγ(γn/β̂
n

γ )(
∏

i xi)
γ−1

e−Σix
γ
i
/β̂γ

=
x̄−n

supγ(γn/β̂
n

γ )(
∏

i xi)
γ−1

.

The denominator cannot be maximized in closed form. Numeric maximization could be used
to compute the statistic for observed data x.

8.8 a. We will first find the MLEs of a and θ. We have

L(a, θ | x) =
n∏

i=1

1√
2πaθ

e−(xi−θ)2/(2aθ),

log L(a, θ | x) =
n∑

i=1

−1
2

log(2πaθ)− 1
2aθ

(xi − θ)2.

Thus

∂log L

∂a
=

n∑
i=1

(
− 1

2a
+

1
2θa2

(xi − θ)2
)

= − n

2a
+

1
2θa2

n∑
i=1

(xi − θ)2 set= 0

∂log L

∂θ
=

n∑
i=1

[
− 1

2θ
+

1
2aθ2

(xi − θ)2+
1
aθ

(xi − θ)
]

= − n

2θ
+

1
2aθ2

n∑
i=1

(xi − θ)2 +
nx̄− nθ

aθ

set= 0.

We have to solve these two equations simultaneously to get MLEs of a and θ, say â and θ̂.
Solve the first equation for a in terms of θ to get

a =
1
nθ

n∑
i=1

(xi − θ)2.

Substitute this into the second equation to get

− n

2θ
+

n

2θ
+

n(x̄−θ)
aθ

= 0.

So we get θ̂ = x̄, and

â =
1

nx̄

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄
,

the ratio of the usual MLEs of the mean and variance. (Verification that this is a maximum
is lengthy. We omit it.) For a = 1, we just solve the second equation, which gives a quadratic
in θ that leads to the restricted MLE

θ̂R =
−1+

√
1+4(σ̂2+x̄2)

2
.
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Noting that âθ̂ = σ̂2, we obtain

λ(x) =
L(θ̂R | x)

L(â, θ̂ | x)
=

∏n
i=1

1√
2πθ̂R

e−(xi−θ̂R)2/(2θ̂R)∏n
i=1

1√
2πâθ̂

e−(xi−θ̂)2/(2âθ̂)

=

(
1/(2πθ̂R)

)n/2

e−Σi(xi−θ̂R)2/(2θ̂R)

(1/(2πσ̂2))n/2
e−Σi(xi−x̄)2/(2σ̂2)

=
(
σ̂2/θ̂R

)n/2

e(n/2)−Σi(xi−θ̂R)2/(2θ̂R).

b. In this case we have

log L(a, θ | x) =
n∑

i=1

[
−1

2
log(2πaθ2)− 1

2aθ2
(xi − θ)2

]
.

Thus

∂logL

∂a
=

n∑
i=1

(
− 1

2a
+

1
2a2θ2

(xi − θ)2
)

= − n

2a
+

1
2a2θ2

n∑
i=1

(xi − θ)2 set= 0.

∂logL

∂θ
=

n∑
i=1

[
−1

θ
+

1
aθ3

(xi − θ)2+
1

aθ2
(xi − θ)

]

= −n

θ
+

1
aθ3

n∑
i=1

(xi − θ)2 +
1

aθ2

n∑
i=1

(xi − θ) set= 0.

Solving the first equation for a in terms of θ yields

a =
1

nθ2

n∑
i=1

(xi − θ)2.

Substituting this into the second equation, we get

−n

θ
+

n

θ
+ n

∑
i (xi−θ)∑
i (xi−θ)2

= 0.

So again, θ̂ = x̄ and

â =
1

nx̄2

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄2

in the unrestricted case. In the restricted case, set a = 1 in the second equation to obtain

∂log L

∂θ
= −n

θ
+

1
θ3

n∑
i=1

(xi − θ)2 +
1
θ2

n∑
i=1

(xi − θ) set= 0.

Multiply through by θ3/n to get

−θ2 +
1
n

n∑
i=1

(xi − θ)2 − θ

n

n∑
i=1

(xi − θ) = 0.

Add ±x̄ inside the square and complete all sums to get the equation

−θ2 + σ̂2 + (x̄− θ)2 + θ(x̄− θ) = 0.
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This is a quadratic in θ with solution for the MLE

θ̂R = x̄ +
√

x̄+4(σ̂2+x̄2)
/

2.

which yields the LRT statistic

λ(x) =
L(θ̂R | x)

L(â, θ̂ | x)
=

∏n
i=1

1√
2πθ̂2

R

e−(xi−θ̂R)2/(2θ̂
2
R)

∏n
i=1

1√
2πâθ̂2

e−(xi−θ̂)2/(2âθ̂
2
)

=
(

σ̂

θ̂R

)n

e(n/2)−Σi(xi−θ̂R)2/(2θ̂R).

8.9 a. The MLE of λ under H0 is λ̂0 =
(
Ȳ
)−1, and the MLE of λi under H1 is λ̂i = Y −1

i . The
LRT statistic is bounded above by 1 and is given by

1 ≥
(
Ȳ
)−n

e−n

(
∏

i Yi)
−1

e−n
.

Rearrangement of this inequality yields Ȳ ≥ (
∏

i Yi)
1/n, the arithmetic-geometric mean

inequality.
b. The pdf of Xi is f(xi|λi) = (λi/x2

i )e
−λi/xi , xi > 0. The MLE of λ under H0 is λ̂0 =

n/ [
∑

i(1/Xi)], and the MLE of λi under H1 is λ̂i = Xi. Now, the argument proceeds as in
part (a).

8.10 Let Y =
∑

i Xi. The posterior distribution of λ|y is gamma (y + α, β/(β + 1)).
a.

P (λ ≤ λ0|y) =
(β+1)y+α

Γ(y+α)βy+α

∫ λ0

0

ty+α−1e−t(β+1)/β dt.

P (λ > λ0|y) = 1− P (λ ≤ λ0|y).
b. Because β/(β + 1) is a scale parameter in the posterior distribution, (2(β + 1)λ/β)|y has

a gamma(y + α, 2) distribution. If 2α is an integer, this is a χ2
2y+2α distribution. So, for

α = 5/2 and β = 2,

P (λ ≤ λ0|y) = P

(
2(β+1)λ

β
≤ 2(β+1)λ0

β

∣∣∣∣ y) = P (χ2
2y+5 ≤ 3λ0).

8.11 a. From Exercise 7.23, the posterior distribution of σ2 given S2 is IG(γ, δ), where γ = α+(n−
1)/2 and δ = [(n − 1)S2/2 + 1/β]−1. Let Y = 2/(σ2δ). Then Y |S2 ∼ gamma(γ, 2). (Note:
If 2α is an integer, this is a χ2

2γ distribution.) Let M denote the median of a gamma(γ, 2)
distribution. Note that M depends on only α and n, not on S2 or β. Then we have P (Y ≥
2/δ|S2) = P (σ2 ≤ 1|S2) > 1/2 if and only if

M >
2
δ

= (n− 1)S2 +
2
β

, that is, S2 <
M − 2/β

n− 1
.

b. From Example 7.2.11, the unrestricted MLEs are µ̂ = X̄ and σ̂2 = (n− 1)S2/n. Under H0,
µ̂ is still X̄, because this was the maximizing value of µ, regardless of σ2. Then because
L(x̄, σ2|x) is a unimodal function of σ2, the restricted MLE of σ2 is σ̂2, if σ̂2 ≤ 1, and is 1,
if σ̂2 > 1. So the LRT statistic is

λ(x) =
{

1 if σ̂2 ≤ 1
(σ̂2)n/2

e−n(σ̂2−1)/2 if σ̂2 > 1.
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We have that, for σ̂2 > 1,

∂

∂(σ̂2)
log λ(x) =

n

2

(
1
σ̂2
− 1
)

< 0.

So λ(x) is decreasing in σ̂2, and rejecting H0 for small values of λ(x) is equivalent to rejecting
for large values of σ̂2, that is, large values of S2. The LRT accepts H0 if and only if S2 < k,
where k is a constant. We can pick the prior parameters so that the acceptance regions
match in this way. First, pick α large enough that M/(n−1) > k. Then, as β varies between
0 and ∞, (M − 2/β)/(n− 1) varies between −∞ and M/(n− 1). So, for some choice of β,
(M − 2/β)/(n− 1) = k and the acceptance regions match.

8.12 a. For H0 : µ ≤ 0 vs. H1 : µ > 0 the LRT is to reject H0 if x̄ > cσ/
√

n (Example 8.3.3). For
α = .05 take c = 1.645. The power function is

β(µ) = P

(
X̄−µ

σ/
√

n
> 1.645− µ

σ/
√

n

)
= P

(
Z > 1.645−

√
nµ

σ

)
.

Note that the power will equal .5 when µ = 1.645σ/
√

n.
b. For H0 : µ = 0 vs. HA : µ 6= 0 the LRT is to reject H0 if |x̄| > cσ/

√
n (Example 8.2.2). For

α = .05 take c = 1.96. The power function is

β(µ) = P
(
−1.96−

√
nµ/σ ≤ Z ≤ 1.96 +

√
nµ/σ

)
.

In this case, µ = ±1.96σ/
√

n gives power of approximately .5.

8.13 a. The size of φ1 is α1 = P (X1 > .95|θ = 0) = .05. The size of φ2 is α2 = P (X1+X2 > C|θ = 0).
If 1 ≤ C ≤ 2, this is

α2 = P (X1 + X2 > C|θ = 0) =
∫ 1

1−C

∫ 1

C−x1

1 dx2 dx1 =
(2− C)2

2
.

Setting this equal to α and solving for C gives C = 2 −
√

2α, and for α = .05, we get
C = 2−

√
.1 ≈ 1.68.

b. For the first test we have the power function

β1(θ) = Pθ(X1 > .95) =

{ 0 if θ ≤ −.05
θ + .05 if −.05 < θ ≤ .95
1 if .95 < θ.

Using the distribution of Y = X1 + X2, given by

fY (y|θ) =

{
y − 2θ if 2θ ≤ y < 2θ + 1
2θ + 2− y if 2θ+1 ≤ y < 2θ + 2
0 otherwise,

we obtain the power function for the second test as

β2(θ) = Pθ(Y > C) =


0 if θ ≤ (C/2)− 1
(2θ + 2− C)2/2 if (C/2)− 1 < θ ≤ (C − 1)/2
1− (C − 2θ)2/2 if (C − 1)/2 < θ ≤ C/2
1 if C/2 < θ.

c. From the graph it is clear that φ1 is more powerful for θ near 0, but φ2 is more powerful for
larger θs. φ2 is not uniformly more powerful than φ1.
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d. If either X1 ≥ 1 or X2 ≥ 1, we should reject H0, because if θ = 0, P (Xi < 1) = 1. Thus,
consider the rejection region given by

{(x1, x2) : x1 + x2 > C}
⋃
{(x1, x2) : x1 > 1}

⋃
{(x1, x2) : x2 > 1}.

The first set is the rejection region for φ2. The test with this rejection region has the same
size as φ2 because the last two sets both have probability 0 if θ = 0. But for 0 < θ < C − 1,
The power function of this test is strictly larger than β2(θ). If C − 1 ≤ θ, this test and φ2

have the same power.
8.14 The CLT tells us that Z = (

∑
i Xi − np)/

√
np(1− p) is approximately n(0, 1). For a test that

rejects H0 when
∑

i Xi > c, we need to find c and n to satisfy

P

(
Z >

c−n(.49)√
n(.49)(.51)

)
= .01 and P

(
Z >

c−n(.51)√
n(.51)(.49)

)
= .99.

We thus want
c−n(.49)√
n(.49)(.51)

= 2.33 and
c−n(.51)√
n(.51)(.49)

= −2.33.

Solving these equations gives n = 13,567 and c = 6,783.5.
8.15 From the Neyman-Pearson lemma the UMP test rejects H0 if

f(x | σ1)
f(x | σ0)

=
(2πσ2

1)−n/2
e−Σix

2
i /(2σ2

1)

(2πσ2
0)−n/2

e−Σix2
i
/(2σ2

0)
=
(

σ0

σ1

)n

exp

{
1
2

∑
i

x2
i

(
1
σ2

0

− 1
σ2

1

)}
> k

for some k ≥ 0. After some algebra, this is equivalent to rejecting if∑
i

x2
i >

2log (k (σ1/σ0)
n)(

1
σ2
0
− 1

σ2
1

) = c

(
because

1
σ2

0

− 1
σ2

1

> 0
)

.

This is the UMP test of size α, where α = Pσ0(
∑

i X2
i > c). To determine c to obtain a specified

α, use the fact that
∑

i X2
i /σ2

0 ∼ χ2
n. Thus

α = Pσ0

(∑
i

X2
i /σ2

0 > c/σ2
0

)
= P

(
χ2

n > c/σ2
0

)
,

so we must have c/σ2
0 = χ2

n,α, which means c = σ2
0χ2

n,α.
8.16 a.

Size = P (reject H0 | H0 is true) = 1 ⇒ Type I error = 1.

Power = P (reject H0 | HA is true) = 1 ⇒ Type II error = 0.

b.

Size = P (reject H0 | H0 is true) = 0 ⇒ Type I error = 0.

Power = P (reject H0 | HA is true) = 0 ⇒ Type II error = 1.

8.17 a. The likelihood function is

L(µ, θ|x,y) = µn

(∏
i

xi

)µ−1

θn

∏
j

yj

θ−1

.
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Maximizing, by differentiating the log-likelihood, yields the MLEs

µ̂ = − n∑
i log xi

and θ̂ = − m∑
j log yj

.

Under H0, the likelihood is

L(θ|x,y) = θn+m

∏
i

xi

∏
j

yj

θ−1

,

and maximizing as above yields the restricted MLE,

θ̂0 = − n + m∑
i log xi +

∑
j log yj

.

The LRT statistic is

λ(x,y) =
θ̂m+n
0

µ̂nθ̂m

(∏
i

xi

)θ̂0−µ̂
∏

j

yj

θ̂0−θ̂

.

b. Substituting in the formulas for θ̂, µ̂ and θ̂0 yields (
∏

i xi)
θ̂0−µ̂

(∏
j yj

)θ̂0−θ̂

= 1 and

λ(x,y) =
θ̂m+n
0

µ̂nθ̂m
=

θ̂n
0

µ̂n

θ̂m
0

θ̂m
=
(

m + n

m

)m(
m + n

n

)n

(1− T )mTn.

This is a unimodal function of T . So rejecting if λ(x,y) ≤ c is equivalent to rejecting if
T ≤ c1 or T ≥ c2, where c1 and c2 are appropriately chosen constants.

c. Simple transformations yield − log Xi ∼ exponential(1/µ) and − log Yi ∼ exponential(1/θ).
Therefore, T = W/(W + V ) where W and V are independent, W ∼ gamma(n, 1/µ) and
V ∼ gamma(m, 1/θ). Under H0, the scale parameters of W and V are equal. Then, a
simple generalization of Exercise 4.19b yields T ∼ beta(n, m). The constants c1 and c2 are
determined by the two equations

P (T ≤ c1) + P (T ≥ c2) = α and (1− c1)mcn
1 = (1− c2)mcn

2 .

8.18 a.

β(θ) = Pθ

(
|X̄−θ0|
σ/
√

n
> c

)
= 1− Pθ

(
|X̄−θ0|
σ/
√

n
≤ c

)
= 1− Pθ

(
− cσ√

n
≤ X̄−θ0 ≤

cσ√
n

)
= 1− Pθ

(
−cσ/

√
n + θ0−θ

σ/
√

n
≤ X̄−θ

σ/
√

n
≤ cσ/

√
n + θ0−θ

σ/
√

n

)
= 1− P

(
−c +

θ0−θ

σ/
√

n
≤ Z ≤ c +

θ0−θ

σ/
√

n

)
= 1 + Φ

(
−c +

θ0−θ

σ/
√

n

)
− Φ

(
c +

θ0−θ

σ/
√

n

)
,

where Z ∼ n(0, 1) and Φ is the standard normal cdf.
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b. The size is .05 = β(θ0) = 1 + Φ(−c) − Φ(c) which implies c = 1.96. The power (1 −
type II error) is

.75 ≤ β(θ0 + σ) = 1 + Φ(−c−
√

n)− Φ(c−
√

n) = 1 + Φ(−1.96−
√

n)︸ ︷︷ ︸
≈0

−Φ(1.96−
√

n).

Φ(−.675) ≈ .25 implies 1.96−
√

n = −.675 implies n = 6.943 ≈ 7.
8.19 The pdf of Y is

f(y|θ) =
1
θ
y(1/θ)−1e−y1/θ

, y > 0.

By the Neyman-Pearson Lemma, the UMP test will reject if

1
2
y−1/2ey−y1/2

=
f(y|2)
f(y|1)

> k.

To see the form of this rejection region, we compute

d

dy

(
1
2
y−1/2ey−y1/2

)
=

1
2
y−3/2ey−y1/2

(
y − y1/2

2
− 1

2

)
which is negative for y < 1 and positive for y > 1. Thus f(y|2)/f(y|1) is decreasing for y ≤ 1
and increasing for y ≥ 1. Hence, rejecting for f(y|2)/f(y|1) > k is equivalent to rejecting for
y ≤ c0 or y ≥ c1. To obtain a size α test, the constants c0 and c1 must satisfy

α = P (Y ≤ c0|θ = 1) + P (Y ≥ c1|θ = 1) = 1− e−c0 + e−c1 and
f(c0|2)
f(c0|1)

=
f(c1|2)
f(c1|1)

.

Solving these two equations numerically, for α = .10, yields c0 = .076546 and c1 = 3.637798.
The Type II error probability is

P (c0 < Y < c1|θ = 2) =
∫ c1

c0

1
2
y−1/2e−y1/2

dy = −e−y1/2
∣∣∣c1

c0

= .609824.

8.20 By the Neyman-Pearson Lemma, the UMP test rejects for large values of f(x|H1)/f(x|H0).
Computing this ratio we obtain

x 1 2 3 4 5 6 7
f(x|H1)
f(x|H0)

6 5 4 3 2 1 .84

The ratio is decreasing in x. So rejecting for large values of f(x|H1)/f(x|H0) corresponds to
rejecting for small values of x. To get a size α test, we need to choose c so that P (X ≤
c|H0) = α. The value c = 4 gives the UMP size α = .04 test. The Type II error probability is
P (X = 5, 6, 7|H1) = .82.

8.21 The proof is the same with integrals replaced by sums.
8.22 a. From Corollary 8.3.13 we can base the test on

∑
i Xi, the sufficient statistic. Let Y =∑

i Xi ∼ binomial(10, p) and let f(y|p) denote the pmf of Y . By Corollary 8.3.13, a test
that rejects if f(y|1/4)/f(y|1/2) > k is UMP of its size. By Exercise 8.25c, the ratio
f(y|1/2)/f(y|1/4) is increasing in y. So the ratio f(y|1/4)/f(y|1/2) is decreasing in y, and
rejecting for large value of the ratio is equivalent to rejecting for small values of y. To get
α = .0547, we must find c such that P (Y ≤ c|p = 1/2) = .0547. Trying values c = 0, 1, . . .,
we find that for c = 2, P (Y ≤ 2|p = 1/2) = .0547. So the test that rejects if Y ≤ 2 is the
UMP size α = .0547 test. The power of the test is P (Y ≤ 2|p = 1/4) ≈ .526.
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b. The size of the test is P (Y ≥ 6|p = 1/2) =
∑10

k=6

(
10
k

) (
1
2

)k ( 1
2

)10−k ≈ .377. The power
function is β(θ) =

∑10
k=6

(
10
k

)
θk(1− θ)10−k

c. There is a nonrandomized UMP test for all α levels corresponding to the probabilities
P (Y ≤ i|p = 1/2), where i is an integer. For n = 10, α can have any of the values 0,

1
1024 , 11

1024 , 56
1024 , 176

1024 , 386
1024 , 638

1024 , 848
1024 , 968

1024 , 1013
1024 , 1023

1024 , and 1.
8.23 a. The test is Reject H0 if X > 1/2. So the power function is

β(θ) = Pθ(X > 1/2) =
∫ 1

1/2

Γ(θ+1)
Γ(θ)Γ(1)

xθ−1(1− x)1−1 dx = θ
1
θ
xθ

∣∣∣∣1
1/2

= 1− 1
2θ

.

The size is supθ∈H0
β(θ) = supθ≤1(1− 1/2θ) = 1− 1/2 = 1/2.

b. By the Neyman-Pearson Lemma, the most powerful test of H0 : θ = 1 vs. H1 : θ = 2 is given
by Reject H0 if f(x | 2)/f(x | 1) > k for some k ≥ 0. Substituting the beta pdf gives

f(x|2)
f(x|1)

=
1

β(2,1)x
2−1(1− x)1−1

1
β(1,1)x

1−1(1− x)1−1 =
Γ(3)

Γ(2)Γ(1)
x = 2x.

Thus, the MP test is Reject H0 if X > k/2. We now use the α level to determine k. We have

α = sup
θ∈Θ0

β(θ) = β(1) =
∫ 1

k/2

fX(x|1) dx =
∫ 1

k/2

1
β(1, 1)

x1−1(1− x)1−1 dx = 1− k

2
.

Thus 1− k/2 = α, so the most powerful α level test is reject H0 if X > 1− α.
c. For θ2 > θ1, f(x|θ2)/f(x|θ1) = (θ2/θ1)xθ2−θ1 , an increasing function of x because θ2 > θ1.

So this family has MLR. By the Karlin-Rubin Theorem, the test that rejects H0 if X > t is
the UMP test of its size. By the argument in part (b), use t = 1− α to get size α.

8.24 For H0 : θ = θ0 vs. H1 : θ = θ1, the LRT statistic is

λ(x) =
L(θ0|x)

max{L(θ0|x), L(θ1|x)}
=
{

1 if L(θ0|x) ≥ L(θ1|x)
L(θ0|x)/L(θ1|x) if L(θ0|x) < L(θ1|x).

The LRT rejects H0 if λ(x) < c. The Neyman-Pearson test rejects H0 if f(x|θ1)/f(x|θ0) =
L(θ1|x)/L(θ0|x) > k. If k = 1/c > 1, this is equivalent to L(θ0|x)/L(θ1|x) < c, the LRT. But
if c ≥ 1 or k ≤ 1, the tests will not be the same. Because c is usually chosen to be small (k
large) to get a small size α, in practice the two tests are often the same.

8.25 a. For θ2 > θ1,
g(x | θ2)
g(x | θ1)

=
e−(x−θ2)

2/2σ2

e−(x−θ1)
2/2σ2 = ex(θ2−θ1)/σ2

e(θ2
1−θ2

2)/2σ2
.

Because θ2 − θ1 > 0, the ratio is increasing in x. So the families of n(θ, σ2) have MLR.
b. For θ2 > θ1,

g(x | θ2)
g(x | θ1)

=
e−θ2θx

2/x!
e−θ1θx

1/x!
=
(

θ2

θ1

)x

eθ1−θ2 ,

which is increasing in x because θ2/θ1 > 1. Thus the Poisson(θ) family has an MLR.
c. For θ2 > θ1,

g(x | θ2)
g(x | θ1)

=

(
n
x

)
θx
2 (1−θ2)

n−x(
n
x

)
θx
1 (1−θ1)

n−x =
(

θ2(1−θ1)
θ1(1−θ2)

)x(1− θ2

1− θ1

)n

.

Both θ2/θ1 > 1 and (1− θ1)/(1− θ2) > 1. Thus the ratio is increasing in x, and the family
has MLR.
(Note: You can also use the fact that an exponential family h(x)c(θ) exp(w(θ)x) has MLR if
w(θ) is increasing in θ (Exercise 8.27). For example, the Poisson(θ) pmf is e−θ exp(x log θ)/x!,
and the family has MLR because log θ is increasing in θ.)
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8.26 a. We will prove the result for continuous distributions. But it is also true for discrete MLR
families. For θ1 > θ2, we must show F (x|θ1) ≤ F (x|θ2). Now

d

dx
[F (x|θ1)− F (x|θ2)] = f(x|θ1)− f(x|θ2) = f(x|θ2)

(
f(x|θ1)
f(x|θ2)

−1
)

.

Because f has MLR, the ratio on the right-hand side is increasing, so the derivative can only
change sign from negative to positive showing that any interior extremum is a minimum.
Thus the function in square brackets is maximized by its value at ∞ or −∞, which is zero.

b. From Exercise 3.42, location families are stochastically increasing in their location param-
eter, so the location Cauchy family with pdf f(x|θ) = (π[1+(x−θ)2])−1 is stochastically
increasing. The family does not have MLR.

8.27 For θ2 > θ1,
g(t|θ2)
g(t|θ1)

=
c(θ2)
c(θ1)

e[w(θ2)−w(θ1)]t

which is increasing in t because w(θ2) − w(θ1) > 0. Examples include n(θ, 1), beta(θ, 1), and
Bernoulli(θ).

8.28 a. For θ2 > θ1, the likelihood ratio is

f(x|θ2)
f(x|θ1)

= eθ1−θ2

[
1+ex−θ1

1+ex−θ2

]2
.

The derivative of the quantity in brackets is

d

dx

1+ex−θ1

1+ex−θ2
=

ex−θ1 − ex−θ2

(1+ex−θ2)2
.

Because θ2 > θ1, ex−θ1 > ex−θ2 , and, hence, the ratio is increasing. This family has MLR.
b. The best test is to reject H0 if f(x|1)/f(x|0) > k. From part (a), this ratio is increasing

in x. Thus this inequality is equivalent to rejecting if x > k′. The cdf of this logistic is
F (x|θ) = ex−θ

/
(1 + ex−θ). Thus

α = 1− F (k′|0) =
1

1+ek′
and β = F (k′|1) =

ek′−1

1+ek′−1
.

For a specified α, k′ = log(1− α)/α. So for α = .2, k′ ≈ 1.386 and β ≈ .595.
c. The Karlin-Rubin Theorem is satisfied, so the test is UMP of its size.

8.29 a. Let θ2 > θ1. Then

f(x|θ2)
f(x|θ1)

=
1+(x− θ1)

2

1+(x− θ2)
2 =

1 + (1+θ1)
2
/x

2 − 2θ1/x

1 + (1+θ2)
2
/x

2 − 2θ2/x
.

The limit of this ratio as x → ∞ or as x → −∞ is 1. So the ratio cannot be monotone
increasing (or decreasing) between −∞ and ∞. Thus, the family does not have MLR.

b. By the Neyman-Pearson Lemma, a test will be UMP if it rejects when f(x|1)/f(x|0) > k,
for some constant k. Examination of the derivative shows that f(x|1)/f(x|0) is decreasing
for x ≤ (1−

√
5)/2 = −.618, is increasing for (1−

√
5)/2 ≤ x ≤ (1 +

√
5)/2 = 1.618, and is

decreasing for (1+
√

5)/2 ≤ x. Furthermore, f(1|1)/f(1|0) = f(3|1)/f(3|0) = 2. So rejecting
if f(x|1)/f(x|0) > 2 is equivalent to rejecting if 1 < x < 3. Thus, the given test is UMP of
its size. The size of the test is

P (1 < X < 3|θ = 0) =
∫ 3

1

1
π

1
1+x2 dx =

1
π

arctanx

∣∣∣∣3
1

≈ .1476.
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The Type II error probability is

1− P (1 < X < 3|θ = 1) = 1−
∫ 3

1

1
π

1
1+(x− 1)2

dx = 1− 1
π

arctan(x− 1)
∣∣∣∣3
1

≈ .6476.

c. We will not have f(1|θ)/f(1|0) = f(3|θ)/f(3|0) for any other value of θ 6= 1. Try θ = 2, for
example. So the rejection region 1 < x < 3 will not be most powerful at any other value of
θ. The test is not UMP for testing H0 : θ ≤ 0 versus H1 : θ > 0.

8.30 a. For θ2 > θ1 > 0, the likelihood ratio and its derivative are

f(x|θ2)
f(x|θ1)

=
θ2

θ1

θ2
1+x2

θ2
2+x2

and
d

dx

f(x|θ2)
f(x|θ1)

=
θ2

θ1

θ2
2−θ2

1

(θ2
2+x2)2

x.

The sign of the derivative is the same as the sign of x (recall, θ2
2 − θ2

1 > 0), which changes
sign. Hence the ratio is not monotone.

b. Because f(x|θ) = (θ/π)(θ2 + |x|2)−1, Y = |X| is sufficient. Its pdf is

f(y|θ) =
2θ

π

1
θ2+y2

, y > 0.

Differentiating as above, the sign of the derivative is the same as the sign of y, which is
positive. Hence the family has MLR.

8.31 a. By the Karlin-Rubin Theorem, the UMP test is to reject H0 if
∑

i Xi > k, because
∑

i Xi

is sufficient and
∑

i Xi ∼ Poisson(nλ) which has MLR. Choose the constant k to satisfy
P (
∑

i Xi > k|λ = λ0) = α.
b.

P

(∑
i

Xi > k

∣∣∣∣∣λ = 1

)
≈ P

(
Z > (k − n)/

√
n
) set= .05,

P

(∑
i

Xi > k

∣∣∣∣∣λ = 2

)
≈ P

(
Z > (k − 2n)/

√
2n
) set= .90.

Thus, solve for k and n in

k − n√
n

= 1.645 and
k − 2n√

2n
= −1.28,

yielding n = 12 and k = 17.70.
8.32 a. This is Example 8.3.15.

b. This is Example 8.3.19.
8.33 a. From Theorems 5.4.4 and 5.4.6, the marginal pdf of Y1 and the joint pdf of (Y1, Yn) are

f(y1|θ) = n(1− (y1 − θ))n−1, θ < y1 < θ + 1,

f(y1, yn|θ) = n(n− 1)(yn − y1)n−2, θ < y1 < yn < θ + 1.

Under H0, P (Yn ≥ 1) = 0. So

α = P (Y1 ≥ k|0) =
∫ 1

k

n(1− y1)n−1 dy1 = (1− k)n.

Thus, use k = 1− α1/n to have a size α test.
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b. For θ ≤ k − 1, β(θ) = 0. For k − 1 < θ ≤ 0,

β(θ) =
∫ θ+1

k

n(1− (y1 − θ))n−1 dy1 = (1− k + θ)n.

For 0 < θ ≤ k,

β(θ) =
∫ θ+1

k

n(1− (y1 − θ))n−1 dy1 +
∫ k

θ

∫ θ+1

1

n(n− 1)(yn − y1)n−2 dyn dy1

= α + 1− (1− θ)n.

And for k < θ, β(θ) = 1.
c. (Y1, Yn) are sufficient statistics. So we can attempt to find a UMP test using Corollary 8.3.13

and the joint pdf f(y1, yn|θ) in part (a). For 0 < θ < 1, the ratio of pdfs is

f(y1, yn|θ)
f(y1, yn|0)

=

{ 0 if 0 < y1 ≤ θ, y1 < yn < 1
1 if θ < y1 < yn < 1
∞ if 1 ≤ yn < θ + 1, θ < y1 < yn.

For 1 ≤ θ, the ratio of pdfs is

f(y1, yn|θ)
f(y1, yn|0)

=
{

0 if y1 < yn < 1
∞ if θ < y1 < yn < θ + 1.

For 0 < θ < k, use k′ = 1. The given test always rejects if f(y1, yn|θ)/f(y1, yn|0) > 1 and
always accepts if f(y1, yn|θ)/f(y1, yn|0) < 1. For θ ≥ k, use k′ = 0. The given test always
rejects if f(y1, yn|θ)/f(y1, yn|0) > 0 and always accepts if f(y1, yn|θ)/f(y1, yn|0) < 0. Thus
the given test is UMP by Corollary 8.3.13.

d. According to the power function in part (b), β(θ) = 1 for all θ ≥ k = 1 − α1/n. So these
conditions are satisfied for any n.

8.34 a. This is Exercise 3.42a.
b. This is Exercise 8.26a.

8.35 a. We will use the equality in Exercise 3.17 which remains true so long as ν > −α. Recall that
Y ∼ χ2

ν = gamma(ν/2, 2). Thus, using the independence of X and Y we have

ET ′ = E
X√
Y/ν

= (E X)
√

νEY −1/2 = µ
√

ν
Γ((ν − 1)/2)
Γ(ν/2)

√
2

if ν > 1. To calculate the variance, compute

E(T ′)2 = E
X2

Y/ν
= (E X2)νEY −1 = (µ2 + 1)ν

Γ((ν − 2)/2)
Γ(ν/2)2

=
(µ2 + 1)ν

ν − 2

if ν > 2. Thus, if ν > 2,

VarT ′ =
(µ2 + 1)ν

ν − 2
−
(

µ
√

ν
Γ((ν − 1)/2)
Γ(ν/2)

√
2

)2

b. If δ = 0, all the terms in the sum for k = 1, 2, . . . are zero because of the δk term. The
expression with just the k = 0 term and δ = 0 simplifies to the central t pdf.

c. The argument that the noncentral t has an MLR is fairly involved. It may be found in
Lehmann (1986, p. 295).
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8.37 a. P (X̄ > θ0 + zασ/
√

n|θ0) = P
(
(X̄−θ0)/(σ/

√
n) > zα|θ0

)
= P (Z > zα) = α, where Z ∼

n(0, 1). Because x̄ is the unrestricted MLE, and the restricted MLE is θ0 if x̄ > θ0, the LRT
statistic is, for x̄ ≥ θ0

λ(x) =
(2πσ2)−n/2

e−Σi(xi−θ0)
2/2σ2

(2πσ2)−n/2
e−Σi(xi−x̄)2/2σ2

=
e
−[n(x̄−θ0)

2+(n−1)s2]]
/

2σ2

e−(n−1)s2/2σ2 = e−n(x̄−θ0)
2/2σ2

.

and the LRT statistic is 1 for x̄ < θ0. Thus, rejecting if λ < c is equivalent to rejecting if
(x̄− θ0)/(σ/

√
n) > c′ (as long as c < 1 – see Exercise 8.24).

b. The test is UMP by the Karlin-Rubin Theorem.
c. P (X̄ > θ0 + tn−1,αS/

√
n|θ = θ0) = P (Tn−1 > tn−1,α) = α, when Tn−1 is a Student’s

t random variable with n − 1 degrees of freedom. If we define σ̂2 = 1
n

∑
(xi − x̄)2 and

σ̂2
0 = 1

n

∑
(xi− θ0)2, then for x̄ ≥ θ0 the LRT statistic is λ = (σ̂2/σ̂2

0)n/2, and for x̄ < θ0 the
LRT statistic is λ = 1. Writing σ̂2 = n−1

n s2 and σ̂2
0 = (x̄− θ0)2 + n−1

n s2, it is clear that the
LRT is equivalent to the t-test because λ < c when

n−1
n s2

(x̄−θ0)
2+n−1

n s2
=

(n− 1)/n

(x̄−θ0)
2
/s

2+(n− 1)/n
< c′ and x̄ ≥ θ0,

which is the same as rejecting when (x̄− θ0)/(s/
√

n) is large.
d. The proof that the one-sided t test is UMP unbiased is rather involved, using the bounded

completeness of the normal distribution and other facts. See Chapter 5 of Lehmann (1986)
for a complete treatment.

8.38 a.

Size = Pθ0

{
| X̄ − θ0 |> tn−1,α/2

√
S2/n

}
= 1− Pθ0

{
−tn−1,α/2

√
S2/n ≤ X̄ − θ0 ≤ tn−1,α/2

√
S2/n

}
= 1− Pθ0

{
−tn−1,α/2 ≤

X̄ − θ0√
S2/n

≤ tn−1,α/2

} (
X̄ − θ0√

S2/n
∼ tn−1 under H0

)
= 1− (1− α) = α.

b. The unrestricted MLEs are θ̂ = X̄ and σ̂2 =
∑

i(Xi − X̄)2/n. The restricted MLEs are
θ̂0 = θ0 and σ̂2

0 =
∑

i(Xi − θ0)2/n. So the LRT statistic is

λ(x) =
(2πσ̂0)

−n/2exp{−nσ̂2
0/(2σ̂

2
0)}

(2πσ̂)−n/2exp{−nσ̂2/(2σ̂
2)}

=

[ ∑
i (xi−x̄)2∑
i (xi−θ0)

2

]n/2

=

[ ∑
i (xi−x̄)2∑

i (xi−x̄)2 + n(x̄−θ0)
2

]n/2

.

For a constant c, the LRT is

reject H0 if

[ ∑
i (xi−x̄)2∑

i (xi−x̄)2 + n(x̄−θ0)
2

]
=

1
1 + n(x̄−θ0)

2
/
∑

i (xi−x̄)2
< c2/n.

After some algebra we can write the test as

reject H0 if |x̄− θ0 |>
[(

c−2/n − 1
)

(n− 1)
s2

n

]1/2

.
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We now choose the constant c to achieve size α, and we

reject if |x̄− θ0 |> tn−1,α/2

√
s2/n.

c. Again, see Chapter 5 of Lehmann (1986).
8.39 a. From Exercise 4.45c, Wi = Xi − Yi ∼ n(µW , σ2

W ), where µX − µY = µW and σ2
X + σ2

Y −
ρσXσY = σ2

W . The Wis are independent because the pairs (Xi, Yi) are.
b. The hypotheses are equivalent to H0 : µW = 0 vs H1 : µW 6= 0, and, from Exercise 8.38, if

we reject H0 when | W̄ |> tn−1,α/2

√
S2

W /n, this is the LRT (based on W1, . . . ,Wn) of size
α. (Note that if ρ > 0, VarWi can be small and the test will have good power.)

8.41 a.

λ(x,y) =
supH0

L(µX , µY , σ2 | x,y)
supL(µX , µY , σ2 | x,y)

=
L(µ̂, σ̂2

0 | x,y)
L(µ̂X , µ̂Y , σ̂2

1 | x,y)
.

Under H0, the Xis and Yis are one sample of size m + n from a n(µ, σ2) population, where
µ = µX = µY . So the restricted MLEs are

µ̂ =
∑

i Xi +
∑

i Yi

n + m
=

nx̄+nȳ

n + m
and σ̂2

0 =
∑

i (Xi − µ̂)2+
∑

i (Y i − µ̂)2

n + m
.

To obtain the unrestricted MLEs, µ̂x, µ̂y, σ̂2, use

L(µX , µY , σ2|x, y) = (2πσ2)−(n+m)/2e−[Σi(xi−µX)2+Σi(yi−µY )2]/2σ2
.

Firstly, note that µ̂X = x̄ and µ̂Y = ȳ, because maximizing over µX does not involve µY

and vice versa. Then

∂log L

∂σ2
= −n + m

2
1
σ2

+
1
2

[∑
i

(xi − µ̂X)2+
∑

i

(yi − µ̂Y )2
]

1
(σ2)2

set= 0

implies

σ̂2 =

[
n∑

i=1

(xi − x̄)2+
m∑

i=1

(yi − ȳ)2
]

1
n + m

.

To check that this is a maximum,

∂2log L

∂(σ2)2

∣∣∣∣∣
σ̂2

=
n + m

2
1

(σ2)2
−

[∑
i

(xi − µ̂X)2+
∑

i

(yi − µ̂Y )2
]

1
(σ2)3

∣∣∣∣∣
σ̂2

=
n + m

2
1

(σ̂2)2
− (n + m)

1
(σ̂2)2

= −n + m

2
1

(σ̂2)2
< 0.

Thus, it is a maximum. We then have

λ(x,y) =
(2πσ̂2

0)−
n+m

2 exp
{
− 1

2σ̂2
0

[∑n
i=1 (xi − µ̂)2+

∑m
i=1 (yi − µ̂)2

]}
(2πσ̂2)−

n+m
2 exp

{
− 1

2σ̂2

[∑n
i=1 (xi − x̄)2+

∑m
i=1 (yi − ȳ)2

]} =
(

σ̂2
0

σ̂2
1

)−n+m
2

and the LRT is rejects H0 if σ̂2
0/σ̂2 > k. In the numerator, first substitute µ̂ = (nx̄ +

mȳ)/(n + m) and write

n∑
i=1

(
xi−

nx̄+mȳ

n + m

)2

=
n∑

i=1

(
(xi−x̄)+

(
x̄−nx̄+mȳ

n + m

))2

=
n∑

i=1

(xi − x̄)2 +
nm2

(n + m)2
(x̄− ȳ)2,
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because the cross term is zero. Performing a similar operation on the Y sum yields

σ̂2
0

σ̂2
=

∑
(xi−x̄)2+

∑
(yi−ȳ)2+ nm

n+m (x̄−ȳ)2

σ̂2
= n + m +

nm

n + m

(x̄−ȳ)2

σ̂2
.

Because σ̂2 = n+m−2
n+m S2

p , large values of σ̂2
0

/
σ̂2 are equivalent to large values of (x̄− ȳ)2

/
S2

p

and large values of |T |. Hence, the LRT is the two-sample t-test.
b.

T =
X̄ − Ȳ√

S2
p(1/n + 1/m)

=
(X̄ − Ȳ )

/√
σ2(1/n + 1/m)√

[(n + m− 2)S2
p/σ2]/(n + m− 2)

.

Under H0, (X̄−Ȳ ) ∼ n(0, σ2(1/n+1/m)). Under the model, (n−1)S2
X/σ2 and (m−1)S2

Y /σ2

are independent χ2 random variables with (n − 1) and (m − 1) degrees of freedom. Thus,
(n + m − 2)S2

p/σ2 = (n − 1)S2
X/σ2 + (m − 1)S2

Y /σ2 ∼ χ2
n+m−2. Furthermore, X̄ − Ȳ is

independent of S2
X and S2

Y , and, hence, S2
p . So T ∼ tn+m−2.

c. The two-sample t test is UMP unbiased, but the proof is rather involved. See Chapter 5 of
Lehmann (1986).

d. For these data we have n = 14, X̄ = 1249.86, S2
X = 591.36, m = 9, Ȳ = 1261.33, S2

Y = 176.00
and S2

p = 433.13. Therefore, T = −1.29 and comparing this to a t21 distribution gives a
p-value of .21. So there is no evidence that the mean age differs between the core and
periphery.

8.42 a. The Satterthwaite approximation states that if Yi ∼ χ2
ri

, where the Yi’s are independent,
then ∑

i

aiYi
approx∼ χ2

ν̂

ν̂
where ν̂ =

(
∑

i aiYi)
2∑

i a2
i Y

2
i /ri

.

We have Y1 = (n− 1)S2
X/σ2

X ∼ χ2
n−1 and Y2 = (m− 1)S2

Y /σ2
Y ∼ χ2

m−1. Now define

a1 =
σ2

X

n(n− 1) [(σ2
X/n) + (σ2

Y /m)]
and a2 =

σ2
Y

m(m− 1) [(σ2
X/n) + (σ2

Y /m)]
.

Then, ∑
aiYi =

σ2
X

n(n− 1) [(σ2
X/n) + (σ2

Y /m)]
(n− 1)S2

X

σ2
X

+
σ2

Y

m(m− 1) [(σ2
X/n) + (σ2

Y /m)]
(m− 1)S2

Y

σ2
Y

=
S2

X/n + S
2
Y /m

σ2
X/n+σ2

Y /m
∼ χ2

ν̂

ν̂

where

ν̂ =

(
S2

X/n+S2
Y /m

σ2
X

/n+σ2
Y

/m

)2

1
(n−1)

S4
X

n2(σ2
X

/n+σ2
Y

/m)2 + 1
(m−1)

S4
Y

m2(σ2
X

/n+σ2
Y

/m)2

=

(
S2

X/n + S
2
Y /m

)2

S4
X

n2(n−1)+
S4

Y

m2(m−1)

.

b. Because X̄ − Ȳ ∼ n
(
µX − µY , σ2

X/n+σ2
Y /m

)
and S2

X/n+S2
Y /m

σ2
X

/n+σ2
Y

/m

approx∼ χ2
ν̂/ν̂, under H0 :

µX − µY = 0 we have

T ′ =
X̄ − Ȳ√

S2
X/n + S

2
Y /m

=
(X̄ − Ȳ )

/√
σ2

X/n+σ2
Y /m√

(S2
X

/n+S2
Y /m)

(σ2
X

/n+σ2
Y

/m)

approx∼ tν̂ .



8-18 Solutions Manual for Statistical Inference

c. Using the values in Exercise 8.41d, we obtain T ′ = −1.46 and ν̂ = 20.64. So the p-value is
.16. There is no evidence that the mean age differs between the core and periphery.

d. F = S2
X/S2

Y = 3.36. Comparing this with an F13,8 distribution yields a p-value of 2P (F ≥
3.36) = .09. So there is some slight evidence that the variance differs between the core and
periphery.

8.43 There were typos in early printings. The t statistic should be

(X̄ − Ȳ )− (µ1 − µ2)√
1

n1
+ ρ2

n2

√
(n1−1)s2

X
+(n2−1)s2

Y
/ρ2

n1+n2−2

,

and the F statistic should be s2
Y /(ρ2s2

X). Multiply and divide the denominator of the t statistic
by σ to express it as

(X̄ − Ȳ )− (µ1 − µ2)√
σ2

n1
+ ρ2σ2

n2

divided by √
(n1 − 1)s2

X/σ2 + (n2 − 1)s2
Y /(ρ2σ2)

n1 + n2 − 2
.

The numerator has a n(0, 1) distribution. In the denominator, (n1 − 1)s2
X/σ2 ∼ χ2

n1−1 and
(n2−1)s2

Y /(ρ2σ2) ∼ χ2
n2−1 and they are independent, so their sum has a χ2

n1+n2−2 distribution.
Thus, the statistic has the form of n(0, 1)/

√
χ2

ν/ν where ν = n1 + n2 − 2, and the numerator
and denominator are independent because of the independence of sample means and variances
in normal sampling. Thus the statistic has a tn1+n2−2 distribution. The F statistic can be
written as

s2
Y

ρ2s2
X

=
s2

Y /(ρ2σ2)
s2

X/σ2
=

[(n2 − 1)s2
Y /(ρ2σ2)]/(n2 − 1)

[(n1 − 1)s2
X/(σ2)]/(n1 − 1)

which has the form [χ2
n2−1/(n2 − 1)]/[χ2

n1−1/(n1 − 1)] which has an Fn2−1,n1−1 distribution.
(Note, early printings had a typo with the numerator and denominator degrees of freedom
switched.)

8.44 Test 3 rejects H0 : θ = θ0 in favor of H1 : θ 6= θ0 if X̄ > θ0 + zα/2σ/
√

n or X̄ < θ0 − zα/2σ/
√

n.
Let Φ and φ denote the standard normal cdf and pdf, respectively. Because X̄ ∼ n(θ, σ2/n),
the power function of Test 3 is

β(θ) = Pθ(X̄ < θ0 − zα/2σ/
√

n) + Pθ(X̄ > θ0 + zα/2σ/
√

n)

= Φ
(

θ0 − θ

σ/
√

n
− zα/2

)
+ 1− Φ

(
θ0 − θ

σ/
√

n
+ zα/2

)
,

and its derivative is

dβ(θ)
dθ

= −
√

n

σ
φ

(
θ0 − θ

σ/
√

n
− zα/2

)
+
√

n

σ
φ

(
θ0 − θ

σ/
√

n
+ zα/2

)
.

Because φ is symmetric and unimodal about zero, this derivative will be zero only if

−
(

θ0 − θ

σ/
√

n
− zα/2

)
=

θ0 − θ

σ/
√

n
+ zα/2,

that is, only if θ = θ0. So, θ = θ0 is the only possible local maximum or minimum of the power
function. β(θ0) = α and limθ→±∞ β(θ) = 1. Thus, θ = θ0 is the global minimum of β(θ), and,
for any θ′ 6= θ0, β(θ′) > β(θ0). That is, Test 3 is unbiased.
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8.45 The verification of size α is the same computation as in Exercise 8.37a. Example 8.3.3 shows
that the power function βm(θ) for each of these tests is an increasing function. So for θ > θ0,
βm(θ) > βm(θ0) = α. Hence, the tests are all unbiased.

8.47 a. This is very similar to the argument for Exercise 8.41.
b. By an argument similar to part (a), this LRT rejects H+

0 if

T+ =
X̄ − Ȳ − δ√
S2

p

(
1
n + 1

m

) ≤ −tn+m−2,α.

c. Because H0 is the union of H+
0 and H−

0 , by the IUT method of Theorem 8.3.23 the test
that rejects H0 if the tests in parts (a) and (b) both reject is a level α test of H0. That is,
the test rejects H0 if T+ ≤ −tn+m−2,α and T− ≥ tn+m−2,α.

d. Use Theorem 8.3.24. Consider parameter points with µX − µY = δ and σ → 0. For any
σ, P (T+ ≤ −tn+m−2,α) = α. The power of the T− test is computed from the noncentral t
distribution with noncentrality parameter |µx − µY − (−δ)|/[σ(1/n + 1/m)] = 2δ/[σ(1/n +
1/m)] which converges to∞ as σ → 0. Thus, P (T− ≥ tn+m−2,α) → 1 as σ → 0. By Theorem
8.3.24, this IUT is a size α test of H0.

8.49 a. The p-value is

P

{(
7 or more successes

out of 10 Bernoulli trials

)∣∣∣∣ θ=1
2

}
=

(
10
7

)(
1
2

)7(1
2

)3

+
(

10
8

)(
1
2

)8(1
2

)2

+
(

10
9

)(
1
2

)9(1
2

)1

+
(

10
10

)(
1
2

)10(1
2

)0

= .171875.

b.

P-value = P{X ≥ 3 | λ = 1} = 1− P (X < 3 | λ = 1)

= 1−
[
e−112

2!
+

e−111

1!
+

e−110

0!

]
≈ .0803.

c.

P-value = P{
∑

i

Xi ≥ 9 | 3λ = 3} = 1− P (Y < 9 | 3λ = 3)

= 1− e−3

[
38

8!
+

37

7!
+

36

6!
+

35

5!
+ · · ·+31

1!
+

30

0!

]
≈ .0038,

where Y =
∑3

i=1 Xi ∼ Poisson(3λ).
8.50 From Exercise 7.26,

π(θ|x) =
√

n

2πσ2
e−n(θ−δ±(x))2/(2σ2),

where δ±(x) = x̄± σ2

na and we use the “+” if θ > 0 and the “−” if θ < 0.

a. For K > 0,

P (θ > K|x, a) =
√

n

2πσ2

∫ ∞

K

e−n(θ−δ+(x))2/(2σ2) dθ = P

(
Z >

√
n

σ
[K−δ+(x)]

)
,

where Z ∼ n(0, 1).
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b. As a →∞, δ+(x) → x̄ so P (θ > K) → P
(
Z >

√
n

σ (K−x̄)
)
.

c. For K = 0, the answer in part (b) is 1− (p-value) for H0 : θ ≤ 0.

8.51 If α < p(x),
sup
θ∈Θ0

P (W (X) ≥ cα) = α < p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x)).

Thus W (x) < cα and we could not reject H0 at level α having observed x. On the other hand,
if α ≥ p(x),

sup
θ∈Θ0

P (W (X) ≥ cα) = α ≥ p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x)).

Either W (x) ≥ cα in which case we could reject H0 at level α having observed x or W (x) < cα.
But, in the latter case we could use c′α = W (x) and have {x′ : W (x′) ≥ c′α} define a size α
rejection region. Then we could reject H0 at level α having observed x.

8.53 a.

P (−∞ < θ < ∞) =
1
2

+
1
2

1√
2πτ2

∫ ∞

−∞
e−θ2/(2τ2) dθ =

1
2

+
1
2

= 1.

b. First calculate the posterior density. Because

f(x̄|θ) =
√

n√
2πσ

e−n(x̄−θ)2/(2σ2),

we can calculate the marginal density as

mπ(x̄) =
1
2
f(x̄|0) +

1
2

∫ ∞

−∞
f(x̄|θ) 1√

2πτ
e−θ2/(2τ2)dθ

=
1
2

√
n√

2πσ
e−nx̄2/(2σ2) +

1
2

1√
2π
√

(σ2/n)+τ2
e−x̄2/[2((σ2/n)+τ2)]

(see Exercise 7.22). Then P (θ = 0|x̄) = 1
2f(x̄|0)/mπ(x̄).

c.

P
(
|X̄| > x̄

∣∣ θ = 0
)

= 1− P
(
|X̄| ≤ x̄

∣∣ θ = 0
)

= 1− P
(
−x̄ ≤ X̄ ≤ x̄

∣∣ θ = 0
)

= 2
[
1−Φ

(
x̄/(σ/

√
n)
)]

,

where Φ is the standard normal cdf.
d. For σ2 = τ2 = 1 and n = 9 we have a p-value of 2 (1− Φ(3x̄)) and

P (θ = 0| x̄) =

(
1 +

√
1
10

e81x̄2/20

)−1

.

The p-value of x̄ is usually smaller than the Bayes posterior probability except when x̄ is
very close to the θ value specified by H0. The following table illustrates this.

Some p-values and posterior probabilities (n = 9)
x̄

0 ±.1 ±.15 ±.2 ±.5 ±.6533 ±.7 ±1 ±2
p-value of x̄ 1 .7642 .6528 .5486 .1336 .05 .0358 .0026 ≈ 0
posterior

P (θ = 0|x̄) .7597 .7523 .7427 .7290 .5347 .3595 .3030 .0522 ≈ 0
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8.54 a. From Exercise 7.22, the posterior distribution of θ|x is normal with mean [τ2/(τ2 + σ2/n)]x̄
and variance τ2/(1 + nτ2/σ2). So

P (θ ≤ 0|x) = P

(
Z ≤ 0− [τ2/(τ2+σ2/n)]x̄√

τ2/(1 + nτ2/σ2)

)

= P

(
Z ≤ − τ√

(σ2/n)(τ2+σ2/n)
x̄

)
= P

(
Z ≥ τ√

(σ2/n)(τ2+σ2/n)
x̄

)
.

b. Using the fact that if θ = 0, X̄ ∼ n(0, σ2/n), the p-value is

P (X̄ ≥ x̄) = P

(
Z ≥ x̄− 0

σ/
√

n

)
= P

(
Z ≥ 1

σ/
√

n
x̄

)
c. For σ2 = τ2 = 1,

P (θ ≤ 0|x) = P

(
Z ≥ 1√

(1/n)(1 + 1/n)
x̄

)
and P (X̄ ≥ x̄) = P

(
Z ≥ 1√

1/n
x̄

)
.

Because
1√

(1/n)(1 + 1/n)
<

1√
1/n

,

the Bayes probability is larger than the p-value if x̄ ≥ 0. (Note: The inequality is in the
opposite direction for x̄ < 0, but the primary interest would be in large values of x̄.)

d. As τ2 →∞, the constant in the Bayes probability,

τ√
(σ2/n)(τ2+σ2/n)

=
1√

(σ2/n)(1+σ2/(τ2n))
→ 1

σ/
√

n
,

the constant in the p-value. So the indicated equality is true.
8.55 The formulas for the risk functions are obtained from (8.3.14) using the power function β(θ) =

Φ(−zα + θ0 − θ), where Φ is the standard normal cdf.
8.57 For 0–1 loss by (8.3.12) the risk function for any test is the power function β(µ) for µ ≤ 0 and

1 − β(µ) for µ > 0. Let α = P (1 < Z < 2), the size of test δ. By the Karlin-Rubin Theorem,
the test δzα that rejects if X > zα is also size α and is uniformly more powerful than δ, that
is, βδzα

(µ) > βδ(µ) for all µ > 0. Hence,

R(µ, δzα) = 1− βδzα
(µ) < 1− βδ(µ) = R(µ, δ), for all µ > 0.

Now reverse the roles of H0 and H1 and consider testing H∗
0 : µ > 0 versus H∗

1 : µ ≤ 0. Consider
the test δ∗ that rejects H∗

0 if X ≤ 1 or X ≥ 2, and the test δ∗zα
that rejects H∗

0 if X ≤ zα. It is
easily verified that for 0–1 loss δ and δ∗ have the same risk functions, and δ∗zα

and δzα have the
same risk functions. Furthermore, using the Karlin-Rubin Theorem as before, we can conclude
that δ∗zα

is uniformly more powerful than δ∗. Thus we have

R(µ, δ) = R(µ, δ∗) ≥ R(µ, δ∗zα
) = R(µ, δzα

), for all µ ≤ 0,

with strict inequality if µ < 0. Thus, δzα is better than δ.


