Chapter 9

Interval Estimation

9.1 Denote A = {z: L(z) < 0} and B = {x: U(z) > 0}. Then ANB = {z: L(zx) <0 <U(z)}
and 1 > P{AUB} = P{L(X)<0or0<U(X)} > P{L(X)<6forf<L(X)} =1, since
L(z) < U(x). Therefore, P(ANB) = P(A)+P(B)—P(AUB) =1—-a1+1—as—1=1—a3—axs.

9.3 a. The MLE of 3 is X(;,,) = max X;. Since (3 is a scale parameter, X(,)/f is a pivot, and

Cﬁ aogn .
05 = P3(Xn)/B < ¢) = Ps(all X; < cf) = vl =™
implies ¢ = .05Y/20". Thus, .95 = P3(X(,)/B > ¢) = Ps(X(ny/c > B), and {B: B <
X(n)/(.057/0m)} is a 95% upper confidence limit for (3.
b. From 7.10, & = 12.59 and X, = 25. So the confidence interval is (0,25/[.051/(12:5914)]) —

(0,25.43).
94 a.
Maay) = SUPy—», L (0’%,0'32/‘ x,y)
7 SUP e (0,4-o00) L (Ug(v 012/| €, y)
The unrestricted MLEs of 0% and o3 are 6% = ETX? and 63 = 23;27 as usual. Under the
restriction, A = Ao, 0% = \go%, and
L(o%dookley) = (2m0%) " (2mhgok) e/ o o)

= (2mo%) TP A T 2= (GoRal 40/ (2000%)

Differentiating the log likelihood gives

dlog L d m+n 9 m-+n m AoXx? + Ty?
5 = 5 | — logoyx — log (271) — - log Ag———1—5—+
d (%) dox 2 2 2 2Xo0%
m+mn , o -1 XX +3y? 5\ -2 set
- 5 (%) o ex) S0
which implies
52 )\OEI? + Eyf
0 Ao(m +n)
To see this is a maximum, check the second derivative:
d?log L m+n —2 1 -3
S = (0%) " = 3= (MoZa? +2y7) (%)
d(o%) 2 Ao o2 =52
e I
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therefore &3 is the MLE. The LRT statistic is
A2 \N/2 9 \m/2
(6%)"" (¢¢)

2 /A m+4n)/2 7
X572 (@)

and the test is: Reject Hy if A(x,y) < k, where k is chosen to give the test size .

b. Under Hy, Y Y?/(Aoo%) ~ x2, and > X? /0% ~ X2, independent. Also, we can write

n/2 m/2
AXY) = ! L
’ o n_ oy (BY?/Xo0%)/m ._m m_ (EXZ/0%)/n ._n
m+n (2X2/c%)/n m+n m+n (XY?/Xo0%)/m  m+n
1 n/2 1 m/2
= mn . m m n 1
ln+m + m+nF [m-{-n m+nF ]
o EY?/)\om . . . .
where F' = m ~ F,, » under Hy. The rejection region is
1 1
(I7y): n m n/2 m n 1 m/2 = o
|:n+m + m—+n F:| |:m+n + m+nF :|

where ¢, is chosen to satisfy

—n/2 —m/2
P{[ L F} { mo,n Fl] <Ca}a.
n+m m+4+n n+m m-+n

. To ease notation, let a =m/(n+m) and b =a_ y?/ > x?. From the duality of hypothesis
tests and confidence sets, the set

n/2 m/2
1 1
W) = [ —— > e
) <a+b/)\> <(1_a)+f1(11)—‘1) /\> =

is a 1 —« confidence set for A. We now must establish that this set is indeed an interval. To do
this, we establish that the function on the left hand side of the inequality has only an interior
maximum. That is, it looks like an upside-down bowl. Furthermore, it is straightforward to
establish that the function is zero at both A = 0 and A = co. These facts imply that the set of
A values for which the function is greater than or equal to ¢, must be an interval. We make
some further simplifications. If we multiply both sides of the inequality by [(1 — a)/b]™/2,
we need be concerned with only the behavior of the function

- () (2

Moreover, since we are most interested in the sign of the derivative of h, this is the same as
the sign of the derivative of log h, which is much easier to work with. We have

d
Sl
o8 h(\)

d n m
7Y {—glog(a +b/X) — Elog(b + a)\)}

n b/ A m_a
2a4+b/A  2b+al
1

= TGy Y e mAnb
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The sign of the derivative is given by the expression in square brackets, a parabola. It is easy
to see that for A > 0, the parabola changes sign from positive to negative. Since this is the
sign change of the derivative, the function must increase then decrease. Hence, the function
is an upside-down bowl, and the set is an interval.
9.5 a. Analogous to Example 9.2.5, the test here will reject Hy if T < k(po). Thus the confidence
set is C = {p: T > k(p)}. Since k(p) is nondecreasing, this gives an upper bound on p.
b. k(p) is the integer that simultaneously satisfies

> <n>py(1 -p)""?>1-a and > <n>py(1 -p)"Y<l-o
y=h(p) V7 y=k(p)+1 Y

9.6 a. For Y = > X; ~ binomial(n, p), the LRT statistic is

OB =po)" o —p)\Y (1-p )"
= (3)pv (1 —p)n—v (ﬁ(l—po)> (1_]5)

where p = y/n is the MLE of p. The acceptance region is

A(po) = {y: <1;50>y <11_Z;f)n_y > k}

where k* is chosen to satisfy P, (Y € A(po)) = 1 — . Inverting the acceptance region to a

confidence set, we have
y n—y
C = : - = 2 k .
W {p (p) ( I=p

b. For given n and observed y, write

() = {p: (0/9)" (n)(n = y))" P (1 =p)" " 2 K"}

This is clearly a highest density region. The endpoints of C(y) are roots of the n'! degree
polynomial (in p), (n/y)¥ (n/(n —y))" Y p¥(1 — p)"~¥ — k*. The interval of (10.4.4) is
p

: 713— Z 2 .
{p' N EnItE “/}

The endpoints of this interval are the roots of the second degree polynomial (in p), (p—p)? —
zi /Qp(l — p)/n. Typically, the second degree and n'" degree polynomials will not have the

same roots. Therefore, the two intervals are different. (Note that when n — oo and y — oo,
the density becomes symmetric (CLT). Then the two intervals are the same.)

9.7 These densities have already appeared in Exercise 8.8, where LRT statistics were calculated
for testing Hyp:a = 1.

a. Using the result of Exercise 8.8(a), the restricted MLE of @ (when a = ag) is

G —aot ai+4> 23/n
0= )

and the unrestricted MLEs are
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The LRT statistic is

AAn/2 __ 1 Ry
aG) e 2a09’02(11 0o)

o (i

2 N
= ( : )n/ en/267 2“;50 E(Ii700)2

— L 5(z;—0)2 Qﬂaoéo

e 2ab

The rejection region of a size « test is {z: A(z) <c¢,}, and a 1 — « confidence set is
{ao: AM(z) > ca}-
b. Using the results of Exercise 8.8b, the restricted MLE (for a = ag) is found by solving

—agh? + (62 +(Z—0)%]+6(z—0) =0,
yielding the MLE

Or = T + /T + 4ao(62 + 72)/2a0.
The unrestricted MLEs are

&[\\U‘Q&D

L ) 1> N
0=z and az@;(%_m) _

yielding the LRT statistic
)\({E) = (&/éR)n e(n/z)*z(wiféﬁ{)?/(zéﬁ{).

The rejection region of a size « test is {z: A(z) <c,}, and a 1 — « confidence set is
{aog: M) > ca}-
9.9 Let Z1,...,Z, beiid with pdf f(2).

a. For X; ~ f(x —p), (X1,..., Xpn) ~ (Z1+ 4y Zn + 1), and X —p~Z +p—p=2Z. The
distribution of Z does not depend on p.

b. For X; ~ f(z/0)/o, (X1,...,Xn) ~ (0Z1,...,02,), and X /o ~ 0Z /o = Z. The distribu-
tion of Z does not depend on o.

. For Xi ~ f((x — p)/0)[0, (X1, Xn) ~ (071 + f- ., 0Zn + 1), and (X — p)/Sx ~
(cZ+p—p)/Soz4y =0Z/(0Sz) = Z/Sz. The distribution of Z/Sz does not depend on
[ or o.

9.11 Recall that if 0 is the true parameter, then Fr(7T'|0) ~ uniform(0,1). Thus,

PQO({TS a1 SFT(T|90) S 1—0&2}) :P(Oél S U S 1—0[2) = 1—0[2 — Qq,
where U ~ uniform(0, 1). Since
te {t! ar < FT(t|9) <1- 0&2} & fe {9 o < FT(t|9) <1- 042}

the same calculation shows that the interval has confidence 1 — ag — «7.
9.12 If Xy,..., X, ~ iid n(6,), then \/n(X — 0)/v/0 ~ n(0,1) and a 1 — « confidence interval is
{0: |\v/n(z — 0)/vV0| < 242} Solving for 6, we get

{0: nh* — 0 (2ni+z§/2> +nz? < 0} = {9: 0 e (2ni+zi/2:|:,/4nizi/2+zi/2> /Qn}

Simpler answers can be obtained using the ¢ pivot, (X —8)/(S/+/n), or the x? pivot, (n—1)52 /6.
(Tom Werhley of Texas A&M university notes the following: The largest probability of getting
a negative discriminant (hence empty confidence interval) occurs when vnf = %za /2, and
the probability is equal to a/2. The behavior of the intervals for negative values of Z is also
interesting. When = = 0 the lefthand endpoint is also equal to 0, but when z < 0, the lefthand
endpoint is positive. Thus, the interval based on Z = 0 contains smaller values of § than that
based on Z < 0. The intervals get smaller as T decreases, finally becoming empty.)
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For Y = —(log X)~1, the pdf of Y is fy(y) = ;%e_e/y, 0 <y < oo, and

20 0 20
PY/2<0<Y)= —e Vdy = e V| =12 _ 71 = 239,
0 Y o

Since fx(z) = 0291, 0 <z <1, T = X% is a good guess at a pivot, and it is since fr(t) =1,
0 < t < 1. Thus a pivotal interval is formed from P(a < X% < b) = b — a and is

{0: logb <g< loga}.

Since X? ~ uniform(0, 1), the interval will have confidence .239 as long as b — a = .239.

The interval in part a) is a special case of the one in part b). To find the best interval, we
minimize log b —log a subject tob—a =1—a, or b =1 — a + a. Thus we want to minimize
log(l — a + a) — loga = log (1+1_T°‘), which is minimized by taking a as big as possible.

Thus, take b = 1 and a = «, and the best 1 — a pivotal interval is {0: 0<6< llgi‘;‘ } Thus

the interval in part a) is nonoptimal. A shorter interval with confidence coefficient .239 is
{6:0 <0 <log(l —.239)/log(x)}.
Recall the Bonferroni Inequality (1.2.9), P(A; N Az) > P (A1) + P(A2) — 1. Let 4 =

P(interval covers ) and A; = P(interval covers 2). Use the interval (9.2.14), with th—1,0/4

to get a 1 — /2 confidence interval for y. Use the interval after (9.2.14) with b = x? | /4

and a = Xi—l 14 O get a 1—a/2 confidence interval for o. Then the natural simultaneous
set is
Ca(CE) - (:U',02) xftn—l o¢/4i <‘LL <f+tn—1 a4 i
’ n — — > f

and P (Cy(X) covers (u,0%)) = P(A1NAy) > P (A1) +P(4A:)—1=2(1-a/2)-1=1-qa.

: : .z ko 7 1 ko X—p
If we replace the u interval in a) by {u. T— A SpSIT+ \/ﬁ} then s n(0,1), so we

use 2o/4 and

Co(x) (1,0%): T — 2o /s < p < T + 20 /4— and (n—1)s” <2< (n—1)s’
b = ’ : — Ra/dT — > S o < <7
/ " / \/ﬁ Xz‘flva‘/‘L X?L*l,lfa/4

and P (Cy(X) covers (p,0?)) >2(1—a/2)—1=1— o

The sets can be compared graphically in the (u, o) plane: C, is a rectangle, since p and o2
are treated independently, while Cy is a trapezoid, with larger o2 giving a longer interval.
Their areas can also be calculated

S 2 1 1
Areaof C, = [215,1_17&/4] (n—1)s -
Vn Xi—l,l—a/4 Xi—17a/4
s n—1 n—1
Area of C, = Zoja— 7= +
[ Vin Xi71,1fa/4 Xiq,a/z;
1 1
X (n—1)s> 5 - —
anl,lfa/él anl,a/4

and compared numerically.
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9.15 Fieller’s Theorem says that a 1 — a confidence set for 6 = py /ux is

a.

9.16 a.

9.17 a.

9.18 a.

2 2 2
9: j’2 . tn—l,a/Q 82 02 _9 g — tn—l,a/2 Sy x 0+ gz . tn—l,a/Q 82 <0
’ n—1 "% n—1 n—1"Y] =7

t2
Define a = 2 — ts%, b = z§ — tsyx, ¢ = §° — ts}, where t = %‘1‘/2 Then the parabola

opens upward if @ > 0. Furthermore, if a > 0, then there always exists at least one real root.
This follows from the fact that at 6 = §/Z, the value of the function is negative. For = §/Z
we have
2 Lo (U y 2 2
(z° — ts%) (%) —2(zy —tsxy) (%) + (7 — asy)

72 —
Y Y
= —t 33283(_2$8XY+S§/:|

= Z(gz(%—fv>2—2;1;(%—w)(yi—y)ﬂyi—y)?ﬂ

which is negative.

. The parabola opens downward if a < 0, that is, if z2 < ts%. This will happen if the test of

Hy: ux = 0 accepts Hy at level a.

. The parabola has no real roots if b> < ac. This can only occur if a < 0.

The LRT (see Example 8.2.1) has rejection region {x: |z — 6y| > z,/20/y/n}, acceptance
region A(fy) = {2: —24/20/v/n < T — 0y < 24)20/+y/n}, and 1—a confidence interval C(6) =
{0:2 = 24/00/\/n <0 < T+ 24/00//n}.

. We have a UMP test with rejection region {x : T — 0y < —z,0/+/n}, acceptance region

A(0o) = {x: T—0y > —z40/+/n}, and 1—a confidence interval C(0) = {0: T+z40/\/n > 0}.

. Similar to b), the UMP test has rejection region {z: & — 6y > z,0/+/n}, acceptance region

A(Oy) ={z: T — 0y < z,0/y/n}, and 1 — « confidence interval C(0) = {6: T — z40/+/n < 6}.
Since X — 0 ~ uniform(—1/2,1/2), P(a < X — 60 < b) = b — a. Any a and b satisfying

bza—i—l—awilldo.Onechoiceisa:—%—l—%,b: 5.

1
2

. Since T'= X/0 has pdf f(t) =2t,0<t <1,

b
P(agX/ng):/ 2t dt = b — a®.

Any a and b satisfying b = a? + 1 — a will do. One choice is a = \/a /2, b = /1 — a/2.
P(X=1)= (i’)pl(l —p)3~t =3p(1 — p)?, maximum at p = 1/3.
P(X=2)= @)pz(l —p)372 = 3p?(1 — p), maximum at p = 2/3.

. P(X=0)= (g)po(l —p)379% = (1—p)3, and this is greater than P(X = 2) if (1 —p)? > 3p?,

or 202 +2p—1<0. At p=1/3,2p> +2p— 1 = —1/9.

. To show that this is a 1 — o = .442 interval, compare with the interval in Example 9.2.11.

There are only two discrepancies. For example,
P(p € interval | .362 <p < .634) = P(X =1 or X =2) > .442

by comparison with Sterne’s procedure, which is given by
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X interval
0 [.000,.305)
1 [.305,.634)
2 [.362,.762)
3 [.695,1].

9.19 For Fp(t|0) increasing in 6, there are unique values 0y (t) and 0 (t) such that Fr(t|0) <1— ¢
if and only if 6 < 0y/(t) and Fr(t|0) > § if and only if & > 01(t). Hence,

POLT)<0<0u(T)) = PO<0u(T))—P(O<0L(T))
- P (FT(T) <1- %) S (FT(T) < %)
= 1l—oa.

9.21 To construct a 1 — « confidence interval for p of the form {p: ¢ < p < u} with P{ <p <) =
1 — a, we use the method of Theorem 9.2.12. We must solve for ¢ and u in the equations

x

(1) g =y <Z)“k(1 —w)" % and (2) %

k=0

n

3 (Z) (1 — o)k,

k=x

In equation (1) a/2 = P(K < z) = P(Y < 1 —u), where Y ~ beta(n — z,z + 1) and
K ~ binomial(n,u). This is Exercise 2.40. Let Z ~ Fb(;,_4) 2(a41) and ¢ = (n —z)/(z + 1). By
Theorem 5.3.8¢c, ¢Z/(1 + ¢Z) ~ beta(n —z,z + 1) ~ Y. So we want

a/2:P((1iZCZ)§1—u>:P<;21wu).

From Theorem 5.3.8a, 1/Z ~ Fy(z11),2(n—z)- S0 we need cu/(1—u) = Fy(z41),2(n—=),a/2- Solving
for u yields

L By (o4 1),2(n—2),0/2

B 1+ %FZ(x—i-l),Q(n—x),a/Z .

A similar manipulation on equation (2) yields the value for ¢.
9.23 a. The LRT statistic for Hy: A = A\g versus Hy: A\ # Ao is

g(y) = e (nAg)? fe ™ (nA)Y,

where Y = S°X; ~ Poisson(n\) and A = y/n. The acceptance region for this test is
A(Xo) = {y: g(y) > c(X)) where ¢(Xg) is chosen so that P(Y € A(X\g)) > 1 — . g(y) is a
unimodal function of y so A()\g) is an interval of y values. Consider constructing A(X) for
each \g > 0. Then, for a fixed y, there will be a smallest Ao, call it a(y), and a largest Ao,
call it b(y), such that y € A()\o). The confidence interval for A is then C(y) = (a(y),b(y)).
The values a(y) and b(y) are not expressible in closed form. They can be determined by a
numerical search, constructing A()\g) for different values of Ay and determining those values
for which y € A(X\g). (Jay Beder of the University of Wisconsin, Milwaukee, reminds us that
since ¢ is a function of A, the resulting confidence set need not be a highest density region
of a likelihood function. This is an example of the effect of the imposition of one type of
inference (frequentist) on another theory (likelihood).)

b. The procedure in part a) was carried out for y = 558 and the confidence interval was found to
be (57.78,66.45). For the confidence interval in Example 9.2.15, we need the values X%HG,.% =
1039.444 and X715 05 = 1196.899. This confidence interval is (1039.444/18,1196.899/18) =
(57.75,66.49). The two confidence intervals are virtually the same.
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9.25 The confidence interval derived by the method of Section 9.2.3 is

C(y)Z{u:erTlllOg(g) <“<y+7111°g<1_62y>}

where y = min; ;. The LRT method derives its interval from the test of Hy: p = pg versus
Hy: p # po. Since Y is sufficient for pu, we can use fy (y | u). We have

\y) = Sup—y, L(ply) — _ ne" (Y — 10) g .00)(w)
SUD e (—00.00) L(11]Y) ne= W=V, )@y
Cn(y— 0 if y < o
= e (y #O)I[H0,00) (y) = {e—n(y—,uo) if y > Lo-

We reject Hy if A(y) = e~"=ro) < ¢, where 0 < ¢, < 1 is chosen to give the test level a. To
determine c,, set

logc
a = P{reject Ho|p=po} = P{Y>Mo— gnQOYY<M0 M:ﬂo}
1 o0
= P { Y > po — 08 Ca W= /1'0} = / ne‘"(y—ﬂo) dy
uo_lognca
= —e y—ro) ~ = el — (.
Mo*log’%

Therefore, ¢, = a and the 1 — « confidence interval is

log o 1
C(y)={uru§y§u—n}={ury+n logaéuﬁy}-

To use the pivotal method, note that since p is a location parameter, a natural pivotal quantity
is Z =Y — p. Then, fz(2) = ne "I o0)(2). Let P{a < Z < b} = 1 —«, where a and b satisfy

C;:/Oane_"zdz:—e_"z‘gzl—e_"“ = e_"“zl—%
Lo —log (1—%)
n
% = /boo ne "?dz = —e "? :o =e ™ = _pb= log%
e
= b=——log (5)

Thus, the pivotal interval is Y +log(a/2)/n < u <Y +log(1l — «/2), the same interval as from
Example 9.2.13. To compare the intervals we compare their lengths. We have

1 1
Length of LRT interval = y—(y+ —loga) = ——loga
n n

1 1 1 1—-—a/2
Length of Pivotal interval = (y + —log(1 — a/?)) —(y+ —loga/2) = —log o/
n n n a/2

Thus, the LRT interval is shorter if —log o < log[(1 — «/2)/(c/2)], but this is always satisfied.
9.27 a. Y = > X; ~ gamma(n, A), and the posterior distribution of A is

(y+ %)n+a 1

e~ > Wtd)
I'(n+a) Antaetl ’

m(Aly) =




9.29 a.

9.31 a.

. Converting to an F' distribution, 8.4 =
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an IG (n+a, (y + $)7'). The Bayes HPD region is of the form {\: w(Aly) > k}, which is
an interval since 7(A|y) is unimodal. It thus has the form {\: a1(y) < A < as(y)}, where a;
and ay satisfy
1 —Ze+h_ L —Lw+d

a1n+a+1 a2n+a+1
The posterior distribution is IG(((n —1)/2) +a, (((n—1)s%/2) +1/b)~1). So the Bayes HPD
region is as in part a) with these parameters replacing n + a and y + 1/b.
As a — 0 and b — oo, the condition on a; and as becomes

1 ,L% . 1 _ 1 (n=1s?
a -2+ PR (VP e s R
We know from Example 7.2.14 that if 7(p) ~ beta(a,b), the posterior is 7(ply) ~ beta(y +
a,n—y+b) for y=>x;. So al— « credible set for p is:

{p: ﬁy+a,n—y+b,1—a/2 < p < ﬂy-ﬁ-a,n—y-‘rb,a/Q}'

(c/d)Fac 24

m, the interval is

yta yta
ey E2(yta) 2(n—y+b),1-a /2 mey b F2(y+a) 2(n—y+b),a/2

e SPS Ty e g
+ a2y +a) 2(n—y+b),1-a/2 + 2o e 2 +a) 2(n—y+b).a/2
or, using the fact that F,, , = F, },,
1 < » < ng—;ib F2(y+a),2(n+b),a/2
L+ 2 Py ararasz L 2555 Patya) 20n-ytb),0/2

For this to match the interval of Exercise 9.21, we need = = y and

Lower limit: n—y+b=n—2a2+1 = b=1
yt+a=2z = a=0

Upper limit: y+a=xz+1 = =
n—y+b=n—z = b=0.

So no values of a and b will make the intervals match.

We continually use the fact that given Y =y, x3, is a central x* random variable with 2y
degrees of freedom. Hence

Exzy = E[E(Gy|Y)] = E2Y = 2A
Varxzy = E[Var(x3y|Y)] + Var[E(x5y |Y)]
= E[4Y]+ Var[2Y] = 44X 44\ = 8A
) 2 1 \"
— txay tXoy — -
mgf Ee E[E(e™2v|Y)] E <1 — 2t>

y!

< e (1/\2t)y

— A
E = 6_>\+1—2t.
y=0

From Theorem 2.3.15, the mgf of (x3,, — 2\)/V8\ is

A
et A/2 |:67A+17t/m} .
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The log of this is

N 2 N t2 a8 A o
*““ﬂtfk+1fwviiffn@+2¢X*4u¢Z¢®+a £2/2 as A ,

so the mgf converges to et/ 2, the mgf of a standard normal.
b. Since P(x3y < X3y.o) =  for all A,

X%Y,oc —2A
V8A

In standardizing (9.2.22), the upper bound is

— Zgq @S A — 0.

#—li)-l[xg(Y-&-a),a/Z - 2(>\ + a’)] n;}i12()‘ + a’) —2A
80+ a) 80+ a)

nb
nb+1X§(Y+a),o¢/2 —2A _ /8(A+a)

VBA 8A

While the first quantity in square brackets — 2,2, the second one has limit

1 nb
_an-‘rl A + anb+1

lim
A—00 8(A+a)

so the coverage probability goes to zero.
9.33 a. Since 0 € C,(z) for every x, P(0 € Co(X)|p=0)=1.If u > 0,

PlueCy(X)) = Pp<max{0,X+a}) = Pp<X+a) (since p > 0)
= P(Z>—a) (Z ~n(0,1))
= .95 (a = 1.645.)

A similar calculation holds for p < 0.
b. The credible probability is

max(0,z+a) max(—x,a)
/ 1 6_%(N—:E)2 d/J / 1 e—%tz dt
min(0,z—a) V 2m min(—z,—a) V 2T

= P (min(—-z,—a) < Z < max(—z,a)).

To evaluate this probability we have two cases:

(i) |z <a = credible probability = P(|Z| < a)

(ii) |z|>a = credible probability = P(—a < Z < |z])
Thus we see that for a = 1.645, the credible probability is equal to .90 if |z| < 1.645 and
increases to .95 as |z| — .

9.34 a. A 1 — « confidence interval for p is {p: Z — 1.960/y/n < p < T + 1.960/y/n}. We need
2(1.96)0/\/n < a/4 or \/n > 4(2)(1.96). Thus we need n > 64(1.96)2 ~ 245.9. So n = 246
suffices.

b. The length of a 95% confidence interval is 2¢,_1,.0255/+/n. Thus we need

S o S2 0_2
P (2tn—1,.025\/ﬁ < 4) >9 = P <4t%_17_025 < > > .9
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We need to solve this numerically for the smallest n that satisfies the inequality

(n—1)n 2
= 2 Xn-1.1-
t%—l,.ozs - 64 e

Trying different values of n we find that the smallest such n is n = 276 for which

(n—1)n

TR 306.0 > 3055 = 2, .
t?z—l,.025 - 64 = Xn—1,1

As to be expected, this is somewhat larger than the value found in a).
length = 22, /50/+/n, and if it is unknown, E(length) = 2t /5 ,,_co/+/n, where

Va5

V2T (n/2)

and EcS = o (Exercise 7.50). Thus the difference in lengths is (20/v/n)(zq/2 — cta/2). A little
work will show that, as n — 0o, ¢ — constant. (This can be done using Stirling’s formula along
with Lemma 2.3.14. In fact, some careful algebra will show that ¢ — 1 asn — 00.) Also, we know
that, as n — 00, tq/2n—1 — Za/2. Thus, the difference in lengths (20//n)(24/2 — ctas2) — 0
as n — 00.

The sample pdf is

n

flzy,...,z,]0) = H €0 I ig ooy (7:) = ez(w—mi)l(gm) [min(z;/7)].
i=1

Thus T = min(X;/4) is sufficient by the Factorization Theorem, and

n

n ) n L
P(T>t)= H P(X; > it) = H/ e dy = H 0=t — 6_%0_9)7
=170t i=1

i=1

and
n(n+1) JEEIUES Yo

fT(t) - 2 s
Clearly, 0 is a location parameter and Y = T — 6 is a pivot. To find the shortest confidence
interval of the form [T + a,T + b], we must minimize b — a subject to the constraint P(—b <
Y < —a) =1 — «. Now the pdf of Y is strictly decreasing, so the interval length is shortest if
—b =0 and a satisfies

t>0.

n(n+1)
s a— a

PO<Y <—a)=e" =1-oa.
So a =2log(l —a)/(n(n+1)).

9.37 a. The density of Y = X(,,) is fy(y) = ny" /6™, 0 < y < 6. So 0 is a scale parameter, and

T =Y/0 is a pivotal quantity. The pdf of T is fr(t) =nt" 1, 0<t < 1.
b. A pivotal interval is formed from the set

Y Y Y
0:a<t<bd :{9: <7<b}:{9:7<0<7},
{fra<t<b} “=9= b~ T a
and has length Y (1/a — 1/b) = Y (b — a)/ab. Since fr(t) is increasing, b — a is minimized
and ab is maximized if b = 1. Thus shortest interval will have b = 1 and a satisfying
o= foa nt"1dt = " = a = a!/". So the shortest 1 — o confidence interval is {0:y<6<

y/at/"}.
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9.39 Let a be such that ffoo f(z) dz = /2. This value is unique for a unimodal pdfif a > 0. Let p

be the point of symmetry and let b = 2u —a. Then f(b) = f(a) and fb x)dr=a/2.a<p
since [*_ f(z)de = /2 <1/2 = ["_ f(z)dz. Similarly, b > ,u And, f( ) f(a) > 0 since

fla) > f(z)forallz < aand [*_ f(x) d:c = a/2 >0 = f(x)>0forsomex <a = f(a)>0.
So the conditions of Theorem 9.3.2 are satisfied.

9.41 a. We show that for any interval [a,b] and € > 0, the probability content of [a — €,b — €] is

greater (as long as b — € > a). Write

a b—e
/b f@de— [ f@)da

béf dx—/ f(z) da
fb—)b—(b— o) — fa)la— (a—e)]
elf(b—€) = fla)] < 0,

where all of the inequalities follow because f(z) is decreasing. So moving the interval toward
zero increases the probability, and it is therefore maximized by moving a all the way to zero.

IAINA

b. T =Y — u is a pivot with decreasing pdf fr(t) = ne’”tI[oyoo] (t). The shortest 1 — « interval

on T is [0, — £ log o], since
b
/ ne Mdt=1-a = b:—lloga.
0 n

Sincea < T < bimplies Y —b < <Y —a, the best 1 —« interval on p is Y—i—% loga < u<Y.

9.43 a. Using Theorem 8.3.12, identify g(¢) with f(z|01) and f(¢) with f(z|6y). Define (/)( ) =1if

9.45

t € C and 0 otherwise, and let ¢’ be the indicator of any other set C’ satisfying [, f o f(t)dt >
1 — . Then (¢(t) — &/(1))(9(t) — Af(£)) < 0 and

> [o-ova-an=[a- [ a-x[[1-[ ]z [s-[ 0

showing that C' is the best set.

b. For Exercise 9.37, the pivot T' = Y/ has density nt"~!, and the pivotal interval a < T < b

results in the € interval Y/b < 6 < Y/a. The length is proportional to 1/a — 1/b, and thus
g(t) = 1/t2. The best set is {t: 1/t?> < Ant"~ '}, which is a set of the form {t:a <t < 1}.
This has probability content 1 — a if @ = o'/". For Exercise 9.24 (or Example 9.3.4), the g
function is the same and the density of the pivot is fi, the density of a gamma(k 1). The
set {t: 1/t2 < Mfr(t)} = {t: freo(t) > N}, so the best a and b satisfy f frt)dt =1—«
and fiy2(a) = fir2(b).

a. Since Y = > X; ~ gamma(n,\) has MLR, the Karlin-Rubin Theorem (Theorem 8.3.2)

shows that the UMP test is to reject Hy if Y < k(Ag), where P (Y < k(Ag)|A = Ag) = a.

b. T =2Y/X ~ x3, so choose k(Xo) = $AoX3p.o and

1
Y >k} = {/\: Y > 2/\X§W} ={X:0<A<2Y/x3, .}

is the UMA confidence set.

c. The expected length is E ¥ Z2nd

2n a X2n, o

d. X(1) ~ exponential(A\/n), so EX(1) = A/n. Thus

2 % 12
E(length(C*)) = 2;;.042)\ — 956X
E(length(C™)) = A = 829\

120 x log(.99)
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9.46 The proof is similar to that of Theorem 9.3.5:

Py(0' € C*(X)) = Py (X € A*(0')) < Py (X € A(0')) = Py (0 € (X)),

where A and C are any competitors. The inequality follows directly from Definition 8.3.11.

9.47 Referring to (9.3.2), we want to show that for the upper confidence bound, Py(8' € C) < 1—«
if 0 > 0. We have

Py(0' € C) = Py(0/ < X + 200/ /).

Subtract € from both sides and rearrange to get

Pf)(e'ec):Pe(z//?/g<f/\_/g+za):P(Z>§//:/g—za>,

which is less than 1 — « as long as 6’ > 6. The solution for the lower confidence interval is
similar.

9.48 a.

Start with the hypothesis test Hy: 6 > 6y versus H;: 0 < 6. Arguing as in Example 8.2.4
and Exercise 8.47, we find that the LRT rejects Hy if (X — 609)/(S/v/n) < —tn—1.a. So the
acceptance region is {z: (Z — 6p)/(s/v/n) > —tn—_1,} and the corresponding confidence set
is {0: T+ tn_1a8/v/n >0}

b. The test in part a) is the UMP unbiased test so the interval is the UMA unbiased interval.
9.49 a. Clearly, for each o, the conditional probability Py, (X > 0y + z40/v/n | 0) = «, hence the

test has unconditional size «. The confidence set is {(0,0): 0 > T — z,0/+/n}, which has

confidence coefficient 1 — « conditionally and, hence, unconditionally.
b. From the Karlin-Rubin Theorem, the UMP test is to reject Hy if X > ¢. To make this size

a,

Py (X >¢) = Py, (X >clo=100Plc=10)+P (X >cloc=1)P(oc=1)
X -0 c—0
= pP( 100> 100)+(1—p)P(X—9()>C—9(])
Cc— 00
= pP|(Z> 10 + (1 —p)P(Z > c—by),
where Z ~ n(0,1). Without loss of generality take 6y = 0. For ¢ = 2(4_p)/(1—p) We have for
the proposed test
Py, (reject) = p+(1—p)P (Z > z(a_p)/(l_p))
(a—p)
= p+l-p = p+ta—-p = «a
( )(1 - p)

This is not UMP, but more powerful than part a. To get UMP, solve for ¢ in pP(Z >

¢/10) 4+ (1 — p)P(Z > ¢) = o, and the UMP test is to reject if X > ¢. For p =1/2, a = .05,

we get ¢ =12.81. If « = .1 and p = .05, ¢ = 1.392 and 205 = 0526 1.62.

9.51
PG(QEC(X17'-~7X7L)) = P@(X_k1§6§_+k2>
= P(-k2a<X-0<k)
= B (-kz < ZZi/n < kl) ,

where Z; = X; — 0,4 = 1,...,n. Since this is a location family, for any 6, Z1, ..., Z, are iid

with pdf f(z), i. e., the Z;s are pivots. So the last probability does not depend on 6.
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9.52 a. The LRT of Hy: 0 = og versus Hy: 0 # oy is based on the statistic

Sup,u,,a:ag L (/1’7 JO| l’)

AMz) = .
SUP, 0e(0,00) L(/j" 02| Qf)

In the denominator, 62 = Y (x; — Z)?/n and fi = Z are the MLEs, while in the numerator,

o2 and i are the MLEs. Thus

/2 _ S(z;—x)? S(x;—)2
—-n o2 —n/2 - 2
N (2m03) e %o o3 /2" 2
(:L') - on—n/2 _ S(z—n)2 ? e—n/2
(2762) e 207

and, writing 6% = [(n — 1)/n]s?, the LRT rejects Hy if

o2 —n/2 _ (n—1)s?
0 202
(nhﬁ) e 70 <k

n

2
where k,, is chosen to give a size « test. If we denote t = (";%)5 , then T ~ x2_, under Hy,

and the test can be written: reject Hy if t"/2e~%/2 < k.. Thus, a 1 — « confidence set is

2\ n/2
{02: {n/2e=t/2 > k/}/x} _ {02: ((71—21)8> e_(n—012>.;2 /2> k;} _
o

Note that the function ¢"/2¢~*/2 is unimodal (it is the kernel of a gamma density) so it
follows that the confidence set is of the form

C1)e2
{02:16”/26_75/22147’&} = {ag:agtgb} = {02:a<(n;)s<b}
o

O o s B

where a and b satisfy a”/2e~%/? = b"/2e=%/? (since they are points on the curve t"/2¢~/2),

Since 5§ = ”%r? — 1, a and b also satisfy

I
—
q
)
=
|
=
VA
)
A
9
)
AN
£}
|
=
Vo)
)

- 1 q((n+2)/2)=1 ~a/2 _ - 1
T (#32) 2022 T (#32) 2022

or, fota(a) = fnia(b).

p((n+2)/2)=1,-b/2

. The constants a and b must satisfy f,_ 1(b)b> = f._1(a)a®. But since b((»=1/2)-1p2 —

b{(n+3)/2)=1 " after adjusting constants, this is equivalent to f, 3(b) = fnys(a). Thus, the
values of a¢ and b that give the minimum length interval must satisfy this along with the
probability constraint. The confidence interval, say I(s?) will be unbiased if (Definition 9.3.7)

_az@ﬂefw%)ggﬁgﬁefw%)zl—m

Some algebra will establish

m@%mﬁ)g{
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where ¢ = 0/2/02. The derivative (with respect to ¢) of this last expression is bf,,_1(bc) —
afn—1(ac), and hence is equal to zero if both ¢ = 1 (so the interval is unbiased) and
bfn—1(b) = afn—1(a). From the form of the chi squared pdf, this latter condition is equivalent

to fn+1(b) = fnJrl(a’)‘

. By construction, the interval will be 1 — « equal-tailed.

E [blength(C) — Ic(u)] = 2cob — P(|Z| < ¢), where Z ~n(0, 1).

- & 2eob = P(Z < )] = 200~ 2 (e 2) .

. If bo > 1/+/27 the derivative is always positive since e/2 < 1.

EL((10).C)] = E[L((10).C)IS < K] P(S < K) + E[L((11.0),0)|S > K] P(S > K)
= E[L((10),C)|S < K] P(S < K) + E[L((1.0),O)|S > K] P(S > K)
R[L(10),C")] + B[L((10),O)|S > K] P(S > K),

where the last equality follows because €’ = () if S > K. The conditional expectation in the
second term is bounded by

E[L((p,0),C)|S > K] = E]lblength(C) — Ic(u)|S > K]
= E[2bcS — Ic(p)|S > K]
> E[20cK —1|S > K] (since S > K and Io < 1)
= 2bcK —1,

which is positive if K > 1/2bc. For those values of K, C’ dominates C.

9.57 a.

b.

The distribution of X,,+1 — X is n[0,0%(1 + 1/n)], so
P (Xn+1 € X & 2000/1+ 1/n) = P(|Z] < zaj2) =1 - a.

p percent of the normal population is in the interval u =+ 2,50, so T+ ko is a 1 — a tolerance
interval if

P(p = zp)0 CoX +ko) :P(X—kogu—zp/ga and)_(—i-kaz,u—i—zp/ga) >1—a.
This can be attained by requiring
P(X —ko > p—z,00)=a/2 and P(X 4 ko < p+ 2,00) = a/2,

which is attained for k = z,/5 + 24/2/v/n.
From part (a), (X1 — X)/(Sy/1+1/n) ~ t,_1, so a 1 — « prediction interval is X +

tnfl,a/QS\/ 1+ l/n



