
Chapter 9

Interval Estimation

9.1 Denote A = {x : L(x) ≤ θ} and B = {x : U(x) ≥ θ}. Then A ∩ B = {x : L(x) ≤ θ ≤ U(x)}
and 1 ≥ P {A ∪B} = P {L(X) ≤ θ or θ ≤ U(X)} ≥ P {L(X) ≤ θ or θ ≤ L(X)} = 1, since
L(x) ≤ U(x). Therefore, P (A∩B) = P (A)+P (B)−P (A∪B) = 1−α1+1−α2−1 = 1−α1−α2.

9.3 a. The MLE of β is X(n) = maxXi. Since β is a scale parameter, X(n)/β is a pivot, and

.05 = Pβ(X(n)/β ≤ c) = Pβ(all Xi ≤ cβ) =
(

cβ

β

)α0n

= cα0n

implies c = .051/α0n. Thus, .95 = Pβ(X(n)/β > c) = Pβ(X(n)/c > β), and {β : β <

X(n)/(.051/α0n)} is a 95% upper confidence limit for β.

b. From 7.10, α̂ = 12.59 and X(n) = 25. So the confidence interval is (0, 25/[.051/(12.59·14)]) =
(0, 25.43).

9.4 a.

λ(x, y) =
supλ=λ0

L
(
σ2

X , σ2
Y

∣∣x, y
)

supλ∈(0,+∞) L (σ2
X , σ2

Y |x, y)

The unrestricted MLEs of σ2
X and σ2

Y are σ̂2
X = ΣX2

i

n and σ̂2
Y = ΣY 2

i

m , as usual. Under the
restriction, λ = λ0, σ2

Y = λ0σ
2
X , and

L
(
σ2

X , λ0σ
2
X

∣∣x, y
)

=
(
2πσ2

X

)−n/2 (
2πλ0σ

2
X

)−m/2
e−Σx2

i /(2σ2
X) · e−Σy2

i /(2λ0σ2
X)

=
(
2πσ2

X

)−(m+n)/2
λ
−m/2
0 e−(λ0Σx2

i +Σy2
i )/(2λ0σ2

X)

Differentiating the log likelihood gives

d log L

d (σ2
X)2

=
d

dσ2
X

[
−m + n

2
log σ2

X − m + n

2
log (2π)− m

2
log λ0−

λ0Σx2
i + Σy2

i

2λ0σ2
X

]
= −m + n

2
(
σ2

X

)−1
+

λ0Σx2
i + Σy2

i

2λ0

(
σ2

X

)−2 set= 0

which implies

σ̂2
0 =

λ0Σx2
i + Σy2

i

λ0(m + n)
.

To see this is a maximum, check the second derivative:

d2 log L

d (σ2
X)2

=
m + n

2
(
σ2

X

)−2 − 1
λ0

(
λ0Σx2

i + Σy2
i

) (
σ2

X

)−3
∣∣∣∣
σ2

X
=σ̂2

0

= −m + n

2
(σ̂2

0)−2 < 0,
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therefore σ̂2
0 is the MLE. The LRT statistic is(

σ̂2
X

)n/2 (
σ̂2

Y

)m/2

λ
m/2
0 (σ̂2

0)(m+n)/2
,

and the test is: Reject H0 if λ(x, y) < k, where k is chosen to give the test size α.
b. Under H0,

∑
Y 2

i /(λ0σ
2
X) ∼ χ2

m and
∑

X2
i /σ2

X ∼ χ2
n, independent. Also, we can write

λ(X, Y ) =

 1
n

m+n + (ΣY 2
i

/λ0σ2
X

)/m

(ΣX2
i
/σ2

X
)/n

· m
m+n

n/2 1
m

m+n + (ΣX2
i
/σ2

X
)/n

(ΣY 2
i

/λ0σ2
X

)/m
· n

m+n

m/2

=

[
1

n
n+m + m

m+nF

]n/2 [
1

m
m+n + n

m+nF−1

]m/2

where F = ΣY 2
i /λ0m

ΣX2
i
/n

∼ Fm,n under H0. The rejection region is(x, y) :
1[

n
n+m + m

m+nF
]n/2

· 1[
m

m+n + n
m+nF−1

]m/2
< cα


where cα is chosen to satisfy

P

{[
n

n + m
+

m

m + n
F

]−n/2 [
m

n + m
+

n

m + n
F−1

]−m/2

< cα

}
= α.

c. To ease notation, let a = m/(n + m) and b = a
∑

y2
i /
∑

x2
i . From the duality of hypothesis

tests and confidence sets, the set

c(λ) =

λ :
(

1
a + b/λ

)n/2
(

1

(1− a)+a(1−a)
b λ

)m/2

≥ cα


is a 1−α confidence set for λ. We now must establish that this set is indeed an interval. To do
this, we establish that the function on the left hand side of the inequality has only an interior
maximum. That is, it looks like an upside-down bowl. Furthermore, it is straightforward to
establish that the function is zero at both λ = 0 and λ = ∞. These facts imply that the set of
λ values for which the function is greater than or equal to cα must be an interval. We make
some further simplifications. If we multiply both sides of the inequality by [(1 − a)/b]m/2,
we need be concerned with only the behavior of the function

h(λ) =
(

1
a + b/λ

)n/2( 1
b + aλ

)m/2

.

Moreover, since we are most interested in the sign of the derivative of h, this is the same as
the sign of the derivative of log h, which is much easier to work with. We have

d

dλ
log h(λ) =

d

dλ

[
−n

2
log(a + b/λ)− m

2
log(b + aλ)

]
=

n

2
b/λ2

a + b/λ
− m

2
a

b + aλ

=
1

2λ2(a + b/λ)(b + aλ)
[
−a2mλ2+ab(n−m)λ+nb2

]
.
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The sign of the derivative is given by the expression in square brackets, a parabola. It is easy
to see that for λ ≥ 0, the parabola changes sign from positive to negative. Since this is the
sign change of the derivative, the function must increase then decrease. Hence, the function
is an upside-down bowl, and the set is an interval.

9.5 a. Analogous to Example 9.2.5, the test here will reject H0 if T < k(p0). Thus the confidence
set is C = {p : T ≥ k(p)}. Since k(p) is nondecreasing, this gives an upper bound on p.

b. k(p) is the integer that simultaneously satisfies

n∑
y=k(p)

(
n

y

)
py(1− p)n−y ≥ 1− α and

n∑
y=k(p)+1

(
n

y

)
py(1− p)n−y < 1− α.

9.6 a. For Y =
∑

Xi ∼ binomial(n, p), the LRT statistic is

λ(y) =

(
n
y

)
py
0(1− p0)n−y(

n
y

)
p̂y(1− p̂)n−y

=
(

p0(1− p̂)
p̂(1− p0)

)y (1−p0

1−p̂

)n

where p̂ = y/n is the MLE of p. The acceptance region is

A(p0) =

{
y :
(

p0

p̂

)y (1−p0

1−p̂

)n−y

≥ k∗

}
where k∗ is chosen to satisfy Pp0(Y ∈ A(p0)) = 1− α. Inverting the acceptance region to a
confidence set, we have

C(y) =

{
p :
(

p

p̂

)y ( (1− p)
1−p̂

)n−y

≥ k∗

}
.

b. For given n and observed y, write

C(y) =
{

p : (n/y)y (n/(n− y))n−y
py(1− p)n−y ≥ k∗

}
.

This is clearly a highest density region. The endpoints of C(y) are roots of the nth degree
polynomial (in p), (n/y)y (n/(n− y))n−y

py(1− p)n−y − k∗. The interval of (10.4.4) is{
p :

∣∣∣∣∣ p̂− p√
p(1− p)/n

∣∣∣∣∣ ≤ zα/2

}
.

The endpoints of this interval are the roots of the second degree polynomial (in p), (p̂−p)2−
z2
α/2p(1 − p)/n. Typically, the second degree and nth degree polynomials will not have the

same roots. Therefore, the two intervals are different. (Note that when n →∞ and y →∞,
the density becomes symmetric (CLT). Then the two intervals are the same.)

9.7 These densities have already appeared in Exercise 8.8, where LRT statistics were calculated
for testing H0 : a = 1.

a. Using the result of Exercise 8.8(a), the restricted MLE of θ (when a = a0) is

θ̂0 =
−a0 +

√
a2
0 + 4

∑
x2

i /n

2
,

and the unrestricted MLEs are

θ̂ = x̄ and â =
∑

(xi − x̄)2

nx̄
.
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The LRT statistic is

λ(x) =

(
âθ̂

a0θ̂0

)n/2

e
− 1

2a0θ̂0
Σ(xi−θ̂0)

2

e−
1

2âθ̂
Σ(xi−θ̂)2

=
(

1

2πa0θ̂0

)n/2

en/2e
− 1

2a0θ̂0
Σ(xi−θ̂0)

2

The rejection region of a size α test is {x : λ(x) ≤ cα}, and a 1 − α confidence set is
{a0 : λ(x) ≥ cα}.

b. Using the results of Exercise 8.8b, the restricted MLE (for a = a0) is found by solving

−a0θ
2 + [σ̂2 + (x̄− θ)2] + θ(x̄− θ) = 0,

yielding the MLE
θ̂R = x̄ +

√
x̄ + 4a0(σ̂2 + x̄2)/2a0.

The unrestricted MLEs are

θ̂ = x̄ and â =
1

nx̄2

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄2
,

yielding the LRT statistic

λ(x) =
(
σ̂/θ̂R

)n

e(n/2)−Σ(xi−θ̂R)2/(2θ̂R).

The rejection region of a size α test is {x : λ(x) ≤ cα}, and a 1 − α confidence set is
{a0 : λ(x) ≥ cα}.

9.9 Let Z1, . . . , Zn be iid with pdf f(z).

a. For Xi ∼ f(x− µ), (X1, . . . , Xn) ∼ (Z1 + µ, . . . , Zn + µ), and X̄ − µ ∼ Z + µ− µ = Z̄. The
distribution of Z̄ does not depend on µ.

b. For Xi ∼ f(x/σ)/σ, (X1, . . . , Xn) ∼ (σZ1, . . . , σZn), and X̄/σ ∼ σZ/σ = Z̄. The distribu-
tion of Z̄ does not depend on σ.

c. For Xi ∼ f((x − µ)/σ)/σ, (X1, . . . , Xn) ∼ (σZ1 + µ, . . . , σZn + µ), and (X̄ − µ)/SX ∼
(σZ + µ − µ)/SσZ+µ = σZ̄/(σSZ) = Z̄/SZ . The distribution of Z̄/SZ does not depend on
µ or σ.

9.11 Recall that if θ is the true parameter, then FT (T |θ) ∼ uniform(0, 1). Thus,

Pθ0({T : α1 ≤ FT (T |θ0) ≤ 1− α2}) = P (α1 ≤ U ≤ 1− α2) = 1− α2 − α1,

where U ∼ uniform(0, 1). Since

t ∈ {t : α1 ≤ FT (t|θ) ≤ 1− α2} ⇔ θ ∈ {θ : α1 ≤ FT (t|θ) ≤ 1− α2}

the same calculation shows that the interval has confidence 1− α2 − α1.
9.12 If X1, . . . , Xn ∼ iid n(θ, θ), then

√
n(X̄ − θ)/

√
θ ∼ n(0, 1) and a 1 − α confidence interval is

{θ : |
√

n(x̄− θ)/
√

θ| ≤ zα/2}. Solving for θ, we get{
θ : nθ2 − θ

(
2nx̄ + z2

α/2

)
+ nx̄2 ≤ 0

}
=
{

θ : θ ∈
(
2nx̄ + z2

α/2 ±
√

4nx̄z2
α/2 + z4

α/2

)
/2n

}
.

Simpler answers can be obtained using the t pivot, (X̄−θ)/(S/
√

n), or the χ2 pivot, (n−1)S2/θ2.
(Tom Werhley of Texas A&M university notes the following: The largest probability of getting
a negative discriminant (hence empty confidence interval) occurs when

√
nθ = 1

2zα/2, and
the probability is equal to α/2. The behavior of the intervals for negative values of x̄ is also
interesting. When x̄ = 0 the lefthand endpoint is also equal to 0, but when x̄ < 0, the lefthand
endpoint is positive. Thus, the interval based on x̄ = 0 contains smaller values of θ than that
based on x̄ < 0. The intervals get smaller as x̄ decreases, finally becoming empty.)
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9.13 a. For Y = −(log X)−1, the pdf of Y is fY (y) = θ
y2 e−θ/y, 0 < y < ∞, and

P (Y/2 ≤ θ ≤ Y ) =
∫ 2θ

θ

θ

y2
e−θ/ydy = e−θ/y

∣∣∣2θ

θ
= e−1/2 − e−1 = .239.

b. Since fX(x) = θxθ−1, 0 < x < 1, T = Xθ is a good guess at a pivot, and it is since fT (t) = 1,
0 < t < 1. Thus a pivotal interval is formed from P (a < Xθ < b) = b− a and is{

θ :
log b

log x
≤ θ ≤ log a

log x

}
.

Since Xθ ∼ uniform(0, 1), the interval will have confidence .239 as long as b− a = .239.
c. The interval in part a) is a special case of the one in part b). To find the best interval, we

minimize log b− log a subject to b− a = 1− α, or b = 1− α + a. Thus we want to minimize
log(1 − α + a) − log a = log

(
1+ 1−α

a

)
, which is minimized by taking a as big as possible.

Thus, take b = 1 and a = α, and the best 1− α pivotal interval is
{

θ : 0 ≤ θ ≤ log α
log x

}
. Thus

the interval in part a) is nonoptimal. A shorter interval with confidence coefficient .239 is
{θ : 0 ≤ θ ≤ log(1− .239)/log(x)}.

9.14 a. Recall the Bonferroni Inequality (1.2.9), P (A1 ∩ A2) ≥ P (A1) + P (A2) − 1. Let A1 =
P (interval covers µ) and A2 = P (interval covers σ2). Use the interval (9.2.14), with tn−1,α/4

to get a 1− α/2 confidence interval for µ. Use the interval after (9.2.14) with b = χ2
n−1,α/4

and a = χ2
n−1,1−α/4 to get a 1−α/2 confidence interval for σ. Then the natural simultaneous

set is

Ca(x) =

{
(µ, σ2) : x̄− tn−1,α/4

s√
n
≤ µ ≤ x̄ + tn−1,α/4

s√
n

and
(n− 1)s2

χ2
n−1,α/4

≤ σ2 ≤ (n− 1)s2

χ2
n−1,1−α/4

}

and P
(
Ca(X) covers (µ, σ2)

)
= P (A1∩A2) ≥ P (A1)+P (A2)−1 = 2(1−α/2)−1 = 1−α.

b. If we replace the µ interval in a) by
{

µ : x̄− kσ√
n
≤ µ ≤ x̄ + kσ√

n

}
then X̄−µ

σ/
√

n
∼ n(0, 1), so we

use zα/4 and

Cb(x) =

{
(µ, σ2) : x̄− zα/4

σ√
n
≤ µ ≤ x̄ + zα/4

σ√
n

and
(n− 1)s2

χ2
n−1,α/4

≤ σ2 ≤ (n− 1)s2

χ2
n−1,1−α/4

}

and P
(
Cb(X) covers (µ, σ2)

)
≥ 2(1− α/2)− 1 = 1− α.

c. The sets can be compared graphically in the (µ, σ) plane: Ca is a rectangle, since µ and σ2

are treated independently, while Cb is a trapezoid, with larger σ2 giving a longer interval.
Their areas can also be calculated

Area of Ca =
[
2tn−1,α/4

s√
n

]{√
(n− 1)s2

(
1

χ2
n−1,1−α/4

− 1
χ2

n−1,α/4

)}

Area of Cb =

[
zα/4

s√
n

(√
n− 1

χ2
n−1,1−α/4

+

√
n− 1

χ2
n−1,α/4

)]

×

{√
(n− 1)s2

(
1

χ2
n−1,1−α/4

− 1
χ2

n−1,α/4

)}
and compared numerically.
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9.15 Fieller’s Theorem says that a 1− α confidence set for θ = µY /µX is{
θ :

(
x̄2 −

t2n−1,α/2

n− 1
s2

X

)
θ2 − 2

(
x̄ȳ −

t2n−1,α/2

n− 1
sY X

)
θ +

(
ȳ2 −

t2n−1,α/2

n− 1
s2

Y

)
≤ 0

}
.

a. Define a = x̄2 − ts2
X , b = x̄ȳ − tsY X , c = ȳ2 − ts2

Y , where t =
t2n−1,α/2

n−1 . Then the parabola
opens upward if a > 0. Furthermore, if a > 0, then there always exists at least one real root.
This follows from the fact that at θ = ȳ/x̄, the value of the function is negative. For θ̄ = ȳ/x̄
we have (

x̄2 − ts2
X

) ( ȳ

x̄

)2

− 2 (x̄ȳ − tsXY )
( ȳ

x̄

)
+
(
ȳ2 − as2

Y

)
= −t

[
ȳ2

x̄2
s2

X − 2
ȳ

x̄
sXY +s2

Y

]
= −t

[
n∑

i=1

(
ȳ2

x̄2
(xi − x̄)2 − 2

ȳ

x̄
(xi − x̄)(yi − ȳ) + (yi − ȳ)2

)]

= −t

[
n∑

i=1

( ȳ

x̄
(xi − x̄)− (yi − ȳ)

)2
]

which is negative.
b. The parabola opens downward if a < 0, that is, if x̄2 < ts2

X . This will happen if the test of
H0 : µX = 0 accepts H0 at level α.

c. The parabola has no real roots if b2 < ac. This can only occur if a < 0.

9.16 a. The LRT (see Example 8.2.1) has rejection region {x : |x̄ − θ0| > zα/2σ/
√

n}, acceptance
region A(θ0) = {x : −zα/2σ/

√
n ≤ x̄− θ0 ≤ zα/2σ/

√
n}, and 1−α confidence interval C(θ) =

{θ : x̄− zα/2σ/
√

n ≤ θ ≤ x̄ + zα/2σ/
√

n}.
b. We have a UMP test with rejection region {x : x̄ − θ0 < −zασ/

√
n}, acceptance region

A(θ0) = {x : x̄−θ0 ≥ −zασ/
√

n}, and 1−α confidence interval C(θ) = {θ : x̄+zασ/
√

n ≥ θ}.
c. Similar to b), the UMP test has rejection region {x : x̄− θ0 > zασ/

√
n}, acceptance region

A(θ0) = {x : x̄− θ0 ≤ zασ/
√

n}, and 1−α confidence interval C(θ) = {θ : x̄− zασ/
√

n ≤ θ}.
9.17 a. Since X − θ ∼ uniform(−1/2, 1/2), P (a ≤ X − θ ≤ b) = b − a. Any a and b satisfying

b = a + 1− α will do. One choice is a = − 1
2 + α

2 , b = 1
2 −

α
2 .

b. Since T = X/θ has pdf f(t) = 2t, 0 ≤ t ≤ 1,

P (a ≤ X/θ ≤ b) =
∫ b

a

2t dt = b2 − a2.

Any a and b satisfying b2 = a2 + 1− α will do. One choice is a =
√

α/2, b =
√

1− α/2.
9.18 a. Pp(X = 1) =

(
3
1

)
p1(1− p)3−1 = 3p(1− p)2, maximum at p = 1/3.

Pp(X = 2) =
(
3
2

)
p2(1− p)3−2 = 3p2(1− p), maximum at p = 2/3.

b. P (X = 0) =
(
3
0

)
p0(1− p)3−0 = (1− p)3, and this is greater than P (X = 2) if (1− p)2 > 3p2,

or 2p2 + 2p− 1 < 0. At p = 1/3, 2p2 + 2p− 1 = −1/9.
c. To show that this is a 1 − α = .442 interval, compare with the interval in Example 9.2.11.

There are only two discrepancies. For example,

P (p ∈ interval | .362 < p < .634) = P (X = 1 or X = 2) > .442

by comparison with Sterne’s procedure, which is given by
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x interval
0 [.000,.305)
1 [.305,.634)
2 [.362,.762)
3 [.695,1].

9.19 For FT (t|θ) increasing in θ, there are unique values θU (t) and θL(t) such that FT (t|θ) < 1− α
2

if and only if θ < θU (t) and FT (t|θ) > α
2 if and only if θ > θL(t). Hence,

P (θL(T ) ≤ θ ≤ θU (T )) = P (θ ≤ θU (T ))− P (θ ≤ θL(T ))

= P
(
FT (T ) ≤ 1− α

2

)
− P

(
FT (T ) ≤ α

2

)
= 1− α.

9.21 To construct a 1− α confidence interval for p of the form {p : ` ≤ p ≤ u} with P (` ≤ p ≤ u) =
1− α, we use the method of Theorem 9.2.12. We must solve for ` and u in the equations

(1)
α

2
=

x∑
k=0

(
n

k

)
uk(1− u)n−k and (2)

α

2
=

n∑
k=x

(
n

k

)
`k(1− `)n−k.

In equation (1) α/2 = P (K ≤ x) = P (Y ≤ 1 − u), where Y ∼ beta(n − x, x + 1) and
K ∼ binomial(n, u). This is Exercise 2.40. Let Z ∼ F2(n−x),2(x+1) and c = (n− x)/(x + 1). By
Theorem 5.3.8c, cZ/(1 + cZ) ∼ beta(n− x, x + 1) ∼ Y . So we want

α/2 = P

(
cZ

(1 + cZ)
≤ 1− u

)
= P

(
1
Z
≥ cu

1− u

)
.

From Theorem 5.3.8a, 1/Z ∼ F2(x+1),2(n−x). So we need cu/(1−u) = F2(x+1),2(n−x),α/2. Solving
for u yields

u =
x+1
n−xF2(x+1),2(n−x),α/2

1 + x+1
n−xF2(x+1),2(n−x),α/2

.

A similar manipulation on equation (2) yields the value for `.

9.23 a. The LRT statistic for H0 : λ = λ0 versus H1 : λ 6= λ0 is

g(y) = e−nλ0(nλ0)y/e−nλ̂(nλ̂)y,

where Y =
∑

Xi ∼ Poisson(nλ) and λ̂ = y/n. The acceptance region for this test is
A(λ0) = {y : g(y) > c(λ0)) where c(λ0) is chosen so that P (Y ∈ A(λ0)) ≥ 1 − α. g(y) is a
unimodal function of y so A(λ0) is an interval of y values. Consider constructing A(λ0) for
each λ0 > 0. Then, for a fixed y, there will be a smallest λ0, call it a(y), and a largest λ0,
call it b(y), such that y ∈ A(λ0). The confidence interval for λ is then C(y) = (a(y), b(y)).
The values a(y) and b(y) are not expressible in closed form. They can be determined by a
numerical search, constructing A(λ0) for different values of λ0 and determining those values
for which y ∈ A(λ0). (Jay Beder of the University of Wisconsin, Milwaukee, reminds us that
since c is a function of λ, the resulting confidence set need not be a highest density region
of a likelihood function. This is an example of the effect of the imposition of one type of
inference (frequentist) on another theory (likelihood).)

b. The procedure in part a) was carried out for y = 558 and the confidence interval was found to
be (57.78, 66.45). For the confidence interval in Example 9.2.15, we need the values χ2

1116,.95 =
1039.444 and χ2

1118,.05 = 1196.899. This confidence interval is (1039.444/18, 1196.899/18) =
(57.75, 66.49). The two confidence intervals are virtually the same.
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9.25 The confidence interval derived by the method of Section 9.2.3 is

C(y) =
{

µ : y +
1
n

log
(α

2

)
≤ µ ≤ y +

1
n

log
(
1− α

2

)}
where y = mini xi. The LRT method derives its interval from the test of H0 : µ = µ0 versus
H1 : µ 6= µ0. Since Y is sufficient for µ, we can use fY (y | µ). We have

λ(y) =
supµ=µ0

L(µ|y)
supµ∈(−∞,∞) L(µ|y)

=
ne−n(y − µ0)I[µ0,∞)(y)

ne−(y−y)I[µ,∞)(y)

= e−n(y−µ0)I[µ0,∞)(y) =
{

0 if y < µ0

e−n(y−µ0) if y ≥ µ0.

We reject H0 if λ(y) = e−n(y−µ0) < cα, where 0 ≤ cα ≤ 1 is chosen to give the test level α. To
determine cα, set

α = P { reject H0|µ = µ0} = P

{
Y > µ0 −

log cα

n
or Y < µ0

∣∣∣∣µ = µ0

}
= P

{
Y > µ0 −

log cα

n

∣∣∣∣µ = µ0

}
=

∫ ∞

µ0− log cα
n

ne−n(y−µ0) dy

= −e−n(y−µ0)
∣∣∣∞
µ0− log cα

n

= elog cα = cα.

Therefore, cα = α and the 1− α confidence interval is

C(y) =
{

µ : µ ≤ y ≤ µ− log α

n

}
=
{

µ : y +
1
n

log α ≤ µ ≤ y

}
.

To use the pivotal method, note that since µ is a location parameter, a natural pivotal quantity
is Z = Y −µ. Then, fZ(z) = ne−nzI(0,∞)(z). Let P{a ≤ Z ≤ b} = 1−α, where a and b satisfy

α

2
=
∫ a

0

ne−nz dz = −e−nz
∣∣a
0

= 1− e−na ⇒ e−na = 1− α

2

⇒ a =
− log

(
1− α

2

)
n

α

2
=
∫ ∞

b

ne−nz dz = −e−nz
∣∣∞
b

= e−nb ⇒ −nb = log
α

2

⇒ b = − 1
n

log
(α

2

)
Thus, the pivotal interval is Y + log(α/2)/n ≤ µ ≤ Y + log(1−α/2), the same interval as from
Example 9.2.13. To compare the intervals we compare their lengths. We have

Length of LRT interval = y − (y +
1
n

log α) = − 1
n

log α

Length of Pivotal interval =
(

y +
1
n

log(1− α/2)
)
− (y +

1
n

log α/2) =
1
n

log
1− α/2

α/2

Thus, the LRT interval is shorter if − log α < log[(1−α/2)/(α/2)], but this is always satisfied.
9.27 a. Y =

∑
Xi ∼ gamma(n, λ), and the posterior distribution of λ is

π(λ|y) =
(y + 1

b )n+a

Γ(n + a)
1

λn+a+1
e−

1
λ (y+ 1

b ),
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an IG
(
n + a, (y + 1

b )−1
)
. The Bayes HPD region is of the form {λ : π(λ|y) ≥ k}, which is

an interval since π(λ|y) is unimodal. It thus has the form {λ : a1(y) ≤ λ ≤ a2(y)}, where a1

and a2 satisfy
1

a1
n+a+1

e−
1

a1
(y+ 1

b ) =
1

a2
n+a+1

e−
1

a2
(y+ 1

b ).

b. The posterior distribution is IG(((n−1)/2)+a, (((n−1)s2/2)+1/b)−1). So the Bayes HPD
region is as in part a) with these parameters replacing n + a and y + 1/b.

c. As a → 0 and b →∞, the condition on a1 and a2 becomes

1
a1

((n−1)/2)+1
e−

1
a1

(n−1)s2

2 =
1

a2
((n−1)/2)+1

e−
1

a2
(n−1)s2

2 .

9.29 a. We know from Example 7.2.14 that if π(p) ∼ beta(a, b), the posterior is π(p|y) ∼ beta(y +
a, n− y + b) for y =

∑
xi. So a 1− α credible set for p is:

{p : βy+a,n−y+b,1−α/2 ≤ p ≤ βy+a,n−y+b,α/2}.

b. Converting to an F distribution, βc,d = (c/d)F2c,2d

1+(c/d)F2c,2d
, the interval is

y+a
n−y+bF2(y+a),2(n−y+b),1−α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),1−α/2

≤ p ≤
y+a

n−y+bF2(y+a),2(n−y+b),α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),α/2

or, using the fact that Fm,n = F−1
n,m,

1
1 + n−y+b

y+a F2(n−y+b),2(y+a),α/2

≤ p ≤
y+a

n−y+bF2(y+a),2(n+b),α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),α/2

.

For this to match the interval of Exercise 9.21, we need x = y and

Lower limit: n− y + b = n− x + 1 ⇒ b = 1
y + a = x ⇒ a = 0

Upper limit: y + a = x + 1 ⇒ a = 1
n− y + b = n− x ⇒ b = 0.

So no values of a and b will make the intervals match.
9.31 a. We continually use the fact that given Y = y, χ2

2y is a central χ2 random variable with 2y
degrees of freedom. Hence

Eχ2
2Y = E[E(χ2

2Y |Y )] = E2Y = 2λ

Varχ2
2Y = E[Var(χ2

2Y |Y )] + Var[E(χ2
2Y |Y )]

= E[4Y ] + Var[2Y ] = 4λ + 4λ = 8λ

mgf = Eetχ2
2Y = E[E(etχ2

2Y |Y )] = E
(

1
1− 2t

)Y

=
∞∑

y=0

e−λ
(

λ
1−2t

)y

y!
= e−λ+ λ

1−2t .

From Theorem 2.3.15, the mgf of (χ2
2Y − 2λ)/

√
8λ is

e−t
√

λ/2
[
e
−λ+ λ

1−t/
√

2λ

]
.
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The log of this is

−
√

λ/2t− λ +
λ

1− t/
√

2λ
=

t2
√

λ

−t
√

2 + 2
√

λ
=

t2

−(t
√

2/
√

λ) + 2
→ t2/2 as λ →∞,

so the mgf converges to et2/2, the mgf of a standard normal.
b. Since P (χ2

2Y ≤ χ2
2Y,α) = α for all λ,

χ2
2Y,α − 2λ
√

8λ
→ zα as λ →∞.

In standardizing (9.2.22), the upper bound is

nb
nb+1χ2

2(Y +a),α/2 − 2λ
√

8λ
=

√
8(λ + a)

8λ

[
nb

nb+1 [χ2
2(Y +a),α/2 − 2(λ + a)]√

8(λ + a)
+

nb
nb+12(λ + a)− 2λ√

8(λ + a)

]
.

While the first quantity in square brackets → zα/2, the second one has limit

lim
λ→∞

−2 1
nb+1λ + a nb

nb+1√
8(λ + a)

→ −∞,

so the coverage probability goes to zero.
9.33 a. Since 0 ∈ Ca(x) for every x, P (0 ∈ Ca(X)|µ = 0) = 1. If µ > 0,

P (µ ∈ Ca(X)) = P (µ ≤ max{0, X + a}) = P (µ ≤ X + a) (since µ > 0)
= P (Z ≥ −a) (Z ∼ n(0, 1))
= .95 (a = 1.645.)

A similar calculation holds for µ < 0.
b. The credible probability is∫ max(0,x+a)

min(0,x−a)

1√
2π

e−
1
2 (µ−x)2 dµ =

∫ max(−x,a)

min(−x,−a)

1√
2π

e−
1
2 t2 dt

= P (min(−x,−a) ≤ Z ≤ max(−x, a)) .

To evaluate this probability we have two cases:

(i) |x| ≤ a ⇒ credible probability = P (|Z| ≤ a)
(ii) |x| > a ⇒ credible probability = P (−a ≤ Z ≤ |x|)

Thus we see that for a = 1.645, the credible probability is equal to .90 if |x| ≤ 1.645 and
increases to .95 as |x| → ∞.

9.34 a. A 1 − α confidence interval for µ is {µ : x̄ − 1.96σ/
√

n ≤ µ ≤ x̄ + 1.96σ/
√

n}. We need
2(1.96)σ/

√
n ≤ σ/4 or

√
n ≥ 4(2)(1.96). Thus we need n ≥ 64(1.96)2 ≈ 245.9. So n = 246

suffices.
b. The length of a 95% confidence interval is 2tn−1,.025S/

√
n. Thus we need

P

(
2tn−1,.025

S√
n
≤ σ

4

)
≥ .9 ⇒ P

(
4t2n−1,.025

S2

n
≤ σ2

16

)
≥ .9

⇒ P

 (n− 1)S2

σ2︸ ︷︷ ︸
∼χ2

n−1

≤ (n− 1)n
t2n−1,.025 · 64

 ≥ .9.
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We need to solve this numerically for the smallest n that satisfies the inequality

(n− 1)n
t2n−1,.025 · 64

≥ χ2
n−1,.1.

Trying different values of n we find that the smallest such n is n = 276 for which

(n− 1)n
t2n−1,.025 · 64

= 306.0 ≥ 305.5 = χ2
n−1,.1.

As to be expected, this is somewhat larger than the value found in a).

9.35 length = 2zα/2σ/
√

n, and if it is unknown, E(length) = 2tα/2,n−1cσ/
√

n, where

c =
√

n− 1Γ(n−1
2 )

√
2Γ(n/2)

and EcS = σ (Exercise 7.50). Thus the difference in lengths is (2σ/
√

n)(zα/2 − ctα/2). A little
work will show that, as n →∞, c → constant. (This can be done using Stirling’s formula along
with Lemma 2.3.14. In fact, some careful algebra will show that c → 1 as n →∞.) Also, we know
that, as n → ∞, tα/2,n−1 → zα/2. Thus, the difference in lengths (2σ/

√
n)(zα/2 − ctα/2) → 0

as n →∞.

9.36 The sample pdf is

f(x1, . . . , xn|θ) =
n∏

i=1

eiθ−xiI(iθ,∞)(xi) = eΣ(iθ−xi)I(θ,∞)[min(xi/i)].

Thus T = min(Xi/i) is sufficient by the Factorization Theorem, and

P (T > t) =
n∏

i=1

P (Xi > it) =
n∏

i=1

∫ ∞

it

eiθ−x dx =
n∏

i=1

ei(θ−t) = e−
n(n+1)

2 (t−θ),

and

fT (t) =
n(n + 1)

2
e−

n(n+1)
2 (t−θ), t ≥ θ.

Clearly, θ is a location parameter and Y = T − θ is a pivot. To find the shortest confidence
interval of the form [T + a, T + b], we must minimize b − a subject to the constraint P (−b ≤
Y ≤ −a) = 1− α. Now the pdf of Y is strictly decreasing, so the interval length is shortest if
−b = 0 and a satisfies

P (0 ≤ Y ≤ −a) = e−
n(n+1)

2 a = 1− α.

So a = 2 log(1− α)/(n(n + 1)).

9.37 a. The density of Y = X(n) is fY (y) = nyn−1/θn, 0 < y < θ. So θ is a scale parameter, and
T = Y/θ is a pivotal quantity. The pdf of T is fT (t) = ntn−1, 0 ≤ t ≤ 1.

b. A pivotal interval is formed from the set

{θ : a ≤ t ≤ b} =
{

θ : a ≤ y

θ
≤ b
}

=
{

θ :
y

b
≤ θ ≤ y

a

}
,

and has length Y (1/a − 1/b) = Y (b − a)/ab. Since fT (t) is increasing, b − a is minimized
and ab is maximized if b = 1. Thus shortest interval will have b = 1 and a satisfying
α =

∫ a

0
ntn−1dt = an ⇒ a = α1/n. So the shortest 1− α confidence interval is {θ : y ≤ θ ≤

y/α1/n}.
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9.39 Let a be such that
∫ a

−∞ f(x) dx = α/2. This value is unique for a unimodal pdf if α > 0. Let µ

be the point of symmetry and let b = 2µ− a. Then f(b) = f(a) and
∫∞

b
f(x) dx = α/2. a ≤ µ

since
∫ a

−∞ f(x) dx = α/2 ≤ 1/2 =
∫ µ

−∞ f(x) dx. Similarly, b ≥ µ. And, f(b) = f(a) > 0 since
f(a) ≥ f(x) for all x ≤ a and

∫ a

−∞ f(x) dx = α/2 > 0 ⇒ f(x) > 0 for some x < a ⇒ f(a) > 0.
So the conditions of Theorem 9.3.2 are satisfied.

9.41 a. We show that for any interval [a, b] and ε > 0, the probability content of [a − ε, b − ε] is
greater (as long as b− ε > a). Write∫ a

b

f(x) dx−
∫ b−ε

a−ε

f(x) dx =
∫ b

b−ε

f(x) dx−
∫ a

a−ε

f(x) dx

≤ f(b− ε)[b− (b− ε)]− f(a)[a− (a− ε)]
≤ ε[f(b− ε)− f(a)] ≤ 0,

where all of the inequalities follow because f(x) is decreasing. So moving the interval toward
zero increases the probability, and it is therefore maximized by moving a all the way to zero.

b. T = Y −µ is a pivot with decreasing pdf fT (t) = ne−ntI[0,∞](t). The shortest 1−α interval
on T is [0,− 1

n log α], since∫ b

0

ne−nt dt = 1− α ⇒ b = − 1
n

log α.

Since a ≤ T ≤ b implies Y −b ≤ µ ≤ Y −a, the best 1−α interval on µ is Y + 1
n log α ≤ µ ≤ Y .

9.43 a. Using Theorem 8.3.12, identify g(t) with f(x|θ1) and f(t) with f(x|θ0). Define φ(t) = 1 if
t ∈ C and 0 otherwise, and let φ′ be the indicator of any other set C ′ satisfying

∫
C′ f(t) dt ≥

1− α. Then (φ(t)− φ′(t))(g(t)− λf(t)) ≤ 0 and

0 ≥
∫

(φ− φ′)(g − λf) =
∫

C

g −
∫

C′
g − λ

[∫
C

f −
∫

C′
f

]
≥
∫

C

g −
∫

C′
g,

showing that C is the best set.
b. For Exercise 9.37, the pivot T = Y/θ has density ntn−1, and the pivotal interval a ≤ T ≤ b

results in the θ interval Y/b ≤ θ ≤ Y/a. The length is proportional to 1/a − 1/b, and thus
g(t) = 1/t2. The best set is {t : 1/t2 ≤ λntn−1}, which is a set of the form {t : a ≤ t ≤ 1}.
This has probability content 1− α if a = α1/n. For Exercise 9.24 (or Example 9.3.4), the g
function is the same and the density of the pivot is fk, the density of a gamma(k, 1). The
set {t : 1/t2 ≤ λfk(t)} = {t : fk+2(t) ≥ λ′}, so the best a and b satisfy

∫ b

a
fk(t) dt = 1 − α

and fk+2(a) = fk+2(b).
9.45 a. Since Y =

∑
Xi ∼ gamma(n, λ) has MLR, the Karlin-Rubin Theorem (Theorem 8.3.2)

shows that the UMP test is to reject H0 if Y < k(λ0), where P (Y < k(λ0)|λ = λ0) = α.
b. T = 2Y/λ ∼ χ2

2n so choose k(λ0) = 1
2λ0χ

2
2n,α and

{λ : Y ≥ k(λ)} =
{

λ : Y ≥ 1
2
λχ2

2n,α

}
=
{
λ : 0 < λ ≤ 2Y/χ2

2n,α

}
is the UMA confidence set.

c. The expected length is E 2Y
χ2

2n,α
= 2nλ

χ2
2n,α

.

d. X(1) ∼ exponential(λ/n), so EX(1) = λ/n. Thus

E(length(C∗)) =
2× 120
251.046

λ = .956λ

E(length(Cm)) =
−λ

120× log(.99)
= .829λ.
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9.46 The proof is similar to that of Theorem 9.3.5:

Pθ (θ′ ∈ C∗(X)) = Pθ (X ∈ A∗(θ′)) ≤ Pθ (X ∈ A(θ′)) = Pθ (θ′ ∈ C(X)) ,

where A and C are any competitors. The inequality follows directly from Definition 8.3.11.
9.47 Referring to (9.3.2), we want to show that for the upper confidence bound, Pθ(θ′ ∈ C) ≤ 1−α

if θ′ ≥ θ. We have
Pθ(θ′ ∈ C) = Pθ(θ′ ≤ X̄ + zασ/

√
n).

Subtract θ from both sides and rearrange to get

Pθ(θ′ ∈ C) = Pθ

(
θ′ − θ

σ/
√

n
≤ X̄ − θ

σ/
√

n
+ zα

)
= P

(
Z ≥ θ′ − θ

σ/
√

n
− zα

)
,

which is less than 1 − α as long as θ′ ≥ θ. The solution for the lower confidence interval is
similar.

9.48 a. Start with the hypothesis test H0 : θ ≥ θ0 versus H1 : θ < θ0. Arguing as in Example 8.2.4
and Exercise 8.47, we find that the LRT rejects H0 if (X̄ − θ0)/(S/

√
n) < −tn−1,α. So the

acceptance region is {x : (x̄− θ0)/(s/
√

n) ≥ −tn−1,α} and the corresponding confidence set
is {θ : x̄ + tn−1,αs/

√
n ≥ θ}.

b. The test in part a) is the UMP unbiased test so the interval is the UMA unbiased interval.
9.49 a. Clearly, for each σ, the conditional probability Pθ0(X̄ > θ0 + zασ/

√
n | σ) = α, hence the

test has unconditional size α. The confidence set is {(θ,σ) : θ ≥ x̄− zασ/
√

n}, which has
confidence coefficient 1− α conditionally and, hence, unconditionally.

b. From the Karlin-Rubin Theorem, the UMP test is to reject H0 if X > c. To make this size
α,

Pθ0(X > c) = Pθ0 (X > c|σ = 10) P (σ = 10) + P (X > c|σ = 1)P (σ = 1)

= pP

(
X − θ0

10
>

c− θ0

10

)
+ (1− p)P (X − θ0 > c− θ0)

= pP

(
Z >

c− θ0

10

)
+ (1− p)P (Z > c− θ0),

where Z ∼ n(0, 1). Without loss of generality take θ0 = 0. For c = z(α−p)/(1−p) we have for
the proposed test

Pθ0(reject) = p + (1− p)P
(
Z > z(α−p)/(1−p)

)
= p + (1− p)

(α−p)
(1− p)

= p + α− p = α.

This is not UMP, but more powerful than part a. To get UMP, solve for c in pP (Z >
c/10) + (1− p)P (Z > c) = α, and the UMP test is to reject if X > c. For p = 1/2, α = .05,
we get c = 12.81. If α = .1 and p = .05, c = 1.392 and z .1−.05

.95
=.0526= 1.62.

9.51

Pθ (θ ∈ C(X1, . . . , Xn)) = Pθ

(
X̄ − k1 ≤ θ ≤ X̄ + k2

)
= Pθ

(
−k2 ≤ X̄ − θ ≤ k1

)
= Pθ

(
−k2 ≤

∑
Zi/n ≤ k1

)
,

where Zi = Xi − θ, i = 1, . . . , n. Since this is a location family, for any θ, Z1, . . . , Zn are iid
with pdf f(z), i. e., the Zis are pivots. So the last probability does not depend on θ.
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9.52 a. The LRT of H0 : σ = σ0 versus H1 : σ 6= σ0 is based on the statistic

λ(x) =
supµ,σ=σ0

L (µ, σ0|x)
supµ,σ∈(0,∞) L(µ, σ2|x)

.

In the denominator, σ̂2 =
∑

(xi − x̄)2/n and µ̂ = x̄ are the MLEs, while in the numerator,
σ2

0 and µ̂ are the MLEs. Thus

λ(x) =

(
2πσ2

0

)−n/2
e
−Σ(xi−x̄)2

2σ2
0

(2πσ̂2)−n/2
e−

Σ(xi−x̄)2

2σ2

=
(

σ2
0

σ̂2

)−n/2
e
−Σ(xi−x̄)2

2σ2
0

e−n/2
,

and, writing σ̂2 = [(n− 1)/n]s2, the LRT rejects H0 if(
σ2

0
n−1

n s2

)−n/2

e
− (n−1)s2

2σ2
0 < kα,

where kα is chosen to give a size α test. If we denote t = (n−1)s2

σ2
0

, then T ∼ χ2
n−1 under H0,

and the test can be written: reject H0 if tn/2e−t/2 < k′α. Thus, a 1− α confidence set is

{
σ2 : tn/2e−t/2 ≥ k′α

}
=

{
σ2 :

(
(n− 1)s2

σ2

)n/2

e−
(n−1)s2

σ2 /2 ≥ k′α

}
.

Note that the function tn/2e−t/2 is unimodal (it is the kernel of a gamma density) so it
follows that the confidence set is of the form{

σ2 : tn/2e−t/2 ≥ k′α

}
=

{
σ2 : a ≤ t ≤ b

}
=

{
σ2 : a ≤ (n− 1)s2

σ2
≤ b

}
=

{
σ2 :

(n− 1)s2

b
≤ σ2 ≤ (n− 1)s2

b

}
,

where a and b satisfy an/2e−a/2 = bn/2e−b/2 (since they are points on the curve tn/2e−t/2).
Since n

2 = n+2
2 − 1, a and b also satisfy

1
Γ
(

n+2
2

)
2(n+2)/2

a((n+2)/2)−1e−a/2 =
1

Γ
(

n+2
2

)
2(n+2)/2

b((n+2)/2)−1e−b/2,

or, fn+2(a) = fn+2(b).
b. The constants a and b must satisfy fn−1(b)b2 = fn−1(a)a2. But since b((n−1)/2)−1b2 =

b((n+3)/2)−1, after adjusting constants, this is equivalent to fn+3(b) = fn+3(a). Thus, the
values of a and b that give the minimum length interval must satisfy this along with the
probability constraint. The confidence interval, say I(s2) will be unbiased if (Definition 9.3.7)

c.

Pσ2

(
σ′2 ∈ I(S2)

)
≤ Pσ2

(
σ2 ∈ I(S2)

)
= 1− α.

Some algebra will establish

Pσ2

(
σ′2 ∈ I(S2)

)
= Pσ2

(
(n− 1)S2

bσ2
≤ σ′2

σ2
≤ (n− 1)S2

aσ2

)

= Pσ2

(
χ2

n−1

b
≤ σ′2

σ2
≤

χ2
n−1

a

)
=

∫ bc

ac

fn−1(t) dt,
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where c = σ′2/σ2. The derivative (with respect to c) of this last expression is bfn−1(bc) −
afn−1(ac), and hence is equal to zero if both c = 1 (so the interval is unbiased) and
bfn−1(b) = afn−1(a). From the form of the chi squared pdf, this latter condition is equivalent
to fn+1(b) = fn+1(a).

d. By construction, the interval will be 1− α equal-tailed.
9.53 a. E [blength(C)− IC(µ)] = 2cσb− P (|Z| ≤ c), where Z ∼ n(0, 1).

b. d
dc [2cσb− P (|Z| ≤ c)] = 2σb− 2

(
1√
2π

e−c2/2
)

.

c. If bσ > 1/
√

2π the derivative is always positive since e−c2/2 < 1.
9.55

E[L((µ,σ), C)] = E [L((µ,σ), C)|S < K]P (S < K) + E [L((µ,σ), C)|S > K]P (S > K)
= E

[
L((µ,σ), C ′)|S < K

]
P (S < K) + E [L((µ,σ), C)|S > K]P (S > K)

= R
[
L((µ,σ), C ′)

]
+ E [L((µ,σ), C)|S > K]P (S > K),

where the last equality follows because C ′ = ∅ if S > K. The conditional expectation in the
second term is bounded by

E [L((µ,σ), C)|S > K] = E [blength(C)− IC(µ)|S > K]
= E [2bcS − IC(µ)|S > K]
> E [2bcK − 1|S > K] (since S > K and IC ≤ 1)
= 2bcK − 1,

which is positive if K > 1/2bc. For those values of K, C ′ dominates C.
9.57 a. The distribution of Xn+1 − X̄ is n[0, σ2(1 + 1/n)], so

P
(
Xn+1 ∈ X̄ ± zα/2σ

√
1 + 1/n

)
= P (|Z| ≤ zα/2) = 1− α.

b. p percent of the normal population is in the interval µ± zp/2σ, so x̄±kσ is a 1−α tolerance
interval if

P (µ± zp/2 ⊆ σX̄ ± kσ) = P (X̄ − kσ ≤ µ− zp/2σ and X̄ + kσ ≥ µ + zp/2σ) ≥ 1− α.

This can be attained by requiring

P (X̄ − kσ ≥ µ− zp/2σ) = α/2 and P (X̄ + kσ ≤ µ + zp/2σ) = α/2,

which is attained for k = zp/2 + zα/2/
√

n.

c. From part (a), (Xn+1 − X̄)/(S
√

1 + 1/n) ∼ tn−1, so a 1 − α prediction interval is X̄ ±
tn−1,α/2S

√
1 + 1/n.


