
(Probabilistic) Experiment: (Ω,B, P )

Ω is the sample space ≡ set of all possible outcomes.

(Often denoted S.)

ω denotes a particular outcome.

Ω = { all possible ω }

B is the class of “events” for which probabilities are defined.

(We mainly ignore B in this class. Assume all events of
interest have well-defined probabilities.)

P is a “Probability function”.

P (A) = probability of the event A.

An event A is a subset of Ω.

Experiments and events are often depicted by Venn dia-
grams.
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Example: Roll Two Fair Dice

Ω = {(i, j) : 1 ≤ i ≤ 6,1 ≤ j ≤ 6}

#(Ω) = 36

ω = (i, j)

Example: Poker (5 card draw)

Ω = set of all poker hands

#(Ω) =
(52

5

)
= 52!

5!47!

a particular outcome is ω = {A♥,5♣,5♠,K♥,3♦}

These are examples of experiments which are

discrete,
have finite Ω,
have equally likely outcomes ω.

In these situations:

P (A) =
#(A)

#(Ω)
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Example: Toss a biased coin with P (Heads) = 2/3 three
times.

Ω = {HHH, HHT, HTH, . . . , TTH, TTT}

#(Ω) = 8

For ω = HTH , P (ω) = (2/3)× (1/3)× (2/3), etc.

This experiment is discrete, has finite Ω, has outcomes
which are not equally likely.

Example: Turn on a Geiger counter for one minute and
count the number of clicks. (Assume an average of λ clicks
per minute.)

Ω = {0,1,2,3, . . .}

A typical outcome might be ω = 3.

P (ω) is given by Poisson distribution:

P (ω) =
λωe−λ

ω!

This experiment is discrete, has infinite (but countable)
Ω, has outcomes which are not equally likely.

In these situations:

P (A) =
∑
ω∈A

P (ω)
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Example: Turn on a Geiger counter. Measure the length of
time until you hear the first click. (Assume an average of λ
clicks per minute.)

Ω = (0,∞)

#(Ω) =∞ (and even worse, Ω is uncountable.)

For all outcomes ω, P (ω) = 0.

This is an example of a continuous experiment where P
is described in terms of a density function (pdf).

The time has an exponential distribution and

P ([a, b]) =

∫ b

a

λe−λx dx .

P (A) =

∫
A

λe−λx dx .

Example: Toss a biased coin with P (Heads) = 2/3 infinitely
many times. Record the sequence of heads and tails.

Ω = { all possible sequences of H and T }.

A typical ω = (H,H, T,H,H,H, T, T, . . .)

#(Ω) =∞.

P (ω) = 0 for all ω.
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The experiment has an infinite (and uncountable) Ω.

Is this experiment discrete or continuous?

How to compute probabilites P (A)?

Example: Toss a dart at a square target (1 ft. by 1 ft.).
Dart is tossed “at random” (uniformly).

Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

#(Ω) =∞.

This is continuous experiment with P given by

P (A) =
Area(A)

Area(Ω)
.

Example: Now suppose the dart is tossed according to a
joint density f(x, y) on the plane. Then (by definition)

P (A) =

∫ ∫
A

f(x, y) dx dy .
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Example: Break a stick (of length 1) into 5 pieces in the
following way:

Break the stick “at random”. Call the lengths of the left
and right hand pieces X1 and Y1 (X1 + Y1 = 1) respectively.
Now break the right piece “at random”. Call the lengths
of the left and right pieces X2 and Y2 (X2 + Y2 = Y1). Now
break the right piece of this and then again the right piece of
that. In the end the stick is broken into 5 pieces of lengths
X1, X2, X3, X4, Y4 .

Ω = {(x1, x2, x3, x4) : xi > 0 for all i,
∑4

i=1 xi < 1}

Probabilities are described by
a joint density f(x1, x2, x3, x4). (What is it?)

P (A) =

∫ ∫ ∫ ∫
A

f(x1, x2, x3, x4) dx1 dx2 dx3 dx4 .
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Properties of a Probability Function P

For any experiment (Ω, P ):

P (Ω) = 1 ?

P (∅) = 0

0
?
≤ P (A) ≤ 1

P (Ac) = 1− P (A) (where Ac = Ω−A)

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B)

A1, A2, A3, . . . disjoint ⇒ P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) ?

A ⊂ B ⇒ P (A) ≤ P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P (Ai)

etc.

[? denotes an axiom.]

[Can change ∞ to finite n above.]
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Further comments on:

(1) P (A ∪B) = P (A) + P (B)− P (A ∩B)

(2) P

(
k⋃
i=1

Ai

)
≤

k∑
i=1

P (Ai)

[There are proofs of both in text on pages 10–12.]

Proof of (2):

For k = 2, (2) becomes P (A ∪B) ≤ P (A) + P (B).

This follows immediately from (1) since P (A ∩B) ≥ 0.

For k = 3, (2) is P (A∪B ∪C) ≤ P (A) +P (B) +P (C).

This follows immediately from the result for k = 2:

P (A ∪B ∪ C) = P ((A ∪B) ∪ C)
≤ P (A ∪B) + P (C)
≤ P (A) + P (B) + P (C)

Similarly,

P (A ∪B ∪ C ∪D) = P ((A ∪B ∪ C) ∪D)
≤ P (A ∪B ∪ C) + P (D)

etc. (Use induction for a formal proof.)
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Application of P (∪iAi) ≤
∑

i P (Ai):
Dunn’s Multiple Comparison Procedure

Suppose a researcher (Ed) wishes to design an experiment
to compare k treatments with a control (placebo).

(Take k = 5 for simplicity.)

After conducting the experiment, Ed will draw conclusions
about the effectiveness of the treatments.

Suppose that none of the treatments are effective; they are
all equivalent to the control. (Of course, Ed doesn’t know
this.)

Let Ai = {Ed (falsely) claims treatment i is better than the
control}.

Define B = A1 ∪A2 ∪ · · · ∪A5 = {Ed (falsely) claims at least
one of the treatments is better than the control}.

B is the event that Ed makes an error. Suppose Ed wishes
the probability of an error to be at most .05. How can he
accomplish this?

One answer: If Ed designs his experiment so that P (Ai) =
.01 for all i, then

P (B) = P (A1 ∪A2 ∪ · · · ∪A5) ≤
5∑
i=1

P (Ai) = 5× .01 = .05 .
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Property (1) : P (A ∪B) = P (A) + P (B)− P (A ∩B)
is the simplest case of the

Principle of Inclusion-Exclusion.

The next case is:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C)

The general case is:

P

(
k⋃
i=1

Ai

)
=

∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj)

+
∑
i<j<k

P (Ai ∩Aj ∩Ak)

− · · · + (−1)k−1P (A1 ∩A2 ∩ · · · ∩Ak)

There is a “picture proof” of the case with k = 3 where
you keep track of how many times each region in the Venn
diagram gets counted. (Do it!)

A rigorous formal argument can be given using the properties
of probability we have covered.

What follows is a proof for k = 3 sets. The proof uses the
property for k = 2 sets (which is property (1) above).
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Proof of Principle of Inclusion-Exclusion for 3 sets

P (A ∪B ∪ C) = P ((A ∪B) ∪ C)
Apply the case k = 2.

= P (A ∪B) + P (C)− P ((A ∪B) ∩ C) (‡)
Now note that

P (A ∪B) = P (A) + P (B)− P (A ∩B)

and (using the distributive law for sets)

P ((A ∪B) ∩ C) = P ((A ∩ C) ∪ (B ∩ C))
Apply the case k = 2.

= P (A ∩ C) + P (B ∩ C)− P ((A ∩ C) ∩ (B ∩ C))
Apply the associative and commutative laws
for ∩ to the event in the last term.

= P (A ∩ C) + P (B ∩ C)− P (A ∩B ∩ C)

Plugging these facts back into (‡) gives the final result

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C)

The proof for k = 4 sets is similar. Use induction to prove
the general case.
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“Applications” of the Principle of Inclusion-Exclusion
(and more basic properties of probability)

Suppose a monkey types 5 letters “at random”. (The key
strokes are independent with each letter having equal prob-
ability = 1/26. This is equivalent to saying that all 265

possibilities are equally likely.)

(#1) P (monkey types HELLO) =

(
1

26

)5

Why?

Solution:

{monkey types HELLO} = A1 ∩A2 ∩ · · · ∩A5 where

A1 = {first letter is H} = {`1 = H}
A2 = {second letter is E} = {`2 = E}
... ... ...
A5 = {fifth letter is O} = {`5 = O} .

Since A1, A2, . . . , A5 are independent, we have

P (A1 ∩ · · · ∩A5) = P (A1)× · · · × P (A5) =

(
1

26

)5

.
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(#2) P (monkey types BURP) = 2

(
1

26

)4

Why?

Solution:

{monkey types BURP} = {BURP?} ∪ {?BURP} = B1 ∪B2 .

Here “?” stands for any letter whatsoever.
This means

B1 = {`1 = B} ∩ {`2 = U} ∩ {`3 = R} ∩ {`4 = P}
= {`1 = B, `2 = U, `3 = R, `4 = P} ,

B2 = {`2 = B, `3 = U, `4 = R, `5 = P}
Using independence as in Example #1, we see that

P (B1) = P (B2) =

(
1

26

)4

.

Clearly, B1 and B2 are disjoint (mutually exclusive). Thus

P (B1 ∪B2) = P (B1) + P (B2) = 2

(
1

26

)4

.

(#3) P (monkey types ZIT) = 3

(
1

26

)3

Why?

Solution: This is just like the previous example.

{monkey types ZIT} = {ZIT??} ∪ {?ZIT?} ∪ {??ZIT}
= C1 ∪ C2 ∪ C3 .

Clearly P (C1) = P (C2) = P (C3) = (1/26)3 and the events
are disjoint. Thus

P (C1 ∪ C2 ∪ C3) = P (C1) + P (C2) + P (C3) = 3

(
1

26

)3

.
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(#4) P (monkey types AAAA) = 2(1/26)4 − (1/26)5 .

Solution:

{monkey types AAAA} = {AAAA?} ∪ {?AAAA}
= D1 ∪D2 .

D1 and D2 are not disjoint: D1 ∩D2 = {AAAAA} . Thus

P (D1 ∪D2) = P (D1) + P (D2)− P (D1 ∩D2)
= (1/26)4 + (1/26)4 − (1/26)5 .

(#5) P (monkey types AAA) = 3(1/26)3 − 2(1/26)4 .

Solution:

{monkey types AAA} = {AAA??} ∪ {?AAA?} ∪ {??AAA}
= E1 ∪ E2 ∪ E3 .

Since

E1 ∩ E2 = {AAAA?}
E2 ∩ E3 = {?AAAA}
E1 ∩ E3 = {AAAAA}

E1 ∩ E2 ∩ E3 = {AAAAA}
we have

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)
− P (E1 ∩ E2)− P (E2 ∩ E3)− P (E1 ∩ E3)
+ P (E1 ∩ E2 ∩ E3)

= (1/26)3 + (1/26)3 + (1/26)3

− (1/26)4 − (1/26)4 − (1/26)5

+ (1/26)5 .
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(#6) P (monkey types AA) = 4
(

1
26

)2−3
(

1
26

)3−
(

1
26

)4
+
(

1
26

)5
.

Solution:

{monkey types AA}
= {AA???} ∪ {?AA??} ∪ {??AA?} ∪ {???AA}
= F1 ∪ F2 ∪ F3 ∪ F4

and

P (F1 ∪ F2 ∪ F3 ∪ F4) =
∑
i

P (Fi)−
∑
i<j

P (Fi ∩ Fj)

+
∑
i<j<k

P (Fi ∩ Fj ∩ Fk)− P (F1 ∩ F2 ∩ F3 ∩ F4) .

To calculate this, you must find all the intersections and
their probabilities. For example,

F1 ∩ F4 = {AA?AA} so that P (F1 ∩ F4) = (1/26)4 .

(#7) P (monkey types A) = 1− (25/26)5 .

Solution: It is possible (but very tedious) to do this by
inclusion-exclusion using

{monkey types A} = {A????} ∪ {?A???} ∪ · · · ∪ {????A} .
But much better is to switch to the complement:

P (monkey types A) = 1− P (monkey does not type A) .

{does not type A} = {`1 6= A} ∩ {`2 6= A} ∩ · · · ∩ {`5 6= A} .
Now use the independence of the key strokes.
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