(Probabilistic) Experiment: (2,8, P)
2 is the sample space = set of all possible outcomes.
(Often denoted S.)
w denotes a particular outcome.

2 = { all possible w }

B is the class of “events’ for which probabilities are defined.

(We mainly ignore B in this class. Assume all events of
interest have well-defined probabilities.)

P is a "Probability function’ .
P(A) = probability of the event A.

An event A is a subset of €2.

Experiments and events are often depicted by Venn dia-
grams.



Example: Roll Two Fair Dice
Q={(,7j):1<i<6,1<j<6}
#(2) = 36
w = (%,7)
Example: Poker (5 card draw)
(2 = set of all poker hands
#(Q2) = (552) — %
a particular outcome is w = {AQ,5&,58, KO, 30}

These are examples of experiments which are

discrete,
have finite €2,
have equally likely outcomes w.

In these situations:
#(A)

P =20



Example: Toss a biased coin with P(Heads) = 2/3 three
times.

Q = {HHH, HHT, HTH, ..., TTH, TTT}
#(2) =8
For w= HTH, P(w) = (2/3) x (1/3) x (2/3), etc.

This experiment is discrete, has finite €2, has outcomes
which are not equally likely.

Example: Turn on a Geiger counter for one minute and
count the number of clicks. (Assume an average of \ clicks
per minute.)

Q={0,1,2,3,...}
A typical outcome might be w = 3.
P(w) is given by Poisson distribution:

AWeA

Plw) = w!

This experiment is discrete, has infinite (but countable)
€2, has outcomes which are not equally likely.

In these situations:

P(A) =) Pw)

wEA



Example: Turn on a Geiger counter. Measure the length of
time until you hear the first click. (Assume an average of A
clicks per minute.)

2 =(0,00)
#(Q2) = oo (and even worse, €2 is uncountable.)
For all outcomes w, P(w) = 0.

This is an example of a continuous experiment where P
is described in terms of a density function (pdf).

The time has an exponential distribution and

P([a,b]) = /b Ae M dg .

P(A) = / e M dg |
A

Example: Toss a biased coin with P(Heads) = 2/3 infinitely
many times. Record the sequence of heads and tails.

2 = { all possible sequences of H and T }.
A typical w= (H,H,T,H, H, H,T,T,...)
#(Q) = co.

P(w) = 0 for all w.



The experiment has an infinite (and uncountable) .
Is this experiment discrete or continuous?

How to compute probabilites P(A)?

Example: Toss a dart at a square target (1 ft. by 1 ft.).
Dart is tossed “at random’” (uniformly).

Q={(z,9):0<e<1,0<y<1}

#(Q) = co.
This is continuous experiment with P given by
Area(A
P(A) = —()_
Area(2)

Example: Now suppose the dart is tossed according to a
joint density f(z,y) on the plane. Then (by definition)

Py = | /A F(e,y) dedy.



Example: Break a stick (of length 1) into 5 pieces in the
following way:

Break the stick "“at random’”. Call the lengths of the left
and right hand pieces X7 and Y7 (X1 + Y1 = 1) respectively.
Now break the right piece "“at random’. Call the lengths
of the left and right pieces X5, and Y5> (Xo 4+ Y> =Y7). Now
break the right piece of this and then again the right piece of
that. In the end the stick is broken into 5 pieces of lengths
X1, X5, X3,X4,Ys.

Q = {(x1,x2,23,24) : x; > 0 for all ¢, Z?:l x; < 1}

Probabilities are described by
a joint density f(x1,22,23,24). (What is it?)

P(A)Z////f(xl,wg,x3,a:4)dmldazgdx3d:c4.
A



Properties of a Probability Function P

For any experiment (€2, P):

P(QQ)=1 «
P(0) =0
0< P(A) <1

P(A°)=1—-P(A) (where Ac=Q - A)
ANB=0 = P(AUB)=P(A) + P(B)

oo

A1, Ao, As, ... disjoint = P (U AZ-> =) P(A) «
i=1

i=1
ACB = P(A) <P(B)
P(AuB)=P(A)+ P(B) — P(ANB)
P ([j Ai) < iP(Ai)

i=1 i=1
etc.

[* denotes an axiom.]

[Can change oo to finite n above.]



Further comments on:

(1) P(AUB) = P(A) + P(B) — P(AN B)

k k
@) P (U AZ-) <3 Py
=1

=1

[There are proofs of both in text on pages 10—-12.]

Proof of (2):
For k =2, (2) becomes P(AUB) < P(A) + P(B).

This follows immediately from (1) since P(An B) > 0.

For k=3, (2) is P(AUBUC) < P(A)+ P(B) + P(C).

This follows immediately from the result for k = 2:

P(AUBUC) = P((AuB)UC)
< P(AUB)+ P(C)
< P(A)+ P(B)+ P(C)
Similarly,

P(AuBUCUD,) P((AuBUC)UD)

; P(AUBUC)+ P(D)

etc. (Use induction for a formal proof.)



Application of P(U;A;) < 5; P(A;):
Dunn’s Multiple Comparison Procedure

Suppose a researcher (Ed) wishes to design an experiment
to compare k treatments with a control (placebo).

(Take k = 5 for simplicity.)

After conducting the experiment, Ed will draw conclusions
about the effectiveness of the treatments.

Suppose that none of the treatments are effective; they are
all equivalent to the control. (Of course, Ed doesn’'t know
this.)

Let A; = {Ed (falsely) claims treatment i is better than the
control}.

Define B= A1 UAyU---UAs = {Ed (falsely) claims at least
one of the treatments is better than the control}.

B is the event that Ed makes an error. Suppose Ed wishes
the probability of an error to be at most .05. How can he
accomplish this?

One answer: If Ed designs his experiment so that P(4;) =
.01 for all 7z, then

5
P(B) = P(A1UA2U---UAs) < Y P(A;)=5x.01=.05.
=1



Property (1) : P(AuB) = P(A)+ P(B) — P(AN B)
is the simplest case of the

Principle of Inclusion-Exclusion.

The next case is:

P(AUBUC) = P(A)+ P(B)+ P(C)
—P(ANB)—-P(ANC)—-P(BNQO)
+ P(ANBNQC)

The general case is:

k
f)(:LJ‘A¢> — j{:lg(fh)"'}E:}D(/hfWJAj)

i=1 1<J
+ ) P(ANA;NAL)
1<j<k
- ... _|-(—1)k_1P(A1ﬂA2ﬂ°"ﬂAk:)

There is a “picture proof” of the case with £k = 3 where
you keep track of how many times each region in the Venn

diagram gets counted. (Do it!)

A rigorous formal argument can be given using the properties

of probability we have covered.

What follows is a proof for kK = 3 sets. The proof uses the

property for k = 2 sets (which is property (1) above).
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Proof of Principle of Inclusion-Exclusion for 3 sets

P(AuBUC) = P((AuB)UC)
Apply the case k£ = 2.
= P(AUB)+ P(C)-P((AUB)NC) (1)

Now note that

P(AUB)=P(A)+ P(B)—P(ANnB)
and (using the distributive law for sets)

P((AuB)NC)=P((ANnC)u(BNQO))
Apply the case k = 2.
= P(ANnC)4+P(BNC)—P((ANnC)Nn(BNC))
Apply the associative and commutative laws

for N to the event in the last term.
= P(ANnC)4+P(BNC)—P(ANBNC)

Plugging these facts back into (1) gives the final result

P(AUBUC) = P(A)+ P(B)+ P(O)
— P(ANnB)—-P(ANC)—-P(BNC)
+ P(ANBNQO)

The proof for k = 4 sets is similar. Use induction to prove
the general case.
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“Applications” of the Principle of Inclusion-Exclusion
(and more basic properties of probability)

Suppose a monkey types 5 letters “at random”. (The key
strokes are independent with each letter having equal prob-
ability = 1/26. This is equivalent to saying that all 26°
possibilities are equally likely.)

1\5
(#1) P(monkey types HELLO) = (2_6> Why?

Solution:

{monkey types HELLO} = A1 N A>,N---N As where

Ay = {first letter is H} = {¢1 = H}
A = {second letteris E} = {l>=E}
As = {fifth letter is O} = {l5 =0O}.
Since Ay, Ay, ..., As are independent, we have
1 5
P(A1N---NAs) = P(A1) X --- X P(As) = <%) :
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1 4
(#2) P(monkey types BURP) =2 (%> Why?

Solution:
{monkey types BURP} = {BURP?}U{?BURP} = B1 U B>.

Here 7" stands for any letter whatsoever.
This means

B = {Elz B}ﬂ{ﬁzz U}ﬂ{£3: R}ﬂ{€4= P}
= {{1=B,lr=U/lz3=R, {4 =P},
By = {lp=B,lz3=U,ls =R, {5 =P}
Using independence as in Example #1, we see that
1\%
P(B1) = P(B>) = (26) |

Clearly, B1 and By are disjoint (mutually exclusive). Thus

4
P(B1iU By) = P(By) 4+ P(Bs) = 2 (2—16) .

1\3
(#3) P(monkey types ZIT) =3 (%) Why?

Solution: This is just like the previous example.
{monkey types ZIT} = {ZIT??2}u{?ZIT?}uU{?7ZIT}
CiuUulC>rUC(C3.

Clearly P(C1) = P(C>2) = P(C3) = (1/26)3 and the events
are disjoint. Thus

3
P(C1UC2UC3) = P(Ch1) + P(C2) + P(C3) =3<%> :
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(#4) P(monkey types AAAA) = 2(1/26)* — (1/26)°.
Solution:
{monkey types AAAA}

{AAAA?} U{?AAAA}

D1 UD>.

D; and D5 are not disjoint: D1 N Dy, = {AAAAA}. Thus
P(D1U D) P(D1) 4+ P(D>) — P(D1 N D>)

(1/26)* + (1/26)* — (1/26)°.

(#£5) P(monkey types AAA) = 3(1/26)3 — 2(1/26)%.

Solution:
{monkey types AAA} = {AAA7?}U{?AAA7}U{??AAA}
= Fi1UE>UE3.

Since

EiNE>, = {AAAA7?}

ErxNEs3 = {?AAAA}

EFiNEs = {AAAAA}

EiNExNE3 = {AAAAA}

we have
P(E1UFE2UE3) = P(E1)+ P(E2) + P(Es3)

— P(E1N E») — P(E>N E3) — P(E1 N Es)
+ P(E1N ExN E3)
= (1/26)° 4 (1/26)° 4 (1/26)°
— (1/26)" — (1/26)* — (1/26)°
+ (1/26)°.
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(#£6) P(monkey types AA) = 4 (2—16)2—3 (%)3—(%)44—(%)5 .
Solution:

{monkey types AA}
= {AA7T??}U{7AA??U{??AA?} U{7?77?AA}
= FUFUF3UFy
and
P(FLUF,UF3UF,) =Y P(F)— > P(F;NF)
i i<j
+ Y P(FNFNF)-P(FiNFaNF3NE).
i<j<k
To calculate this, you must find all the intersections and
their probabilities. For example,

F1 N Fy = {AA?AA} so that P(FiNF) = (1/26)".

(#£7) P(monkey types A) = 1 — (25/26)°.

Solution: It is possible (but very tedious) to do this by
inclusion-exclusion using

{monkey types A} = {A?7??} U{?A??7}U---U{?7?77A}.
But much better is to switch to the complement:
P(monkey types A) = 1 — P(monkey does not type A).

{does not type A} = {{1 FZFA}N{lo#=A}tN---N{ls = A}.
Now use the independence of the key strokes.
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