Properties of a Random Sample

5.1 Let X = # color blind people in a sample of size n. Then $X \sim \text{binomial}(n, p)$, where p = .01. The probability that a sample contains a color blind person is P(X > 0) = 1 - P(X = 0), where $P(X = 0) = \binom{n}{0}(.01)^0(.99)^n = .99^n$. Thus,

$$P(X > 0) = 1 - .99^n > .95 \Leftrightarrow n > \log(.05)/\log(.99) \approx 299.$$

- 5.3 Note that $Y_i \sim \text{Bernoulli}$ with $p_i = P(X_i \geq \mu) = 1 F(\mu)$ for each i. Since the Y_i 's are iid Bernoulli, $\sum_{i=1}^n Y_i \sim \text{binomial}(n, p = 1 F(\mu))$.
- 5.5 Let $Y = X_1 + \dots + X_n$. Then $\bar{X} = (1/n)Y$, a scale transformation. Therefore the pdf of \bar{X} is $f_{\bar{X}}(x) = \frac{1}{1/n} f_Y\left(\frac{x}{1/n}\right) = n f_Y(nx)$.
- 5.6 a. For Z = X Y, set W = X. Then Y = W Z, X = W, and $|J| = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} = 1$. Then $f_{Z,W}(z,w) = f_X(w)f_Y(w-z) \cdot 1$, thus $f_Z(z) = \int_{-\infty}^{\infty} f_X(w)f_Y(w-z)dw$.
 - b. For Z = XY, set W = X. Then Y = Z/W and $|J| = \begin{vmatrix} 0 & 1 \\ 1/w & -z/w^2 \end{vmatrix} = -1/w$. Then $f_{Z,W}(z,w) = f_X(w)f_Y(z/w) \cdot |-1/w|$, thus $f_Z(z) = \int_{-\infty}^{\infty} |-1/w| f_X(w)f_Y(z/w)dw$.
 - c. For Z = X/Y, set W = X. Then Y=W/Z and $|J| = \begin{vmatrix} 0 & 1 \\ -w/z^2 & 1/z \end{vmatrix} = w/z^2$. Then $f_{Z,W}(z,w) = f_X(w)f_Y(w/z) \cdot |w/z^2|$, thus $f_Z(z) = \int_{-\infty}^{\infty} |w/z^2| f_X(w) f_Y(w/z) dw$.
- 5.7 It is, perhaps, easiest to recover the constants by doing the integrations. We have

$$\int_{-\infty}^{\infty} \frac{B}{1 + \left(\frac{\omega}{\sigma}\right)^2} d\omega = \sigma \pi B, \qquad \int_{-\infty}^{\infty} \frac{D}{1 + \left(\frac{\omega - z}{\tau}\right)^2} d\omega = \tau \pi D$$

and

$$\int_{-\infty}^{\infty} \left[\frac{A\omega}{1 + \left(\frac{\omega}{\sigma}\right)^2} - \frac{C\omega}{1 + \left(\frac{\omega - z}{\tau}\right)^2} \right] d\omega$$

$$= \int_{-\infty}^{\infty} \left[\frac{A\omega}{1 + \left(\frac{\omega}{\sigma}\right)^2} - \frac{C(\omega - z)}{1 + \left(\frac{\omega - z}{\tau}\right)^2} \right] d\omega - Cz \int_{-\infty}^{\infty} \frac{1}{1 + \left(\frac{\omega - z}{\tau}\right)^2} d\omega$$

$$= A\frac{\sigma^2}{2} \log \left[1 + \left(\frac{\omega}{\sigma}\right)^2 \right] - \frac{C\tau^2}{2} \log \left[1 + \left(\frac{\omega - z}{\tau}\right)^2 \right]_{-\infty}^{\infty} - \tau \pi Cz.$$

The integral is finite and equal to zero if $A = M \frac{2}{\sigma^2}$, $C = M \frac{2}{\sigma^2}$ for some constant M. Hence

$$f_Z(z) = \frac{1}{\pi^2 \sigma \tau} \left[\sigma \pi B - \tau \pi D - \frac{2\pi M z}{\tau} \right] = \frac{1}{\pi (\sigma + \tau)} \frac{1}{1 + (z/(\sigma + \tau))^2},$$

if
$$B = \frac{\tau}{\sigma + \tau}$$
, $D = \frac{\sigma}{\sigma + \tau}$, $M = \frac{-\sigma \tau^2}{2z(\sigma + \tau)} \frac{1}{1 + \left(\frac{z}{\sigma + \tau}\right)^2}$.

$$= \frac{1}{\sqrt{2\pi}} \frac{\nu^{\nu/2}}{\Gamma(\nu/2) 2^{\nu/2}} \int_0^\infty x^{((\nu+1)/2)-1} e^{-(\nu+t^2)x/2} dx \qquad \left(\begin{array}{c} \text{integrand is kernel of} \\ \text{gamma}((\nu+1)/2, 2/(\nu+t^2)) \end{array} \right)$$

$$= \frac{1}{\sqrt{2\pi}} \frac{\nu^{\nu/2}}{\Gamma(\nu/2) 2^{\nu/2}} \Gamma((\nu+1)/2) \left(\frac{2}{\nu+t^2} \right)^{(\nu+1)/2}$$

$$= \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)} \frac{1}{(1+t^2/\nu)^{(\nu+1)/2}},$$

the pdf of a t_{ν} distribution.

b. Differentiate both sides with respect to t to obtain

$$\nu f_F(\nu t) = \int_0^\infty y f_1(ty) f_\nu(y) dy,$$

where f_F is the F pdf. Now write out the two chi-squared pdfs and collect terms to get

$$\nu f_F(\nu t) = \frac{t^{-1/2}}{\Gamma(1/2)\Gamma(\nu/2)2^{(\nu+1)/2}} \int_0^\infty y^{(\nu-1)/2} e^{-(1+t)y/2} dy$$

$$= \frac{t^{-1/2}}{\Gamma(1/2)\Gamma(\nu/2)2^{(\nu+1)/2}} \frac{\Gamma(\frac{\nu+1}{2})2^{(\nu+1)/2}}{(1+t)^{(\nu+1)/2}}.$$

Now define $y = \nu t$ to get

$$f_F(y) = \frac{\Gamma(\frac{\nu+1}{2})}{\nu\Gamma(1/2)\Gamma(\nu/2)} \frac{(y/\nu)^{-1/2}}{(1+y/\nu)^{(\nu+1)/2}},$$

the pdf of an $F_{1,\nu}$.

c. Again differentiate both sides with respect to t, write out the chi-squared pdfs, and collect terms to obtain

$$(\nu/m)f_F((\nu/m)t) = \frac{t^{-m/2}}{\Gamma(m/2)\Gamma(\nu/2)2^{(\nu+m)/2}} \int_0^\infty y^{(m+\nu-2)/2} e^{-(1+t)y/2} dy.$$

Now, as before, integrate the gamma kernel, collect terms, and define $y = (\nu/m)t$ to get

$$f_F(y) = \frac{\Gamma(\frac{\nu+m}{2})}{\Gamma(m/2)\Gamma(\nu/2)} \left(\frac{m}{\nu}\right)^{m/2} \frac{y^{m/2-1}}{\left(1 + (m/\nu)y\right)^{(\nu+m)/2}},$$

the pdf of an $F_{m,\nu}$.

5.21 Let m denote the median. Then, for general n we have

$$P(\max(X_1, ..., X_n) > m) = 1 - P(X_i \le m \text{ for } i = 1, 2, ..., n)$$

= $1 - [P(X_1 \le m)]^n = 1 - \left(\frac{1}{2}\right)^n$.

5.22 Calculating the cdf of \mathbb{Z}^2 , we obtain

$$\begin{split} F_{Z^2}(z) &= P((\min(X,Y))^2 \leq z) = P(-z \leq \min(X,Y) \leq \sqrt{z}) \\ &= P(\min(X,Y) \leq \sqrt{z}) - P(\min(X,Y) \leq -\sqrt{z}) \\ &= [1 - P(\min(X,Y) > \sqrt{z})] - [1 - P(\min(X,Y) > -\sqrt{z})] \\ &= P(\min(X,Y) > -\sqrt{z}) - P(\min(X,Y) > \sqrt{z}) \\ &= P(X > -\sqrt{z})P(Y > -\sqrt{z}) - P(X > \sqrt{z})P(Y > \sqrt{z}), \end{split}$$

Second Edition 5-9

where we use the independence of X and Y. Since X and Y are identically distributed, $P(X > a) = P(Y > a) = 1 - F_X(a)$, so

$$F_{Z^2}(z) = (1 - F_X(-\sqrt{z}))^2 - (1 - F_X(\sqrt{z}))^2 = 1 - 2F_X(-\sqrt{z}),$$

since $1 - F_X(\sqrt{z}) = F_X(-\sqrt{z})$. Differentiating and substituting gives

$$f_{Z^2}(z) = \frac{d}{dz} F_{Z^2}(z) = f_X(-\sqrt{z}) \frac{1}{\sqrt{z}} = \frac{1}{\sqrt{2\pi}} e^{-z/2} z^{-1/2},$$

the pdf of a χ_1^2 random variable. Alternatively,

$$\begin{split} P(Z^2 \le z) &= P\left([\min(X,Y)]^2 \le z \right) \\ &= P(-\sqrt{z} \le \min(X,Y) \le \sqrt{z}) \\ &= P(-\sqrt{z} \le X \le \sqrt{z}, X \le Y) + P(-\sqrt{z} \le Y \le \sqrt{z}, Y \le X) \\ &= P(-\sqrt{z} \le X \le \sqrt{z} | X \le Y) P(X \le Y) \\ &+ P(-\sqrt{z} \le Y \le \sqrt{z} | Y \le X) P(Y \le X) \\ &= \frac{1}{2} P(-\sqrt{z} \le X \le \sqrt{z}) + \frac{1}{2} P(-\sqrt{z} \le Y \le \sqrt{z}), \end{split}$$

using the facts that X and Y are independent, and $P(Y \le X) = P(X \le Y) = \frac{1}{2}$. Moreover, since X and Y are identically distributed

$$P(Z^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z})$$

and

$$f_{Z^{2}}(z) = \frac{d}{dz}P(-\sqrt{z} \le X \le \sqrt{z}) = \frac{1}{\sqrt{2\pi}}(e^{-z/2}\frac{1}{2}z^{-1/2} + e^{-z/2}\frac{1}{2}z^{-1/2})$$
$$= \frac{1}{\sqrt{2\pi}}z^{-1/2}e^{-z/2},$$

the pdf of a χ_1^2 .

5.23

$$P(Z > z) = \sum_{x=1}^{\infty} P(Z > z | x) P(X = x) = \sum_{x=1}^{\infty} P(U_1 > z, \dots, U_x > z | x) P(X = x)$$

$$= \sum_{x=1}^{\infty} \prod_{i=1}^{x} P(U_i > z) P(X = x) \qquad \text{(by independence of the } U_i\text{'s})$$

$$= \sum_{x=1}^{\infty} P(U_i > z)^x P(X = x) = \sum_{x=1}^{\infty} (1 - z)^x \frac{1}{(e - 1)x!}$$

$$= \frac{1}{(e - 1)} \sum_{x=1}^{\infty} \frac{(1 - z)^x}{x!} = \frac{e^{1 - z} - 1}{e - 1} \qquad 0 < z < 1.$$

5.24 Use $f_X(x) = 1/\theta$, $F_X(x) = x/\theta$, $0 < x < \theta$. Let $Y = X_{(n)}$, $Z = X_{(1)}$. Then, from Theorem 5.4.6,

$$f_{Z,Y}(z,y) = \frac{n!}{0!(n-2)!0!} \frac{1}{\theta} \frac{1}{\theta} \left(\frac{z}{\theta}\right)^0 \left(\frac{y-z}{\theta}\right)^{n-2} \left(1 - \frac{y}{\theta}\right)^0 = \frac{n(n-1)}{\theta^n} (y-z)^{n-2}, \ 0 < z < y < \theta.$$

Now let W = Z/Y, Q = Y. Then Y = Q, Z = WQ, and |J| = q. Therefore

$$f_{W,Q}(w,q) = \frac{n(n-1)}{\theta^n} (q - wq)^{n-2} q = \frac{n(n-1)}{\theta^n} (1 - w)^{n-2} q^{n-1}, \ 0 < w < 1, 0 < q < \theta.$$

The joint pdf factors into functions of w and q, and, hence, W and Q are independent.

5.25 The joint pdf of $X_{(1)}, \ldots, X_{(n)}$ is

$$f(u_1, \dots, u_n) = \frac{n! a^n}{\theta^{an}} u_1^{a-1} \dots u_n^{a-1}, \quad 0 < u_1 < \dots < u_n < \theta.$$

Make the one-to-one transformation to $Y_1=X_{(1)}/X_{(2)},\ldots,Y_{n-1}=X_{(n-1)}/X_{(n)},Y_n=X_{(n)}.$ The Jacobian is $J=y_2y_3^2\cdots y_n^{n-1}.$ So the joint pdf of Y_1,\ldots,Y_n is

$$\begin{split} f(y_1,\dots,y_n) &= \frac{n!a^n}{\theta^{an}}(y_1\cdots y_n)^{a-1}(y_2\cdots y_n)^{a-1}\cdots (y_n)^{a-1}(y_2y_3^2\cdots y_n^{n-1}) \\ &= \frac{n!a^n}{\theta^{an}}y_1^{a-1}y_2^{2a-1}\cdots y_n^{na-1}, \quad 0 < y_i < 1; i = 1,\dots,n-1, \quad 0 < y_n < \theta. \end{split}$$

We see that $f(y_1,\ldots,y_n)$ factors so Y_1,\ldots,Y_n are mutually independent. To get the pdf of Y_1 , integrate out the other variables and obtain that $f_{Y_1}(y_1)=c_1y_1^{a-1},\ 0< y_1<1$, for some constant c_1 . To have this pdf integrate to 1, it must be that $c_1=a$. Thus $f_{Y_1}(y_1)=ay_1^{a-1},\ 0< y_1<1$. Similarly, for $i=2,\ldots,n-1$, we obtain $f_{Y_i}(y_i)=iay_i^{ia-1},\ 0< y_i<1$. From Theorem 5.4.4, the pdf of Y_n is $f_{Y_n}(y_n)=\frac{na}{\theta^{na}}y_n^{na-1},\ 0< y_n<\theta$. It can be checked that the product of these marginal pdfs is the joint pdf given above.

- 5.27 a. $f_{X_{(i)}|X_{(j)}}(u|v) = f_{X_{(i)},X_{(j)}}(u,v)/f_{X_{(j)}}(v)$. Consider two cases, depending on which of i or j is greater. Using the formulas from Theorems 5.4.4 and 5.4.6, and after cancellation, we obtain the following.
 - (i) If i < j,

$$\begin{split} f_{X_{(i)}|X_{(j)}}(u|v) &= \frac{(j-1)!}{(i-1)!(j-1-i)!} f_X(u) F_X^{i-1}(u) [F_X(v) - F_X(u)]^{j-i-1} F_X^{1-j}(v) \\ &= \frac{(j-1)!}{(i-1)!(j-1-i)!} \frac{f_X(u)}{F_X(v)} \left[\frac{F_X(u)}{F_X(v)} \right]^{i-1} \left[1 - \frac{F_X(u)}{F_X(v)} \right]^{j-i-1}, \quad u < v. \end{split}$$

Note this interpretation. This is the pdf of the *i*th order statistic from a sample of size j-1, from a population with pdf given by the truncated distribution, $f(u) = f_X(u)/F_X(v)$, u < v.

(ii) If j < i and u > v,

$$\begin{split} &f_{X_{(i)}|X_{(j)}}(u|v) \\ &= \frac{(n-j)!}{(n-1)!(i-1-j)!} f_X(u) \left[1 - F_X(u)\right]^{n-i} \left[F_X(u) - F_X(v)\right]^{i-1-j} \left[1 - F_X(v)\right]^{j-n} \\ &= \frac{(n-j)!}{(i-j-1)!(n-i)!} \frac{f_X(u)}{1 - F_X(v)} \left[\frac{F_X(u) - F_X(v)}{1 - F_X(v)}\right]^{i-j-1} \left[1 - \frac{F_X(u) - F_X(v)}{1 - F_X(v)}\right]^{n-i}. \end{split}$$

This is the pdf of the (i-j)th order statistic from a sample of size n-j, from a population with pdf given by the truncated distribution, $f(u) = f_X(u)/(1 - F_X(v)), u > v$.

b. From Example 5.4.7,

$$f_{V|R}(v|r) = \frac{n(n-1)r^{n-2}/a^n}{n(n-1)r^{n-2}(a-r)/a^n} = \frac{1}{a-r}, \quad r/2 < v < a-r/2.$$