
Miscellaneous Solutions and Comments on the
Chapter 7 Exercises

7.4: For X1, . . . , Xn iid N(θ, 1), the likelihood function may be found by
setting µ = θ and σ2 = 1 in the expression for the joint density given in
Example 6.2.7 on page 277. This leads to

L(θ|x) = c exp(−n(x̄− θ)2/2)

where

c = (2π)−n/2 exp

(
−

n∑
i=1

(xi − x̄)2/2

)
.

The log-likelihood is thus

`(θ) = log c− n

2
(x̄− θ)2 (1)

which as a function of θ is a parabola which opens downward and achieves
its maximum over all real values of θ at θ = x̄. In this problem we require
θ ≥ 0. Let Θ = {θ : θ ≥ 0}. The MLE is the value of θ ∈ Θ which maximizes
`(θ). If x̄ ≥ 0, then the overall maximum at θ = x̄ lies in Θ and is the MLE.
However, if x̄ < 0, then θ = x̄ lies outside Θ. When x̄ < 0 the log-likelihood is
a decreasing function when restricted to Θ and the maximum in Θ is achieved
at the endpoint θ = 0 which is the MLE in this case. (This is clear if you
draw a picture of a parabola opening downward with its peak at x̄ < 0.) In
summary, the MLE is θ̂ = x̄ when x̄ ≥ 0 and θ̂ = 0 otherwise.

You can reach the same conclusion without using the particular expression
for `(θ) given in (1) above. You just need to show that `′(θ) = 0 when θ = x̄
with `′(θ) > 0 for θ < x̄ and `′(θ) < 0 for θ > x̄. Then if x̄ < 0, you have
`′(θ) < 0 for all θ ≥ 0 so that the maximum in Θ is achieved at θ = 0.

7.19, 7.20, 7.21 (Comparison of Variances): It is possible to show that
the estimator in 7.19 has smaller variance than the estimators in 7.20 and
7.21 without any calculations or explicit use of general inequalities (such
as Jensen’s, etc.). By referring to the expression for the likelihood in the
solution manual, we see that the joint distribution of Y1, . . . , Yn in 7.19 is
a two-parameter exponential family (2pef) with natural sufficient statistic
T = (

∑
i Y

2
i ,
∑

i xiYi). The open set condition is satisfied so that T is also
complete. The unbiased estimator found in 7.19(b) is a function of the com-
plete sufficient statistic T (keeping in mind that

∑
i x

2
i is a “constant”, i.e.,

not a function of the data Y ) and is therefore best unbiased. Its variance is
thus strictly smaller than that of the unbiased estimators in 7.20 and 7.21
(except in the special case where x1 = x2 = · · · = xn in which the estimators
coincide and their variances are equal).

Comparing the variances of the estimators in 7.20 and 7.21 with each
other does require explicit formulas for the variances and the use of Jensen’s
inequality (as shown in the solutions manual). You are NOT responsible for
knowing the Jensen’s argument. However, you ARE responsible for being
able to calculate the variances.
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7.22, parts (b) and (c): The solution manual gives one approach to part
(c). Another is given in the lecture notes.

The solution to part (b) in the solution manual involves some messy
calculations. An alternate approach uses the following general facts:

• For any two random variables Y and Z, if L(Y |Z) does not depend on
Z (i.e., is the same for all values of Z), then Y and Z are independent
and L(Y ) is the same as L(Y |Z).

• If Y and Z are independent with Y ∼ N(a, b) and Z ∼ N(c, d), then
Y + Z ∼ N(a + c, b + d).

We know that x̄ | θ ∼ N(θ, σ2/n). Therefore (x̄ − θ) | θ ∼ N(0, σ2/n). Since
this conditional distribution does not involve θ, we conclude that x̄ − θ and
θ are independent random variables and that x̄ − θ ∼ N(0, σ2/n). We are
given that θ ∼ N(µ, τ 2). Thus x̄ = (x̄− θ)+ θ is the sum of two independent
normal random variables, and is therefore normally distributed with mean
0 + µ and variance σ2/n + τ 2 as desired.

7.42(a): The handwritten solution involves somewhat complicated muck-
ing about with inequalities. Here is another solution which avoids this. Let
Z1, . . . , Zn be independent random variables with Zi ∼ N(θ, σ2

i ) for all i
where σ2

1, . . . , σ
2
n are known constants. For any constants a1, . . . , an, it is clear

that E(
∑

i aiWi) = E(
∑

i aiZi) and Var(
∑

i aiWi) = Var(
∑

i aiZi). There-
fore, since this problem only involves these means and variances, we may
assume without loss of generality that Wi = Zi for all i. It is easy to show
that the joint distribution of Z1, . . . , Zn forms a one-parameter exponen-
tial family (1pef) for which T =

∑
i Zi/σ

2
i is the natural sufficient statistic

for θ. (To see this just write down and simplify the joint density.) Since
the open set condition holds, T is also complete. The unbiased estimator
θ̂ = (

∑
i Zi/σ

2
i ) / (

∑
i 1/σ

2
i ) is a function of the complete sufficient statistic T ,

and is therefore the best unbiased estimator. Thus, any unbiased estimator
of the form

∑
i aiZi must satisfy Var(

∑
i aiZi) ≥ Var(θ̂). (The inequality will

be strict unless
∑

i aiZi = θ̂.)

7.57: In the case y = 1 or 2, the final ratio is simplified incorrectly in the
solution manual. The answer should be (n + 1− y)/(n + 1) when y = 1 or 2.
The solution manual does everything in terms of the binomial distribution.
Define Y =

∑n+1
i=1 Xi. Following the lecture notes, another solution can be

based on the fact that, conditional on Y = y, the values X1, . . . , Xn+1 are
like n + 1 balls drawn (without replacement) from an urn containing y balls
labeled 1 and n+1−y balls labeled 0. Let A = {∑n

i=1 Xi > Xn+1}. Using the
urn model it is clear that A is impossible if Y = 0, that is, P (A |Y = 0) = 0.
If Y = 1 or 2, then A occurs only if Xn+1 = 0 (the last ball is zero) which
happens with probability (n + 1− y)/(n + 1). If Y > 2, then clearly A must
always occur (the conditional probability is one). This gives the same answer
as in the solution manual.
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